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Abstract

In this article, we apply a special case of holographic representations to letter position coding. We

translate different well-known schemes into this format, which uses distributed representations

and supports constituent structure. We show that in addition to these brain-like characteristics,

performances on a standard benchmark of behavioral effects are improved in the holographic format

relative to the standard localist one. This notably occurs because of emerging properties in

holographic codes, like transposition and edge effects, for which we give formal demonstrations.

Finally, we outline the limits of the approach as well as its possible future extensions.
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1. Introduction

Research on letter position encoding has been through a remarkable expansion in recent

years. At the origin of this are numerous findings concerning the flexibility of letter string

representations, as well as the growing realization of their importance in the computational

study of lexical access. Nevertheless, how the brain encodes visual words is still a subject of

vivid debate. Obviously, a stable code must be used if we are to retrieve words successfully,

and order must be encoded because we can distinguish between anagrams like ‘‘relating’’

and ‘‘triangle.’’ But researchers disagree on exactly how this string encoding step1 is

achieved.

There is currently a great variety of proposals in the literature, but it is possible to classify

them according to the scheme and code they use. Indeed, current proposals fall into two

classes of schemes: relative and absolute, and each of them can be implemented using two

kinds of codes: localist or distributed.
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We will see that all schemes but one have been implemented using localist codes. In this

article, we explore a special kind of distributed coding, based on holographic representations.

We show that well-known schemes behave differently depending on the code they use,

holographic ones performing generally better on a benchmark of behavioral effects. Finally,

we exploit the compositional power of holographic representations to study a new scheme

in the spirit of the local combination detector model (LCD; Dehaene, Cohen, Sigman, &

Vinckier, 2005), a recent and biologically constrained proposal for string encoding.

1.1. Absolute versus relative schemes

A string encoding scheme is an abstract specification of the basic entities and relation-

ships by which order will be achieved in the string representation.

1.1.1. Absolute position schemes
Absolute schemes hold that for any given entity in a string, its position is marked by some

coordinates in a common reference frame. The basic entity in all current absolute schemes

is the letter, and the most used origin for the reference frame is the first letter. Examples

of this approach include slot coding (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;

McClelland & Rumelhart, 1981), double-anchoring (Jacobs, Rey, Ziegler, & Grainger, 1998),

the overlap model (Gomez, Ratcliff, and Perea, 2008), or Spatial Coding (Davis, in press).

A scheme should be flexible if it is to bear any resemblance to human performances, and

absolute schemes can be more or less flexible depending on the reference frame. The less

flexible, but still the most widespread, is slot coding, in which position coordinates are per-

fectly determined and originate at the beginning of the word. This amounts to feeding letters

in a positional array, implying that as few as a single letter shift will displace all elements

and minimize similarity (the so-called alignment problem; Davis, 1999). Building on slot

coding, some variants like double-anchoring introduce more flexibility by using two origins

(first and last letters) instead of one (Fischer-Baum, McCloskey, & Rapp, 2010; Jacobs

et al., 1998). Many absolute schemes also choose to feature uncertainty in position assign-

ment. This approach is best illustrated in the overlap model (Gomez et al., 2008), where the

position of a letter in the frame is not marked by a constant coordinate, but rather by a prob-

ability density function centered on this coordinate. Finally, the most flexible absolute

scheme is Spatial Coding (Davis, in press), where letters are assigned monotonic position

values as they progress in the string. The flexibility comes partly from exploiting some

uncertainty in position assignment, but mostly from the similarity measure between two

strings, which assesses how consistently matching letters are shifted in both strings.

1.1.2. Relative position (RP) schemes
The second approach conceives of letter order in relative terms. Here, the information

concerning the position of single letters is utterly irrelevant, and there is no common coordi-

nate frame. Rather, what is important is the relative order in which two or more (possibly

distant) letters appear in the string. That is, a string code is best thought of as a set of acti-

vated n-gram entities. Among the tenants of this approach figure Wickelcoding (Seidenberg
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& McClelland, 1989; Wickelgren, 1969), Blirnet (Mozer, 1991), and open-bigram schemes

(Grainger & Van Heuven, 2003; Whitney & Berndt, 1999).

Relative schemes vary as to the size and contiguity properties an entity should possess.

Wickelcoding and Blirnet both use letter trigrams, but whereas the first imposes complete

contiguity upon their constituent letters, the second allows for a one-letter gap to occur.

Open-bigram schemes restrict the entity to the bigram, but enlarge the authorized distance

between letters: up to two intervening letters are allowed in constrained open-bigrams

(COB; Grainger & Van Heuven, 2003) and Seriol (Whitney & Berndt, 1999), while no

restriction is imposed in unconstrained open-bigrams (UOB). More recently, an overlapping

open-bigram scheme was proposed in which contiguity is reinstated upon entities, but posi-

tion uncertainty takes place at lower levels; consequently, activation of noncontiguous

bigrams is still achieved, albeit in a different way (Grainger, Granier, Farioli, Van Assche,

& Van Heuven, 2006).

Note that we have used the terms absolute and relative slightly differently from that in

the literature. The term ‘‘absolute’’ in the context of letter position coding has been applied

to any scheme using a fixed coordinate frame, with a single origin and no uncertainty. The

term ‘‘relative’’ was then usually defined by opposition, and hence includes schemes with

more than one origin. Accordingly, double-anchoring schemes were first dubbed relative on

the grounds that position is encoded with respect to two anchors, and Spatial Coding has

been referred to as relative because match calculations are based on the relative alignment

between letter positions in both strings, rather than on the number of letters that match at

any absolute position. But we feel this terminology could profit from a more traditional use

of the absolute/relative dichotomy. In the classical meaning, any scheme that encodes order

through a coordinate system, using the distance of entities to one or more common ori-

gin(s), should be referred to as absolute, whereas any scheme that purports to encode order

directly by the relationship between entities and bypassing any origin, should be referred to

as relative. This terminology is orthogonal to flexibility; indeed, relative schemes can be

quite rigid (e.g., Wickelcoding) and absolute schemes can be very flexible (e.g., Spatial

Coding).

1.1.3. A recent hierarchical proposal: Local combination detector
Although it has not yet been implemented, a recent string encoding proposal privileging

biological plausibility and constrained by brain imaging data has recently appeared

(Dehaene et al., 2004, 2005; Vinckier et al., 2007).

LCD holds that hierarchical feature extraction from the stimulus results in invariance for

size and font in the left fusiform gyrus, and more precisely in the posterior part of the so-

called visual word form area (Cohen & Dehaene, 2004; Cohen et al., 2000). From there,

string encoding is best described as involving three levels of units with increasing receptive

fields, culminating in the anterior part of the region. The model distinguishes between letter,

bigram, and quadrigram detectors, which would be segregated into distinct cortical

stripes—although all types of units could also be present at each level in different propor-

tions (Vinckier et al., 2007). Based on evidence from behavioral and brain studies (Dehaene

et al., 2004; Peressotti & Grainger, 1999), the model assumes an absolute scheme at the
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letter level, but the highest level in the hierarchy uses open-quadrigrams and thus a scheme

built from the LCD model would ultimately be a relative one.

1.2. Localist and distributed codes

Once a scheme has been decided upon, its actual implementation requires to define a

code. Codes are primarily concerned with units, and how they relate to the entities that have

been specified in the scheme. One should distinguish between two different kinds of

relationships between units and entities: one-to-one relationships, which produce localist

codes,2 and many-to-many relationships, which produce distributed codes (Plaut &

McClelland, 2010; Rumelhart & McClelland, 1986).

1.2.1. Localist codes
A localist code describes a one-to-one mapping between entities and units. For example,

consider encoding the word ‘‘CABS’’: localist Wickelcoding could use a binary vector

where each component stands for a single letter triplet. The code would then assign ones

only to these four units corresponding to CA, CAB, ABS, and BS and zeros to all others.

This code is localist in the strongest sense: A single bit would map to exactly one element

and hence flipping a bit from 1 to 0 would entirely and exclusively destroy the information

about the corresponding triplet.

The localist approach has a long history in cognitive science. As each unit represents one

entity, localist codes have appeared more compatible with so-called classical cognitive

frameworks in which rules operate on symbols (Chomsky, 2002; Fodor, 1983; Pinker, 1999;

Turing, 1950). Localist coding has also been used in many successful computational models

coming from various areas of cognition, and especially in visual word recognition (Coltheart

et al., 2001; Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981; Norris, 2006). At

the neural level, the approach concords with the so-called grandmother cell hypothesis,

which states that single cells can be dedicated to a single arbitrarily complex object irrespec-

tive of its size, orientation, or color (Gross, 2002). As noted by Gross, the original grand-

mother cell hypothesis advocated a weaker form of localist representations, in which many

neurons (the number 18,000 has been advanced) would be tuned to the same entity, and

indeed some localist proponents have embraced this many-to-one redundant coding
(Bowers, 2009).

1.2.2. Distributed codes
Alternatively, one can use a code in which many units participate in representing any

given entity, and many entities use each unit. That is, no unit can be singled out as uniquely

representing one stimulus—or any class, or any given feature of it—and instead information

about any given entity is spread over the activity of many units. At one extreme, this many-

to-many mapping produces a dense distributed code, each entity activating in average half

of the units. At the other extreme, we find sparsely distributed codes, in which an entity uses

only a few units and each unit codes for a few entities. For many years, the only distributed

string code in the literature implemented a Wickelcoding scheme, and had been proposed in
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the context of the Parallel Distributed Processing (PDP) model (Seidenberg & McClelland,

1989). It consisted of 400 binary units, each responding to 1,000 randomly chosen letter

triplets. This so-called coarse coding approach is distributed because considering only a unit

cannot tell us which one of the 1,000 triplets it is activated for, yet taken together the 400

units do define a virtually unique correspondence.3 Recently, however, Dandurand, Grain-

ger, and Dufau (2010) trained a backpropagation network on a location invariant word rec-

ognition task, and it has been shown that this network implements a densely distributed

version of the overlap scheme (Hannagan, Dandurand, & Grainger, in press).

Distributed codes are slightly more recent than localist ones but also have a strong pedi-

gree. Their study was precipitated by the discovery of the backpropagation learning algorithm

(Rumelhart, Hinton, & Williams, 1986), which usually produces distributed codes whose

sparseness depends on the network structure and the task at hand (Plaut & McClelland,

2010). These codes are also intimately tied with high-stake theoretical issues in cognitive

science, contrasting a vision of human cognition as emerging from associations between

(often distributed) representations, rather than as systems of rules and symbols (McClelland,

Patterson, Pinker, & Ullman, 2002). However, this distinction was blurred in the 1990s by

the introduction of such techniques as Tensor Product representations (Smolensky, 1990)

and later by Holographic representations, which instantiate what has been described as an

Integrated Connectionist Symbolic framework (Smolensky, Legendre, & Miyata, 1992).

1.3. The localist versus distributed debate

As this article illustrates, the choice of a representational format has profound impacts at

the computational level: Schemes do not make the same predictions depending on the code

they use. In consequence, one should assess which of the distributed or localist approach, if

any, is currently favored by the evidence.

Nowadays, the commitment to distributed representations is widespread among both

neuroscientists and computational modelers, in part because of the success of the PDP

framework (Rumelhart & McClelland, 1986), and also because they have been reported in a

vast number of brain regions and in a variety of forms—see Abbott and Sejnowski (1999)

and Felleman and Van Essen (1991) for good surveys. As regards string encoding, it is also

worth noting here that the LCD proposal, which may currently have the strongest claims to

biological plausibility, postulates distributed representations.

Recently, however, Bowers (2009) argued for a localist vision in which units are redundant

(i.e., many dedicated localist units code for any given entity), activation spreads between

them (i.e., each dedicated unit can possibly also show some low level of activity for a related

stimuli), and units are limited to coding for individual words, faces, and objects (Bowers,

2009). Bowers points to human neurophysiological recordings showing rare cells with highly

selective responses to a given face, and negligible or flat responses to all others.

It has been pointed out that reports of highly tuned cells can hardly count as evidence for

localist coding since one can neither test exhaustively all other cells for any given stimulus,

nor the presumed localist cell exhaustively for all possible stimuli (Plaut & McClelland,

2010). Nevertheless, Bayesian estimates of sparseness can and have been derived for
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medial temporal lobe cells (Waydo, Kraskov, Quiroga, Fried, & Koch, 2006), assuming

that on the order of 105 items are stored in this area—where coding is generally believed to

be sparser than elsewhere in the brain—and these estimates turned out to be unequivocally in

favor of sparse distributed coding. Crucially, the following claim from Bowers is incorrect:

Waydo et al.’s (2006) calculations are just as consistent with the conclusion that there
are roughly 50–150 redundant Jennifer Aniston cells in the hippocampus. (p. 245)

Waydo et al.’s (2006) study was agnostic with respect to redundant coding and explicitly

concludes that rather than 50–150, on the order of several million medial temporal (MT)

neurons should respond to any given complex stimulus (Jennifer Aniston included), and

each cell is likely to respond to a hundred of different stimuli. In fact such ‘‘multiplex’’

cells, to use Plaut and McClelland’s (2010) proposed terminology, have been directly

observed by Waydo et al. (2006) (personal communication).

As for computational efficiency, distributed codes have well-known computational quali-

ties: They are robust to noise, have a large representational power, and support graded simi-

larities. In distributed codes, randomly removing n units does not lead to the total deletion

of n representations, but rather to the gradual loss of information in all representations. This

would seem especially useful considering the different sources of noise—environmental or

neural—in spite of which the brain has to operate (Knoblauch & Palm, 2005). Redundant

localist coding would indeed provide a similar advantage, were it not already disproved by

the above mentioned estimates. Distributed coding also provides a significant gain in repre-

sentational power. For instance, n binary units can encode at most n local representations

(without any redundancy), but this number is a lower bound when using distributed

representations—and can reach 2n with dense coding. Indeed, because firing a neuron takes

energy, there is likely to be a trade-off between representational efficiency and metabolic

cost. Brain regions supporting highly regular associations would be more likely to settle on

dense representations, whereas those supporting highly irregular associations would settle

on sparser ones, although not to the localist extreme. Moreover, while distributed represen-

tations are susceptible to result in ‘‘catastrophic interference’’ of new memories on old ones,

it is known that the independently motivated introduction of constraints, such as interleaved

learning or assumptions, such as pseudo-rehearsal can circumvent the issue (Ellis & Lambon

Ralph, 2000; McClelland, McNaughton, & O’Reilly, 1995).

Finally, in localist coding, the question arises as to which entities or class of entities a unit

should stand for, this especially considering that class distinctions can be entirely context

dependent (Plaut & McClelland, 2010). This is intimately tied to the problem of defining

similarities between representations, a problem which is solved in distributed representa-

tions where graded similarities can be defined as the overlap between patterns—for instance,

by computing the euclidean distance between activation patterns.

In light of the available evidence, we think that the localist approach is not currently sup-

ported by physiology, that it runs into the fundamental issue of how to determine what a unit

codes for, and that it severely limits representational power especially if one acknowledges

that redundant coding is required to overcome noise issues—which is not compatible with
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current estimates. On the other hand, distributed representations have been abundantly

found in the brain, and they allow for a much larger, graded, and robust spectrum of repre-

sentations to be coded by any given population of unit.

1.4. Constituent structure and the dispersion problem

As we have seen, there are behavioral and biological reasons to explore the possibility

that letter combinations are involved in the string encoding process, as proposed for instance

in LCD, open-bigrams, or Wickelcoding. In these schemes by definition a given letter com-

bination is active only if its constituents are present in the string in the correct order.

There is, however, a consequence of this way to represent letter order: the possible

loss of information pertaining to constituent structure. Under a localist open-bigram

implementation, for instance, bigram 12 is equally similar to bigrams 1d or 21, with which

it shares common constituents,4 than to bigram dd, with which it does not—see also Davis

and Bowers (2006), for the same remark on localist Wickelcoding. This is what mathemati-

cians refer to as a topologically discrete space: the (normalized) distance between two local-

ist representations is always one (or zero iff identical). As n-gram units increase in size, this

lack of sensitivity to constituent structure can become problematic for the string encoding

approach, implying for instance that a localist open-quadrigram code would assign no simi-

larity whatsoever between any four letter strings, in flat contradiction with experimental

results (Humphreys, Evett, & Quinlan, 1990).

While this issue does not arise in absolute codes because similarities are computed at the

level of letters, it is potentially serious for relative schemes. The issue seems to stem in part

from the use of localist representations, but it is unclear how using distributed representa-

tions would actually improve the situation. Indeed, as described earlier, one example of a

distributed string code can be found in the original PDP model and was applied to the

Wickelcoding scheme. The code has good robustness to noise and provides graded similar-

ity measures for strings of more than three letters, but it is of little use in the problem

described above. This is because as triplets are randomly assigned to units, there is still no

relationship between units coding for triplets with similar letter constituents. This phenome-

non is related to the dispersion problem observed in PDP (i.e., the fact that orthographic-

to-phonological regularities learned in some context do not carry over to different contexts)

and it has been identified as a major obstacle to generalization in the PDP model (Plaut,

McClelland, Seidenberg, & Patterson, 1996).

What seems to be required is a way to represent letter-combination entities so as to

respect similarities between combinations that share constituents, and we now describe how

this can be achieved using holographic representations.

1.5. Binary spatter code

Binary spatter codes (BSC; Kanerva, 1997, 1998) are a particular case of holographic

reduced representations (Plate, 1995) and provide a simple way to implement a distributed

and compositional code.
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Formally, BSCs are randomly distributed vectors of large dimensions (typically in the

order of 103 to 104), where each element is bipolar, identically and independently distributed

in a Bernoulli distribution. Vectors can be combined together using two particular operators:

X-or and Majority rule, often, respectively referred to as the Binding and Chunking opera-

tors.5 The composition of BSC vectors using these operators results in a new vector of the

same dimension and distribution.

Operators are defined element-wise (see Appendix A for formal definitions): X-oring two

bipolar variables gives 1 if they are different and )1 otherwise, while the majority rule

applied to k bipolar variables gives 1 if they sum up above zero and )1 otherwise. Both

operators preserve the format (size and distribution) of vectors, so that the resulting vectors

can themselves be further combined, thus allowing for arbitrarily complex combinatorial

structures to be built in a constant sized code.

As an example, consider how to implement the sequence of events [A, B, C] with an

absolute scheme and vectors of dimension 10. We start by generating three event vectors at

random:

A :¼ ½1; 0; 1; 1; 1; 0; 0; 1; 1; 0�
B :¼ ½1; 0; 0; 0; 0; 1; 0; 1; 0; 1�
C :¼ ½0; 1; 0; 1; 0; 1; 1; 1; 0; 1�

Likewise, we also generate at random the three temporal vectors required by an absolute

position scheme:

T1 :¼ ½1; 0; 1; 1; 0; 1; 1; 0; 1; 1�
T2 :¼ ½0; 1; 0; 1; 0; 0; 0; 0; 0; 1�
T3 :¼ ½1; 1; 0; 1; 1; 0; 1; 1; 1; 1�

We express the idea that an event occurred at a given time by X-oring these vectors

together, giving the three bindings:

A�T1 ¼ ½0; 0; 0; 0; 1; 1; 1; 1; 0; 1�
B�T2 ¼ ½1; 1; 0; 1; 0; 1; 0; 1; 0; 0�
C�T3 ¼ ½1; 0; 0; 0; 1; 1; 0; 0; 1; 0�

These vectors are again densely and randomly distributed (p(0) ¼ p(1) ¼ 1/2). Calculat-

ing the expected similarities6 between one binding and its constituents, we see that it must

be zero: X-or destroys similarity.

Finally, we signify that these three events constitute one sequence by applying the

majority rule:

S ¼MajðA�T1;B�T2;C�T3Þ
� A�T1� B�T2� C�T3 ¼ ½1; 0; 0; 0; 1; 1; 0; 1; 0; 0�
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The sequence vector S that results from the Maj also has the same distribution as its

argument vectors. As we calculate its expected similarity with its arguments, we see that

contrary to the X-or it is non-zero, but here, 1/2.7 The fact that Maj allows for part/whole

similarities also implies that two structures which share some constituents will be more

similar than chance.

Note that BSCs can be made arbitrarily sparse (Kanerva, 1995), although in this article,

we use the dense version for simplicity. It has also been shown that randomly connected

sigma–pi neurons can achieve holographic reduced representations (Plate, 2000). In

addition, holographic techniques, such as BSCs have been recently applied to a number of

language related problems, including grammatical parsing (Whitney, 2004), learning and

systematization (Neumann, 2002), lexical acquisition (Jones & Mewhort, 2007), language

acquisition (Levy & Kirby, 2006), or phonology (Harris, 2002).

1.6. Comparing codes: Method, objections, and replies

The masked priming paradigm (Forster & Davis, 1984) is most commonly used to

assess the relative merits of candidate schemes. Simply stated, in this paradigm, a mask is

presented for 500 ms, followed by a prime for a very brief duration (e.g., 50 ms), and then

directly by the target string for 500 ms. Using this paradigm, subjects are generally una-

ware of the prime—it is said to be subliminal. However, when target strings are preceded

by subliminal primes that are close in visual form, subjects are significantly faster and

more accurate in their performances. In most studies the primes of interest are non-words,

and there is no manipulation of frequency [F] or neighborhood [N]). Varying the

orthographic similarity with the target (e.g hoss-TOSS vs. nard-TOSS), one can observe

different amounts of facilitation that can then be compared to similarity scores derived

from candidate schemes.

The way similarity scores are calculated depends upon the scheme. Most of the time, the

similarity between prime and target strings is obtained simply by dividing the number of

shared units by the number of units in the target. This is the similarity defined for instance

in Grainger and Van Heuven’s localist open-bigrams, and when absolute positions are taken

into account, in slot coding. More sophisticated similarities can introduce weights for differ-

ent units (Seriol model), signal-to-weight differences (Spatial Coding), or sums of integrals

over Gaussian products (overlap model).

Some researchers have recently raised objections to this way of assessing codes. Lupker

and Davis (2009) challenge the notion that masked priming effects can constrain codes,

since the latter abstract away from N and F that despite all precautions will play a role in the

former, and a new paradigm is proposed that is deemed less sensitive to these factors.

Although this ‘‘sandwich priming’’ appears promising, a dismissal of the standard approach

would certainly be premature. All researchers agree that the similarity/masked priming com-

parison should be used with caution—see, for example, Gomez et al. (2008)—which would

exclude, for instance, conditions that explicitly manipulate primes for N or F. But the stan-

dard view is that in general masked priming facilitation should highly correlate with the

magnitude of similarities, which in all models are thought to capture bottom-up activation
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from sublexical units (see, for instance, Davis & Bowers, 2006; Gomez et al., 2008;

Grainger et al., 2006; Van Assche & Grainger, 2006; Whitney, 2008). This view is also sup-

ported by unpublished investigations showing that similarities in the Spatial Coding scheme

correlate 0.63 with simulated priming in the Spatial Coding model, and 0.82 when condi-

tions that manipulate F and N are excluded (Hannagan, 2010).

Although such correlations are bound to differ across models because these make differ-

ent assumptions about N and F mechanisms, the differences put models’ behaviors into per-

spective, allowing one to distinguish bottom-up contributions from other contributions in

priming simulations. Finally, in some circumstances, similarities alone can be sufficient to

rule codes out. Such a situation occurred, for instance, in the case of standard localist slot

coding, where a string code suffers equal disruptions from double substitutions or from

transpositions. No lexical level from any model could save this localist code from being

inconsistent with human data, because these show strong priming in the latter case but weak

or no priming in the former (Perea & Lupker, 2003a).

In summary, assessing codes on masked priming constraints has been standard practice

in the field, can rule out codes on face value, arguably provides accurate expectations for

priming simulations carried out on models, and in any case provides a useful way to

understand their inner workings. Consequently and following others, in this article, we will

use similarity scores to predict these priming effects that would be expected from the

codes alone in any lexical access model, and we will assess codes exclusively on masked

priming data.

1.7. Four family of constraints from masked priming

We now describe several properties we believe word codes should display. These proper-

ties are by no means exhaustive but were chosen because they have been consistently

reported in the literature.

1.7.1. Stability
First and foremost the code should be stable, if words are ever to be accessed reliably. A

sufficient condition of stability for string S is that the similarity between S and any other

string should be strictly less than one, but it should be one between S and itself. However,

this cannot be a necessary condition, as in a noisy environment, the system must be prepared

to accept some variation to occur even in the identity condition. Thus, we propose that a

necessary and sufficient stability condition for string S is that in the absence of noise, no

transformation of S can produce a code closer to S than a given similarity criterion (we use

0.95 throughout this article). We will test for stability of five letter strings by computing the

codes for minimal transformations, fair instances of which being substitutions, transposition,

insertion, repetition, or deletion (see Table 1 for examples).

1.7.2. Edge effects
Another desirable although controversial property concerns the importance of outer

letters relatively to inner ones. In a letter identification paradigm, subjects are significantly
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better at reporting the first and last letters than any other (Stevens & Grainger, 2003). In

masked priming lexical decision studies, primes being one or two letters different from the

target produce weaker (or no) facilitation when outer letters are manipulated than when

inner letters are—see Jordan, Thomas, Patching, and Scott-Brown (2003) for a good sum-

mary of studies on the subject. The facilitation produced is often equal for initial or final

letter substitutions (Grainger & Jacobs, 1993), but edge effects have sometimes proved

elusive (Grainger et al., 2006; Guerrera & Forster, 2008), or confined to the initial letter

(Whitney, 2001). In this article, we will say that a code shows edge effects if single substi-

tutions occurring at outer positions are more destructive in terms of similarity than those

occurring at inner ones (i.e., sim(d2345, 12345) < sim(12d45) and sim(1234d, 12345)

< sim(12d45)7).

1.7.3. Transposition priming
Transposed letter (TL) priming refers to the robust finding that transposing two contigu-

ous letters is less destructive than replacing them altogether (e.g ‘‘jugde’’ primes ‘‘JUDGE’’

significantly more than ‘‘jupte’’ does; Perea & Lupker, 2003a). Recently, TL has been fur-

ther investigated in a number of directions and the influence of contiguity, status, length

or number of transposed letters is being assessed (Lupker, Perea, & Davis, 2008; Perea

& Acha, 2008; Perea, Duñabeitia, & Carreiras, 2008). In this article, we choose to

focus on four results: the basic single contiguous TL constraint for five letter strings

Table 1

Description of the constraints used in this article, and their respective conditions

Constraint Family Condition Prime Target Criterion

Stability (1) 12345 12345 > 0.95

(2) 1245 12345 < (1)

(3) 123345 12345 < (1)

(4) 123d45 12345 < (1)

(5) 12dd5 12345 < (1)

(6) 1d345 12345 < (1)

(7) 12d456 123456 < (1)

(8) 12d4d6 123456 < (7)

Edge effect (9) d2345 12345 < (10)

(10) 12d45 12345 < (1)

(11) 1234d 12345 < (10)

Transposed

letter effect

(12) 12435 12345 > (5)

(13) 21436587 12345678 ¼Min

(14) 125436 123456 < (7) and > (8)

(15) 13d45 12345 < (6)

Relative position

effect

(16) 12345 1234567 > Min

(17) 34567 1234567 > Min

(18) 13457 1234567 > Min

(19) 123256 1232456 > Min

(20) 123456 1232456 ¼ (19)

Note. Min:minimum similarity value among all conditions.
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(sim(12435, 12345) > sim(12dd5, 12345), hereafter local TL), a global TL constraint from

a recent study (Guerrera & Forster, 2008) where transposing all contiguous letter couples

from an eight-letter string produced no facilitation (sim(21436587, 12345678) ¼ Min,8 a

distant TL constraint where a single noncontiguous transposition in six-letter words was

found to give more facilitation than the corresponding double substitution, but less than a

single substitution (sim(12d456) < sim(125436, 123456) < sim(12d4d6, 123456)) (Perea &

Lupker, 2004), and finally what we will call the compound TL constraint, stating that a

transposition coupled with a substitution (13d45, neighbors-once-removed, N1R hereafter)

produces less priming than a single median substitution (Davis & Bowers, 2006). The global

TL constraint currently defies predictions from all schemes but Seriol9 by producing no

priming at all,10 whereas the compound and distant TL constraints seem to challenge all

schemes, but Spatial Coding.

1.7.4. RP priming
Relative position priming covers the fact that strings obtained by disturbing the absolute

position of the target letters, while sparing their relative positions, still make efficient primes

(e.g., 12345, 34567, and 13457 all prime the word 1234567; Grainger et al., 2006). This

goes against expectations based on absolute letter coding schemes like slot coding, as well

as schemes that incorporate some local context like Wickelcoding. Although RP priming

has recently been extended to superset primes (Van Assche & Grainger, 2006), in this article

we will focus on subset conditions but will consider conditions with and without repeated

letters. A code for a seven-letter word will be said to satisfy the distinct RP priming con-

straint if it exhibits strictly positive similarities with the strings described above (12345,

34567, and 13457). The repeated RP constraint covers the finding that given a target with

one repeated letter, the same amount of priming is produced whether a deletion involves the

repeated letter or not (sim(123456, 1232456) ¼ sim(123256, 1232456)). This result is at

odds with predictions coming from the open-bigram scheme (Schoonbaert & Grainger,

2004).

Table 1 recapitulates these constraints.

1.8. General procedure

In the next four sections, we will assess a number of schemes on this set of criteria. The

same procedure is used throughout all simulations: Each scheme is implemented using holo-

graphic coding on the one hand, and localist coding on the other, for comparison purposes.

Similarities in the localist case are computed in the standard way described earlier. The

holographic procedure is carried out as follows. For each trial, we randomly generate

orthogonal holographic vectors of dimension 1,000. From these, we build the various codes

for all conditions, compute similarity scores based on hamming distance between vectors,

and average them across 100 trials. The use of high dimensional vectors implies very little

variance for these similarity scores, typically 0.01 for dimension 1,000. Consequently,

we will only report mean similarities, and we will consider that two conditions yield equal

facilitation if their difference in similarities lies within 0.01.

12 T. Hannagan, E. Dupoux, A. Christophe/Cognitive Science (2010)



2. Slot coding

We begin by translating the slot coding scheme in the language of holographic represen-

tations. This is done by generating position and letter vectors. Each letter vector is bound to

a position vector representing the position within the string, using the X-or operator. These

bindings are then chunked together using the majority rule, resulting in the holographic

structure:

TABLE ¼ T�p1 � A�p2 � B�p3 � L�p4 � E�p5;

where � is the binding operator X-or, ¯ is the majority rule operator, and pi are independent

holographic vectors. Fig. 1 gives the arborescence of the holographic slot coding scheme.

2.1. Results

Table 2 presents similarity results for both versions of the slot coding scheme. The first

line shows the localist code, and the second the holographic code. As is well known, when

the string size is unchanged the least destructive transformation in localist slot coding is

single substitution (conditions 6, 7, 9, 10, 11), and it produces a code distant enough from

the original to satisfy the stability constraint. Moreover, a single substitution has the same

impact wherever it occurs in the string, thus precluding edge effects (conditions 9–11).

Generally speaking, the code is a quite stringent one, sanctioning even the slightest transfor-

mation with very low similarity scores (conditions 2–5). A single transposition in slot cod-

ing is necessarily as destructive as a double substitution, thus preventing local or distant

transposition effects (resp. conditions 12 vs. 5, and 14 vs. 8). However, localist slot coding

correctly captures the absence of similarity resulting from global transposition (condition

10), and rightly makes N1R more destructive than single substitution neighbors (conditions

15 vs. 6). Subset conditions produce very different similarities depending on where dele-

tions are performed: The earlier it occurs in the string, the more destructive it is. Similarities

decrease steadily for deletion positions 6, 5, 4, and 2, hitting a floor at position 1 where no

similarity to the original string remains (resp. conditions 16, 19, 20, 18, and 17), and as a

consequence both the distinct and the repeated RP constraints are violated.

Fig. 1. Holographic slot coding: arborescence of the code. Each node represents a vector of constant size, while

? and = connections respectively stand for the X-or and Maj operators. The ith element of the global code is

one if and only if a majority of ith elements from letter/position bindings are 1.
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As for holographic slot coding, Table 2 first shows that it is stable—the identity condition

returns one (condition 1) while all other transformations for five-letter strings remain well

below the instability threshold.

A remarkable feature of holographic slot coding is that it produces transposition effects:

Transposing two letters (condition 12, sim 0.62) is less destructive than replacing them alto-

gether (condition 5, sim 0.43). This is surprising because as explained earlier, binding two

vectors using X-or yields a new vector that bears no similarity to either of them (i.e.,

sim(A,A�B) ¼ sim(B,A�B) ¼ 0). Thus, a given letter vector T, X-ored with either the first

or the second position vector, will give two unrelated vectors (i.e., sim(T�p1,T�p2) ¼ 0).

Consequently, at first sight, one might not expect any TL effects to occur.

However, in Appendix B, we demonstrate that this TL effect is an inevitable conse-

quence of the combinatorics involved with BSC’s operators when order is encoded using

positional cues. Indeed, in terms of hamming distance to the original string, we show that

double substitutions must be more destructive than transpositions by a factor of 3/2. The

reason why one observes a TL effect in holographic slot coding, despite letter and position

vectors being orthogonal, can be intuited in dimension one, where each representation is a

simple bipolar variable. Consider two letters A and B, respectively, at position p1 and p2

in a string of arbitrary length. All other things being equal, transposing letters A and B

will only change the code for the string if AÆp1 + BÆp2 is different from AÆp2 + BÆp1. It is

easy to compute the probability of this happening, and to see that it is not equal to 1/2

(chance), but to 1/4. Thus, transposing two letters is less destructive than replacing them

altogether.

Furthermore, this TL effect can be shown empirically to decrease with the number of

letters involved in a transposition, and to vanish when all letter couples are transposed

(condition 13), in good agreement with Guerrera and Forster (2008). Hence, it seems that

this code displays the adequate flexibility to solve a difficult conundrum: accounting for

local transposition effects without predicting any facilitation for global transpositions. As

to this day and to our knowledge, holographic slot coding stands alone in this precise

matter. The code also satisfies the compound TL constraint (condition 15 lower than 6)

as well as part of the distant TL constraint: If it mistakenly equates the impacts of distant

transposition and single substitution (condition 14 vs. 7), holographic slot coding never-

theless rightly makes both of them less disruptive than distant double substitutions (condi-

tions 8).

Be it localist or holographic, however, the absolute slot coding scheme has two limita-

tions: It cannot reproduce RP effects and edge effects, the final letter being no more

important than inner ones. Although it is possible to introduce a weight gradient in the

Maj operator (see Appendix A), this weighted holographic slot coding version cannot fix

all the weaknesses of the slot coding scheme. In particular, it would suffer from the same

alignment problem as the localist version because all absolute positions are disturbed by

an initial letter deletion. The only way in which relative position priming could be restored

to some extent would be to use double anchors, a move that might be supported by a

recent study (Fischer-Baum et al., 2010), or alternatively to introduce a small correlation

between position vectors.11 Arguably, it might even be possible to combine both moves in

T. Hannagan, E. Dupoux, A. Christophe/Cognitive Science (2010) 15



a holographic overlapping and double-anchored scheme, which could presumably inherit

the qualities of each.12 Either way, we see that to account for edge effects and relative

position priming, a positional code needs to introduce several additional hypotheses. Thus,

for the sake of parsimony, we should first make sure that all simple alternatives have been

ruled out.

2.1.1. Summary
In summary, localist slot coding can satisfy three constraints: stability, compound, and

global TL, but it fails on edge effects, local and distant TL, and RP constraints. Holographic

slot coding satisfies the same constraints plus local TL, which obtains by virtue of the bind-

ing and chunking operators. This shows that contrary to the common belief, local TL is not

sufficient to rule out the slot coding scheme, and instead, the real obstacle appears to be in

RP constraints.

3. Open-bigrams

One simple alternative to slot coding is the open-bigram scheme, which we now proceed

to study, first in its constrained version and then in the unconstrained one. Again, in both

cases, we will compare the localist and holographic implementations.

3.1. Constrained open-bigrams

The COB code can be translated in holographic representations as follows:

TABLE ¼ TA� TB� TL

� AB� AL� AE

� BL� BE

� LE

where the code for bigram LiLj is:

LiLj ¼ Li�l� Lj�r

and l, r are two orthogonal vectors, respectively, coding for left and right positions within a

bigram. The arborescence of the holographic COB code is depicted in Fig. 2.

3.1.1. Results
Table 3 shows that whether localist or holographic, the COB scheme is stable. It is also

more flexible than slot coding, as apparent from the fact that similarity patterns have gener-

ally increased. Despite this general increase, similarity rankings remain more or less

unchanged with respect to slot coding. The main difference is that single substitutions in

five-letter strings (conditions 6, 9, 10, 11) are now more disruptive than repetitions (condi-

tion 3), additions (condition 4), or transpositions (condition 12). However, the most destruc-
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tive transformation for five-letter strings is still double substitution (condition 5), while the

least destructive is still local transposition (condition 9).

Switching to a bigram scheme does not improve the number of constraints satisfied but

changes their variety, allowing one to account for some aspects of TL and RP priming at

the same time. Indeed, deleting the initial letters from a string (resp. transposing two let-

ters) now results in high similarities because the relative position of letters is maintained

(resp. not completely lost) and thus several bigrams remain from the original. However,

this comes at the cost of global, distant, and compound TL (conditions 13–15), for which

both codes now make wrong predictions. Global TL produces high similarities because

many letters are left in the same relative order and thus generate the same bigrams, dis-

tant TL is less disruptive than single substitution because it affects four bigrams rather

than five, and compound TL is violated as the N1R condition is exactly as disruptive as

single substitution. In this last case, this is because an N1R string (13d45) maintains the

same relative order to the target as a single substitution neighbor (1d345), producing

exactly the same set of bigrams except for one, bigram ‘‘3d’’ in the first case and ‘‘d3’’

in the second. On both accounts, this leads to identical similarities with the original string

(12345).

There are also differences between the two implementations of COB. A first difference is

that the holographic, but not the localist code, satisfies the repeated RP constraint (i.e., con-

ditions 19 and 20 should produce equal similarities). In the localist case, each bigram counts

only once in the representation and thus redundant bigrams play no role in similarity calcu-

lations. The undue difference between repeated condition (19) and nonrepeated condition

(20) then occurs because the latter shares ten bigrams with the target, whereas the former

only shares nine.13 In the holographic case, on the other hand, redundant bigrams all con-

tribute through the majority rule to impact on the final representation. Hence, in conditions

Fig. 2. Holographic COB (constrained open-bigrams): arborescence of the code.

T. Hannagan, E. Dupoux, A. Christophe/Cognitive Science (2010) 17



T
ab

le
3

C
o

n
st

ra
in

ed
o

p
en

-b
ig

ra
m

s
(C

O
B

):
si

m
il

ar
it

ie
s

d
er

iv
ed

fo
r

h
o

lo
g

ra
p

h
ic

an
d

lo
ca

li
st

co
d

es
ac

ro
ss

se
le

ct
ed

co
n

d
it

io
n

s

S
ta

b
il

it
y

(1
–

8
)

E
d

g
e

E
ff

ec
ts

(9
–

1
1

)

C
o

n
d

it
io

n
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0
)

(1
1

)

P
ri

m
e

1
2

3
4

5
1

2
4

5
1

2
3

3
4

5
1

2
3

d
4

5
1

2
d

d
5

1
d

3
4

5
1

2
d

4
5

6
1

2
d

4
d

6
d

2
3

4
5

1
2

d
4

5
1

2
3

4
d

T
ar

g
et

1
2

3
4

5
1

2
3

4
5

1
2

3
4

5
1

2
3

4
5

1
2

3
4

5
1

2
3

4
5

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
1

2
3

4
5

1
2

3
4

5

L
o

ca
li

st
C

O
B

1
.0

0
0

.5
6

0
.7

8
0

.7
8

0
.2

2
0

.5
5

0
.5

8
0

.3
3

0
.6

7
0

.5
5

0
.6

7
H

o
lo

g
ra

p
h

ic
C

O
B

1
.0

0
0

.5
9

0
.7

0
0

.6
7

0
.4

2
0

.7
8

0
.7

8
0

.7
9

0
.6

5
0

.6
4

0
.6

5

T
ra

n
sp

o
si

ti
o

n
(1

2
–

1
5

)
R

el
at

iv
e

P
o

si
ti

o
n

(1
6

–
2

0
)

C
o

n
d

it
io

n
(1

2
)

(1
3

)
(1

4
)

(1
5

)
(1

6
)

(1
7

)
(1

8
)

(1
9

)
(2

0
)

P
ri

m
e

1
2

4
3

5
2

1
4

3
6

5
8

7
1

2
5

4
3

6
1

3
d

4
5

1
2

3
4

5
3

4
5

6
7

1
3

4
5

7
1

2
3

2
6

7
1

2
3

5
6

7

T
ar

g
et

1
2

3
4

5
1

2
3

4
5

6
7

8
1

2
3

4
5

6
1

2
3

4
5

1
2

3
4

5
6

7
1

2
3

4
5

6
7

1
2

3
4

5
6

7
1

2
3

2
5

6
7

1
2

3
2

5
6

7

L
o

ca
li

st
C

O
B

0
.8

9
0

.6
7

0
.6

6
0

.5
6

0
.6

0
0

.6
0

0
.4

7
0

.8
2

0
.9

1
H

o
lo

g
ra

p
h

ic
C

O
B

0
.7

6
0

.7
2

0
.8

4
0

.7
8

0
.5

9
0

.5
9

0
.6

2
0

.8
3

0
.8

2

N
o

te
.

B
o

ld
fa

ce
ty

p
e

in
d

ic
at

es
si

m
il

ar
it

ie
s.

18 T. Hannagan, E. Dupoux, A. Christophe/Cognitive Science (2010)



(19) and (20), the strings are really made of 12 bigrams each, and as it turns out, they share

exactly 10 of them with the target, resulting in equal similarities.

Another difference is that localist COB displays reverse edge effects, whereas there

are little or no such effects in the holographic code (conditions 9–11). It is only natural

that the former displays reverse edge effects. Indeed, Fig. 2 shows that each edge letter

is only involved in three bigrams, against four bigrams for inner letters. Thus, outer

substitutions disturb fewer bigram units than inner substitutions, and they result in

codes that are more similar to the original. This implies that reverse edge effects will

be produced by just every COB scheme, whatever the length of the word or the autho-

rized letter gap. To avoid this reverse effect, one must resort to unconstrained bigrams

or edge units.

The same logic should apply to the holographic code, and we should thus ask why it

yields very small reverse edge effects, if any. The key difference is that as already noticed,

the localist version assigns a similarity of zero between any two distinct bigram units. On

the contrary, the holographic version provides graded similarities between distinct bigrams,

for the same reasons previously exposed for slot coding. Thus, replacing bigram ‘‘TA’’ by,

for example, bigram ‘‘XA’’ does not completely destroy similarities in a holographic

scheme, and this might provide one cue as to why reverse edge effects are counterbalanced.

We will shortly give a more thorough explanation of edge effects in the context of uncon-

strained open-bigrams.

3.1.2. Summary
Contrary to slot coding, the COB scheme can accomodate TL constraints as well as RP

constraints. Localist COB satisfies three constraints: stability, local TL, and distinct RP.

Again, the holographic version satisfies precisely the same constraints plus another: repeated

RP, which obtains essentially because repeated bigrams contribute more to the holographic

word code. This solves the difficult conundrum for bigram schemes introduced in Schoonba-

ert and Grainger (2004), showing that repeated RP does not challenge the COB scheme

itself, but only its localist implementation.

3.2. Unconstrained open-bigrams

The unconstrained open-bigrams code can be translated in holographic representations as

follows:

TABLE ¼ TA� TB� TL� TE

� AB� AL� AE

� BL� BE

� LE

Its arborescence, exactly identical to COB except for additional bigrams (bigram TE in

our case), is given in Fig. 3.
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3.2.1. Results
The UOB scheme behaves like the constrained one in a number of ways. For the same

reasons as above, both the localist and the holographic UOB versions satisfy the local TL

and distinct RP constraints, but they fail to reproduce distant, global, and compound trans-

position effects. Nevertheless, Table 4 indicates that the differences due to the code are most

salient for the UOB scheme: in fact, according to our benchmark presented in Table 6, local-

ist and holographic UOB, respectively, rank as last and first in terms of explanatory power.

Localist UOB violates the stability constraint: Insertions or repetitions produce equivalent

codes to the original, as defined by the similarity measure. This problem does not appear in

the holographic implementation, where the less disruptive transformation is still single

transposition (condition 12), and the similarity remains well below our stability criterion

(0.82 < 0.95). This is because in holographic codes, the similarity measure is not target

oriented but proceeds from the symmetrical hamming distance.

A second difference is that holographic UOB satisfies the repeated RP constraint. As in

the case of COB, localist UOB is hindered by the exclusion of redundant bigrams from simi-

larity calculations. Another difference concerns edge effects. As expected from the previous

section, the reverse edge effects observed with localist COB are absent with UOB. Indeed,

single substitutions, be they inner or outer, now impact on exactly the same number of

bigrams: L)1, where L is the string length. However, the holographic implementation

now displays strong edge effects.

It is possible to gain some insights into why edge effects appear in the UOB code by

returning to the arborescence in Fig. 3. Let us place ourselves in the one-dimensional case,

and look at the four bigrams in which the inner letter B occurs. Across these bigrams, letter

B appears twice on the left, and twice on the right. Thus, if left and right position variables

have different values, the ‘‘vote’’ of letter B in the majority rule simply cancels itself out.

However, this cannot happen if we now consider the four bigrams in which an outer letter

Fig. 3. Holographic UOB (unconstrained open-bigrams): arborescence of the code.
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occurs, because of course outer letters always appear at the same position in any bigram.

Thus, the ‘‘vote’’ of an outer letter naturally carries much more weight than the vote of an

inner letter. As a consequence, inner substitutions are less disruptive than outer ones. Note

that this ‘‘voting’’ combinatorics induced by the operators is also present in holographic

COB, although it does not result in edge effects because it must fight the previously dis-

cussed reverse tendency resulting from the constraint on bigrams.

3.2.2. Edge effects in holographic UOB
From this, we can draw three predictions. First, the same mechanism should hold regard-

less of word length, so that edge effects should not be restricted to this example. Second,

edge effects should not arise only from the contrast with this particular inner position. In

fact, the similarity pattern created by a single substitution should not be constant across

inner positions, but increase as one approaches the edges, because the number of cases in

which the substituted letter’s vote cancels out diminishes as one gets closer to the edges.

Third and for the same reason, the similarity obtained with inner left substitutions (resp. for

inner right substitutions) should be proportional to the binomial number Cl
r (resp. Cr

l ), where

l and r, respectively, stand for the number of appearance of the substituted letter in left and

right positions.

To test these claims, we computed similarities for single substitutions across all positions

in strings of length 5 and 7, and compared them with the corresponding human data for five-

letter words reported in Grainger and Jacobs (1993).

Fig. 4 first shows that simulations can match the human data obtained for five-letter

strings. Although Grainger and Jacobs (1993) found no significant difference between outer

conditions or between inner ones, and the medial condition was not carried out, there is a

visible tendency toward an inverse U-shaped form which is also pickep up by holographic

UOB similarities. What we can say thus is that in this code, despite the lack of any

Fig. 4. Single-substitution priming across position for five-letter words. Bars: experimental results from Grainger

and Jacobs (1993) (central condition unavailable). Curve: similarities from holographic UOB.
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information on absolute position or any weight gradient, the correct priming pattern appears

in virtue of the prominence of letters in left or right positions across bigrams.

This saliency pattern also impacts on distinct RP priming. Having equal letter weights,

the localist UOB code naturally shows constant similarities for initial, medial, or final dele-

tions. On the contrary, in the holographic implementation, we find that initial or final dele-

tions should be more disruptive than medial ones. This is not in agreement with behavioral

data from Grainger et al. (2006), which show a tendency for less facilitation with medial

primes.

3.2.3. Summary
Differences between implementations are most salient within the UOB scheme. While lo-

calist UOB fails on all constraints but local TL and distinct RP, holographic UOB satisfies

in addition stability, edge effects, and repeated RP. Stability and repeated RP are recovered

because all bigrams contribute to determine the final holographic code. Edge effects emerge

naturally from the chunking operator, which tends to cancel out contributions from central

letters in a holographic code. This simple explanation could easily have been falsified by

behavioral data, which on the contrary support the holographic UOB account (Grainger &

Jacobs, 1993).

3.3. LCD

We finally proceed to implement a holographic code in the spirit of the LCD proposal

(Dehaene et al., 2005). The arborescence of the code is illustrated in Fig. 5.

Fig. 5. Arborescence of holographic LCD (local combination detector). A three-level hierarchy progressively

achieves recognition of larger letter combinations. Simple X-or operations (only shown for the first and last bi-

grams) perform the transition between absolute position (letter level) and relative position (bigram level) coding.
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The letter and bigram levels of the hierarchy are, respectively, identical to the holo-

graphic slot and COB codes. However, in the previous sections, we have studied them

in isolation, whereas the two schemes are now connected levels in the LCD architec-

ture. Apart from the difference in the authorized gap between constituent letters (one

for the original LCD against two here), our implementation departs from LCD in sev-

eral important ways. LCD assumes that some position specificity remains at the bigram

level. This has the consequence that duplicated banks of bigram units must exist at this

level, each receptive to a particular part of the string. On the contrary, our code follows

the initial COB approach, which assumes only a single bank of units, relevant bigrams

being activated regardless of the absolute positions of letters in the string. Also, in

LCD the letter to bigram transition is thought to be achieved by banks of bigram units

with overlapping receptive fields, whereas in the proposed code, this transition between

position specificity and invariance is achieved using simple X-or operations taking place

between the letter and bigram levels.

This transition can be illustrated by building bigram unit LiLj :¼ Li�l ¯ Lj�r from

letters Li at position pi, and Lj at position pj, i > j. This requires two arbitrary left and right

vectors l and r and the following operations:

LiLj ¼ ðLi�piÞ � ðl�piÞ � ðLj�pjÞ � ðr�pjÞ
¼ ðLi�lÞ � ðpi�piÞ � ðLj�rÞ � ðpj�pjÞ because X-or is associative

¼ Li�l� Lj�r because X-or is its own inverse:

At the quadrigram level, we use units allowing for a one-letter gap. Again, this differs

from LCD, which makes no such assumption but holds that only frequent quadrigrams are

activated. As this code does not incorporate any notion of frequency, another selection

mechanism must be assumed and open-quadrigrams of gap 1 seem to achieve the correct

compromise between number and diversity of units. Alternatively, this level can also be

seen as an extension of Mozer’s (1987) Blirnet to four-letter units.

Eventually the LCD code is built in the following way:

TABLE ¼ TABL� TABE� TALE� TBLE�ABLE

where each quadrigram unit is activated by consistent units from the bigram level, for

instance:

TABE ¼ TA� TB� AB� AE� BE

and where, for example, the code for bigram TA is:

TA ¼ T�l� A�r

At any level, a unit’s code is obtained in the usual way, by chunking the code of consis-

tent subunits from the previous level. Note the absence of positional vectors in the final
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code, resulting from the hypothesized unbinding that takes place between letter and bigram

levels. In effect, all absolute position information is lost at this point and replaced by rela-

tive information, although Fig. 5 features an absolute letter level and unbinding operations

to highlight the relationship to LCD. Also, bigram TE, although consistent, does not partici-

pate in quadrigram TABE. Indeed, this bigram is not activated because the constraint on the

authorized letter gap would be violated.

3.3.1. Results
Table 5 reports similarity scores obtained using holographic LCD, as well as its localist

open-quadrigram counterpart. Whatever the code, this version of LCD is stable and can

account for distinct RP, although in both cases outer conditions show higher similarities

than inner ones. This contrasts with what we observed for holographic UOB, where edge

effects induced the opposite tendency for relative priming conditions. This is because in

holographic LCD, large units and reduced gap conspire to produce a code that is more sensi-

tive to contiguity.

There is a lack of flexibility in the localist quadrigram code that is particularly visible for

double substitutions, where the code produces no similarity at all but where the holographic

version assigns generous similarities. In fact, as a consequence, both codes fail to reproduce

distant TL: While the holographic code mistakenly predicts more facilitation for a distant

transposition than for a single substitution, the localist code predicts no priming whatsoever

with double substitution or distant transposition primes.

Neither the localist nor the holographic version of LCD satisfies the repeated RP con-

straint, assigning different similarities in conditions (19) and (20). Moreover, no version

can account for compound TL. This can be easily seen in the localist case, because N1R

and single substitution primes have exactly one quadrigram in common with the target.

In the holographic case, things are more complicated because quadrigrams can have

graded similarities, but the fact that the quadrigrams that differ in the two conditions are

only one transposition away—and thus have the same distance to the corresponding

quadrigram in the target—appears sufficient to make the codes themselves equally distant

to the target.

As for the differences between implementations, it is worth noting that the rigidity of the

localist code does not weigh entirely against it, as it appears to be in just the right proportion

to capture both local and global TL effects, whereas the holographic code can only repro-

duce local TL. It might come as a surprise that two codes that differ in every respect, holo-

graphic slot coding and localist open-quadrigrams, are the only one able to accommodate

local and global TL effects at the same time. But intuitively we see that they actually

achieve similar compromises in terms of flexibility. Slot coding is a priori a strictly com-

partmented scheme, but implementing it holographically has the effect of suppressing posi-

tional frontiers to some extent. Open-quadrigrams inherit the rigidity of localist

representations and use large units, but this rigidity is relaxed by using a relative position

scheme that tolerates noncontiguity. However, a problem for localist LCD would be that as

noted earlier, it predicts no similarity between four-letter strings, which is falsified experi-

mentally (Humphreys et al., 1990).
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Considering Fig. 5, we see that a localist open-quadrigram code cannot show edge effects

in the case of five-letter strings, where each letter participates in exactly four quadrigrams,

but will produce reverse edge effects in general, since inner letters would participate in more

quadrigrams than outer ones. On the contrary, the holographic implementation does result in

edge effects. The reason why edge effects are produced in holographic LCD can again be

understood by considering the links to the quadrigram level. The arborescence in Fig. 5

shows that for each quadrigram unit, its set of five activating bigrams is balanced. This is to

say that across these bigrams, letters can only appear at most twice at the same position, thus

preventing systematical majorities to occur. However, edge quadrigrams are the exception

to the rule. Embodying a sequence of contiguous letters, these units are activated by not five,

but six bigrams. This disturbs the balance, and the initial letter (resp. final) is more repre-

sented in quadrigram 1234 (resp. 2345) than any other letter at any position in remaining

bigrams. As a result, transformations involving edge letters are more destructive than others.

It should be noted that edge effects in holographic LCD are also dependent on word length

and seem to reverse for longer strings. Nevertheless, this code provides a clear demonstra-

tion that edge effects in holographic codes are not limited to unconstrained open-bigrams,

but can also appear with constrained units of higher grain, even though in this case they

appear to be inconstant.

3.3.2. Summary
In summary, our study of an LCD-like scheme suggests that just as open-bigrams, it can

reproduce both TL and RP effects. Localist LCD is stable, satisfies distinct RP, and even

accommodates local and global TL at the same time. Despite these interesting properties,

the code appears to be falsified by priming results on four-letter words, a problem which is

avoided in the holographic implementation. Holographic LCD has generally the same pro-

file, but trades global TL against edge effects, illustrating that holographic edge effects can

occur for other relative schemes than open-bigrams.

4. Discussion

Table 6 recapitulates how the various codes behave with respect to our benchmark of

constraints.

It is clear from Table 6 that not all constraints are equally easy to satisfy. Distant

TL in particular resists all the schemes considered above, whatever the implementation.

This is because most of the codes wrongly imply that distant TL is less disruptive than

single substitution. A bit less elusive is the compound TL constraint, which remains

beyond the reach of all codes but localist or holographic slot coding. A scheme that

has also been known to satisfy compound TL is Spatial Coding (Davis & Bowers,

2006), and we will shortly consider it in more detail. Much more reachable are global

TL and edge constraints, as they are each satisfied by at least two different codes. The

easiest constraints are the stability and local TL, met by seven codes of eight. There is

also a general trend in Table 6 for TL constraints to be more often satisfied by holo-
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graphic slot coding, and RP constraints by holographic relative position codes (COB,

UOB, and LCD).

A second conclusion we can draw from Table 6 is that representational format has a

profound impact on the number and nature of the constraints satisfied by a scheme: Holo-

graphic representations are globally better at explaining the available data. Indeed, with the

notable exception of localist LCD on the global transposition effect, holographic codes

always account at least for the same effects as localist ones. In addition, this implementation

often satisfies more constraints: It recovers TL effects from the slot coding scheme, pro-

duces edge effects when used with open-ngrams, stabilizes UOB and makes it able to

account for repeated RP.

Edge effects arise in codes using ngram units as a consequence of the holographic chunk-

ing operator, the majority rule. Importantly, we are not claiming that edge effects must

exclusively be explained in this way. Rather, we report how a contribution to edge effects

can arise from holographic codes. Several other factors may be at work to produce edge

effects, including crowding effects and top-down facilitation (Tydgat & Grainger, 2009). As

to the mechanisms by which TL effects appear in the slot coding scheme, we have infor-

mally described them earlier and they are laid down formally in Appendix B. It is important

to note that this mechanism is also active for other schemes, for instance, by making unit

AB and BA more similar than chance in open-bigrams. Generally speaking, both properties

take root in the same basic quality of holographic coding, which is that compound units are

similar to one another. This makes for more flexible codes, introduces rich majority combi-

natorics and breaks positional frontiers.

Repeated RP effects are produced in holographic COB and UOB again as a result of

the holographic Maj operator. While localist versions are hindered by their exclusion of

Table 6

Summary of the constraints satisfied by the codes

Stability

Edge

Effects

Local

TL

Distant

TL

Compound

TL

Global

TL

Distinct

RP

Repeated

RP

Localist

Slot coding 4 – – – 4 4 – –

COB 4 – 4 – – – 4 –

UOB – – 4 – – – 4 –

LCD 4 – 4 – – 4 4 –

Holographic

Slot coding 4 – 4 – 4 4 – –

COB 4 – 4 – – – 4 4

UOB 4 4 4 – – – 4 4

LCD 4 4 4 – – – 4 –

Other schemes

Spatial Coding – 4 4 4 4 4 4 4

Seriol 4 – 4 4 4 – 4 –

Note. COB, constrained open-bigrams; UOB, unconstrained open-bigram; LCD, local combination

detector; RP, relative position; TL, transposed letter.
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redundant bigrams in similarity scores, the Maj operator in effect assigns different weights

to bigrams in proportion to their redundancy. Taking all bigrams into account thus appears

sufficient to satisfy the repeated RP constraint.

We also introduced a code in the spirit of the LCD model, although admittedly with con-

siderable liberty. The localist version appears to be too rigid to account for single substitu-

tion priming results in words of various lengths (Humphreys et al., 1990; Perea & Lupker,

2004). Being distributed and hierarchical, the holographic version is much more in line

wit the LCD proposal, and satisfies the same constraints except for global TL, that it

‘‘exchanges’’ for edge effects.

Despite these achievements, Table 6 shows that the most efficient holographic code with

respect to our benchmark is holographic UOB, which satisfies one more constraint without

invoking a quadrigram level. As acknowledged by Vinckier et al., the quadrigram level in

LCD remains hypothetical and in fact even the evidence from Vinckier et al. (2007) is

debatable because of some discrepancies between stimuli legality across conditions.14 Sec-

ondly, as we have seen, edge effects in UOB are much more robust than in LCD. As for

now, holographic UOB seems to be the richest code in phenomena and the most parsimoni-

ous in hypotheses.

4.1. Comparison with other schemes

In this article, we have been essentially concerned with the differences arising when a

given scheme is implemented with distributed or localist representations. However, in this

comparison process, we have left aside some well-known schemes, either because they were

not easily translated into the holographic format (e.g., Spatial Coding, whose assumptions

on how to compute similarities are at odds with hamming distance), or because they were

closely related to schemes that had already been considered (Seriol is related to COB, and

Overlap to slot coding). Although direct comparisons with previous codes would be hin-

dered by differences in degrees of freedom—Spatial Coding and Seriol have more degrees

of freedom because they both use activation gradients and edge marker parameters—it is

still of interest to assess how the latest versions of these schemes behave on our benchmark.

The bottom panel in Table 6 shows the performances of Spatial Coding and Seriol (see

Appendix C for detailed values). It is clear that Spatial Coding has the upper hand, satisfying

all our constraints, but stability (see Appendix C, repeated letter condition 3). However, edge

effects occur in Spatial Coding by virtue of an ‘‘end letter marker’’ parameter that increases

the importance of edge letters in similarity calculations. More impressive is the coverage of

transposition constraints: Spatial Coding manages to satisfy single, distant, global, and com-

pound TL constraints at the same time. This is particularly impressive considering the failure

of previous codes to account for distant TL—most of the time because they wrongly deem

single substitution to be more disruptive—and provides a good occasion to gain some

insights into Spatial Coding’s inner workings. Recall that in Spatial Coding a letter only con-

tributes in similarity scores if it is shared by both strings, and the contribution is then based

on the misalignment in absolute letter position across strings—the difference between gradi-

ent values. Hence, single substitution only results in one missing contribution but maximal
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contributions from all other letters, whereas in distant TL there is no missing contribution but

two letters undercontribute since they are misaligned. In general, all gradients such that twice

a TL contribution remains inferior to a full contribution will satisfy this part of the TL con-

straint. This holds for the gradient used in Davis (in press), but scaling it by half would break

the TL constraint—giving similarities for distant TL and single substitution of 0.9 and 0.88,

respectively . Similar sensitivities arise for other conditions, prompting one to ask how the

activation gradient is learned in Spatial Coding. The question of learning is touched upon in

Davis (in press), where it is assumed that in the full visual word recognition model, the gradi-

ent would be in phase with connection weight values learned by self-organizing mechanisms.

What Spatial Coding seems to be telling us is that whereas an absolute scheme can indeed

account for all TL constraints, these are by no means inherent to the scheme itself but specific

to the gradient, which in turn will depend on the learning environment. Thus, at the very

least, the Spatial Coding account raises doubts as to the universality of TL constraints.

Although Seriol performs less well than Spatial Coding, it is on a par with the best code

previously studied (holographic UOB). Seriol is a bigram-based scheme that also uses an

activation gradient, but where values do not serve as position markers and are only deter-

mined by the contiguity of letter constituents (zero-gap ¼ 1, one-gap ¼ 0.7, two-gap ¼
0.5). Seriol also introduces edge bigrams, and thus the absence of edge effects might come

as a surprise. This is because a substitution at the edge leaves two one-gap bigrams and one

two-gap bigram unchanged (contributing 2 · 0.7 · 0.7 + 1 · 0.5 · 0.5 ¼ 1.48 to the final

similarity), whereas a substitution in medial position leaves one one-gap bigram and two

two-gap bigrams unchanged (contributing 0.98 ¼ 2 · 0.5 · 0.5 + 1 · 0.7 · 0.7 to the final

similarity). This holds with or without edge bigrams, as their contribution is factored out

across conditions. Hence, to obtain edge effects, the gradient should assign higher values to

two-gap than to one-gap bigrams, a move that is not easily interpreted. However, like Spatial

Coding and unlike all other codes, Seriol manages to account for distant TL. In the case of

Seriol though, this arises because of similar trade-offs taking place between one-gap and

two-gap contributions, which further involve contributions from cross-terms because TL

turns one-gap bigrams into two-gap bigrams. Apart from gradient values, this kind of

account is sensitive to the authorized letter gap between bigrams, as for instance allowing for

three-gap bigrams with 0.5 activation values would break the distant TL constraint in Seriol

(giving similarities for distant TL and single substitution of 0.7 and 0.68, respectively).

In conclusion, Spatial Coding and Seriol perform very well on our benchmark of con-

straints, although the former has the upper hand. Interestingly, in both cases, the introduc-

tion of a gradient proves sufficient to account for the TL constraint that resisted all previous

codes. Nevertheless, using gradients also implies dealing with more degrees of freedom and

we have argued that to avoid the arbitrary fitting that can ensue, the question of how this

gradient is learned must be addressed.

4.2. Below and above holographic string encoding

In all the codes we have studied, letter vectors were assumed to be orthogonal. However,

it is clear that some letters (like ‘‘C’’ and ‘‘O’’) share more visual features than others.
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Introducing these visual features proves straightforward in a holographic implementation,

because one only needs to generate vectors for as many visual features and 2D-positions

as required. Letters can then be created by X-oring visual features to adequate 2D-position

vectors and chunking these together.

Using these codes in a connectionist network would be the next step in specifying a lexi-

cal access model. As distributed string encoding scheme, holographic codes can directly

serve as input for PDP models (Plaut et al., 1996; Seidenberg & McClelland, 1989), or

unsupervised network such as self-organizing maps or hopfield networks. Such an extension

has been studied in Hannagan (2009) and shows that the joint use of holographic representa-

tions and attractor networks is not only possible but also fruitful. Indeed, we found that

holographic string codes were sufficiently distant from one another to allow for efficient

retrieval and storage under noisy conditions, and they supported an interpretation of fre-

quency effects as emerging from noise during learning.

It might also be of interest to apply holographic coding to sequences of symbols or

digits, considering the evidence that their encoding recruits at least partially overlapping

mechanisms (Carreiras, Dunabeitia, & Perea, 2007; Tydgat & Grainger, 2009). Indeed,

there is nothing specific to letter strings in the holographic codes we have presented, and

our similarity measures should also hold for strings of digits and symbols. Thus, accord-

ing to the holographic panel in Table 6, the fact that edge effects are still observed for

digits but not for symbols (Tydgat & Grainger, 2009) would suggest that these do not

use the same scheme. We speculate that the same holographic coding system might

resort to an absolute scheme such as slot coding for symbols, because symbol combina-

tions do not appear regularly in the visual environment, but might use a relative scheme

such as UOB in the case of letters and digits, because they appear more frequently in

short combinations.

4.3. Limits of holographic string encoding

One limitation of this holographic coding approach is the ill-defined Maj operator:

because the representations we use are binary, ties can arise for even number of arguments

that need to be broken arbitrarily. This parity issue is inherent to bipolar holographic codes—

it is the price we pay for simplicity—and it should be noted that it disappears in the

continuous case with real valued vectors. Other systems using bipolar codes, such as Hop-

field networks, are also afflicted with the same problem but being dynamic they can resort

to breaking the tie in favor of the value at t ) 1. The same solution would work for dynamic

systems based on binary holographic coding. Finally, in the static case the parity issue can

be circumvented in situations where different arguments of the Maj ought to be given

different strength, by generalizing the Maj operator to a weighted Maj (see Appendix A).

Although we have argued that holographic codes endorse more biological plausibility

because they are distributed and support constituent structure, we have not discussed how

the brain would actually compute them. Hence, this study cannot substitute to a computa-

tional model of string encoding, which needs to be specified in future work—possibly using

randomly connected sigma–pi neurons as suggested elsewhere (Plate, 2000). Nevertheless,
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Hannagan et al. (in press) recently showed that holographic slot coding with correlated

location vectors captures very sharply the computations performed by a location invariant

feed-forward network trained by backpropagation. This correspondence holds between holo-

graphic letter/location bindings and input-to-hidden weight vectors, and stems from broken

patterns of symmetries in network connection weights. That holographic codes can emerge

from a well-known learning algorithm and with a very simple network structure certainly

brings us closer to understanding how they could be implemented neurally.

One might also ask how these results would carry over to sparser holographic codes.

Indeed, in this article, we have used a dense code for simplicity (p(1) ¼ p()1) ¼ 1/2), but

as noted earlier, the code can be made as sparse as required (Kanerva, 1995). As in the pro-

cess the X-or operator is not affected and the Maj operator only lowers its threshold, we

expect that the simulations presented here will not vary drastically with the density parame-

ter. In particular, emerging TL and edge effects would be anticipated to diminish, but not to

disappear, as they are driven by the nature of both holographic operators and not their

thresholds.

Finally, a limitation of the string encoding approach in general, and thus of the holo-

graphic codes we studied here, is the silent treatment of phonology. Indeed, the extent to

which phonological representations interact with visual ones during string encoding is not at

all considered (Ziegler, 1995). We would like to emphasize, however, that phonological

information can easily be introduced in static holographic code, either indirectly as a unit

selection mechanism, or directly by creating phonological vectors and introducing them

adequately in the codes.

5. Conclusion

In this article, we have proposed a string encoding approach that uses distributed repre-

sentations and takes into account constituent structure. We used the BSC, a special case of

holographic reduced representations designed to capture and manipulate combinatorial

structures.

We have assessed these codes against their localist counterparts using several different

schemes and a number of criteria coming from masked priming experiments. Our first con-

clusion is that schemes do not behave in the same way whether they are implemented using

localist or holographic codes. This implies that a given scheme (e.g., slot coding or open-

bigrams) cannot be ruled out simply because one implementation of it fails to satisfy a con-

straint (resp. single TL and repeated RP), as this only falsifies one possible implementation

(localist). Our results show that to falsify a string encoding scheme properly, its distributed

implementations should also be considered.

Our second conclusion is that with one exception, using holographic representations

never jeopardizes the qualities observed in the localist case, and on the contrary holographic

coding can show a number of desirable emerging properties. Particularly surprising is the

apparition of edge effects in UOB and LCD, and of transposition effects in slot coding. We

have explained these phenomena in detail, formally in the case of transposition, and empiri-
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cally in the case of edge effects. Among holographic codes, we found that UOB could

account for a large number of effects (stability, edge effects, relative position priming with

or without repetitions, local transposition) while at the same time being more parsimonious

than LCD in hypotheses.

More work is required to understand the properties and limits of these codes, but

they are laid in a mathematical framework, which encourages formal analysis. Future

research could investigate the performance of holographic codes that use gradients, cor-

related position vectors, phonological information, or frequency as a unit selection

mechanism. Word codes can also be made more sophisticated by building on arbitrarily

detailed visual feature codes, and the holographic approach as a whole can be extended

to digit or symbol processing.

Notes

1. In this article, we use string encoding and letter position coding as interchangeable

terms. Although the latter is the authorized one, our preference goes to the former

because it is less misleading: As we will see, schemes do not always encode order at

the letter level.

2. Although we will later discuss redundant localist coding, which defines a special

many-to-one relationship.

3. The probability that two different strings actually activate exactly the same set is very

low with 400 units, and decreases exponentially with this number.

4. We use the standard letter position notation, which replaces letters by their absolute

position, and where the letter ‘‘d’’ in the prime means a different letter is used rela-

tively to the target.

5. The chunking operator is not always constant across all binary spatter codes. Here,

we use a deterministic version of the original majority rule.

6. In this article, we use a similarity measure based on the normalized Hamming

distance h between two vectors A and B, and defined as sim(A,B) ¼ 1)2|h(A,B)|.

7. This similarity decreases as the number of argument vectors grows.

8. This condition should produce the least similarity among all conditions tested.

9. Current specification, yet unpublished.

10. This result has been disputed by Lupker and Davis (2009) on the grounds that global

TL priming can be obtained using an alternative ‘‘sandwich’’ priming paradigm.

11. When each vector correlates with the previous one, the resulting code becomes the

holographic pendant of the overlap model.

12. However, it has been argued that the saliency gradient obtained in Gomez et al.

(2008) is incompatible with such a modification.

13. There was a mistake in Schoonbaert and Grainger (2004), where 10 bigrams were

believed to be shared in this condition.

14. We thank one anonymous reviewer for pointing this out to us.
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Appendix A: Operators: Formal definition

X-or

Let A1, A2 be bipolar variables. The binding operator X-or is a dyadic operator from

{)1,1}2 to {)1,1} and is defined as:

X-orðA1;A2Þ :¼ A1bA2 ¼
�1; if A1 � A2 ¼ 1
1; if A1 � A2 ¼ �1

�

Majority rule

Here we use a deterministic version of the original Maj operator introduced in Kanerva

(1997):

Let (Ap)p¼1,…,k be k bipolar variables. The chunking operator Maj is defined as:

8i;MajðAi
1; . . . ;Ai

kÞ :¼a
k

p¼1A
i
p ¼

�1; if
Pk

p¼1 A
i
p < 0

1; if
Pk

p¼1 A
i
p > 0

T; if
Pk

p¼1 A
i
p ¼ 0

8><
>:

where T ¼ A
ðiþ1ÞmodðnÞ
1 � Aðiþ1ÞmodðnÞ

k

The weighted Maj version used in weighted holographic slot coding is given by:
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Let (Ap)p¼1,…,k be k bipolar variables and (ap)p¼1,…,k 2 <.

WMajððA1; . . . ;AkÞ; ða1; . . . ; akÞÞ :¼a
k

p¼1apAp ¼
�1; if

Pk
p¼1 apAp < 0

1; if
Pk

p¼1 apAp > 0

T; if
Pk

p¼1 apAp ¼ 0

8><
>:

where T is an independent random bipolar variable following a Bernoulli distribution of

parameter 1/2.

Appendix B: Transposition effects in BSCs

In this appendix, we show why transposition effects arise in absolute coding schemes

using BSCs. We restrict our proof to structures of k odd arguments, similar mechanisms

being at work in the even case.

8k 2 N; k odd; 8j ¼ 1; . . . ; k; let

S ¼ A1 � X1 � A2 � X2 � � � � � Ak � Xk

and

T ¼ A2 � X1 � A1 � X2 � � � � � Ak � Xk

be two BSC vectors related by transposition of A1 with A2. We first compute the expected

Hamming distance H between S and T:

E½HðS;TÞ� ¼ P A1X1 þ A2X2 < A2X1 þ A1X2;
Xk
i¼3

AiXi ¼ 1

" #

þ P A1X1 þ A2X2 > A2X1 þ A1X2;
Xk
i¼3

AiXi ¼ �1
" #

¼ P½A1X1 þ A2X2 < A2X1 þ A1X2� � P
Xk
i¼3

AiXi ¼ 1

" #

þ P½A1X1 þ A2X2 > A2X1 þ A1X2� � P
Xk
i¼3

AiXi ¼ �1
" #

¼ 2 � P½A1 ¼ �A2� � P½X1 ¼ �X2� � P
Xk
i¼3

AiXi ¼ 1

" #

¼ 1

2
� P

Xk�2
i¼1

Ti ¼ 1

" #
; where Ti ¼ AiXi i.i.d.
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¼ 1

2
� P

Xk�2
i¼1

Ti þ 1

2
¼ k� 1

2

" #
; where

Ti þ 1

2
follows a Bernoulli p ¼ 1

2

¼ Ck�2
k�1
2
� 1

2k�1

:

Let now U¼D1�X1¯D2�X2¯� � �¯Ak�Xk.

From Kanerva’s formula on the distances between two BSCs sharing k arguments

(Kanerva, 1995), we get:

E½HðS;UÞ� ¼ 3

2
� Ck�2

k�1
2
� 1

2k�1

¼ 3

2
� E½HðS;TÞ�

Finally, to obtain the transposition effect we need only to subtract both distances, and

remember the relationship with similarities:

E½SimðS;TÞ� � E½SimðS;UÞ� ¼ ð1� 2 � E½HðS;TÞ�Þ � ð1� 2 � E½HðS;UÞ�Þ
¼ E½HðS;TÞ�

¼ Ck�2
k�1
2
� 1

2k�1

This shows that using the original BSCs, the transposition effect is maximum for strings

of size 3 (at 0.25), and then decreases convexly with size.

Appendix C: Similarity measures for Seriol and Spatial Coding

The following table presents the similarity values obtained for Spatial Coding and Seriol,

used in Table 6.

Table C1

Similarities for Spatial Coding (with end letter markers) and Seriol coding (with edge bigrams)

Stability (1–8) Edge Effects (9–11)

Condition (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Prime 12345 1245 123345 123d45 12dd5 1d345 12d456 12d4d6 d2345 12d45 1234d

Target 12345 12345 12345 12345 12345 12345 123456 123456 12345 12345 12345

Spatial

Coding

1.00 0.79 1.00 0.92 0.71 0.86 0.88 0.75 0.71 0.86 0.71

Seriol 1.00 0.68 0.92 0.86 0.41 0.66 0.67 0.44 0.66 0.63 0.66
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Table C1

(Continued)

Transposition (12–15) Relative Position (16–20)

Condition (12) (13) (14) (15) (16) (17) (18) (19) (20)

Prime 12435 21436587 125436 13d45 12345 34567 13457 123267 123567

Target 12345 12345678 123456 12345 1234567 1234567 1234567 1232567 1232567

Spatial

coding

0.89 0.48 0.78 0.81 0.67 0.67 0.69 0.82 0.81

Seriol 0.85 0.45 0.64 0.63 0.61 0.61 0.58 0.77 0.83

Note. Boldface type indicates similarities.
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