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A B S T R A C T   

Infants come to learn several hundreds of word forms by two years of age, and it is possible this involves carving 
these forms out from continuous speech. It has been proposed that the task is facilitated by the presence of 
prosodic boundaries. We revisit this claim by running computational models of word segmentation, with and 
without prosodic information, on a corpus of infant-directed speech. We use five cognitively-based algorithms, 
which vary in whether they employ a sub-lexical or a lexical segmentation strategy and whether they are simple 
heuristics or embody an ideal learner. Results show that providing expert-annotated prosodic breaks does not 
uniformly help all segmentation models. The sub-lexical algorithms, which perform more poorly, benefit most, 
while the lexical ones show a very small gain. Moreover, when prosodic information is derived automatically 
from the acoustic cues infants are known to be sensitive to, errors in the detection of the boundaries lead to 
smaller positive effects, and even negative ones for some algorithms. This shows that even though infants could 
potentially use prosodic breaks, it does not necessarily follow that they should incorporate prosody into their 
segmentation strategies, when confronted with realistic signals.   

1. Introduction 

Laboratory studies suggest that infants are sensitive to prosodic cues 
and use them to segment utterances (Hirsh-Pasek et al., 1987; Well-
mann, Holzgrefe, Truckenbrodt, Wartenburger, & Höhle, 2012). Large 
prosodic breaks (akin to sentence boundaries) facilitate word segmen-
tation: Infants recognized a word better when it was aligned with such 
boundaries (e.g., Shukla, White, & Aslin, 2011; E. Johnson, Seidl, & 
Tyler, 2014; Seidl & Johnson, 2008). Based on these results, one could 
conclude that prosodic breaks help infants discover words in real life. 
What is missing to draw this conclusion, however, is an estimate of the 
prevalence, detectability and the added value of prosodic boundaries in 
natural conditions. We review these three factors in turn. 

First, prosodic breaks may not be prevalent in natural infant-directed 
speech (IDS), because the utterances given to infants are already short 
(see Cristia, 2013 for a review). Short utterances, to the extent that they 
are separated by easy-to-detect pauses, provide word boundaries for free 
and reduce segmentation ambiguity. The longer the utterance, the 

greater the number of possible parses, and the more prosodic breaks can 
provide additional segmentation information. To assess the potential 
effectiveness of prosody for segmentation, it is therefore important to 
study it in actual IDS and not in artificially constructed stimuli. 

Second, within-utterance prosodic breaks may be difficult to detect in 
the raw signal, yielding segmentation errors. Laboratory evidence sug-
gests infants typically require multiple acoustic cues (pitch reset, pre-
boundary lengthening, and pause) to detect a break (Seidl, 2007; 
Soderstrom, Seidl, Kemler Nelson, & Jusczyk, 2003; Wellmann et al., 
2012), with the possible exception of long pauses (E. Johnson & Seidl, 
2008). Also adults are better at discovering breaks when these are more 
strongly marked (e.g., discussions in E. Johnson & Seidl, 2008 and 
Wellmann et al., 2012). Speech technology research suggests that 
extracting prosodic cues from phonetic information is challenging (e.g., 
Ananthakrishnan & Narayanan, 2007), and several systems use lexical 
or syntactic information to help improve the results. To assess effec-
tiveness, it is therefore important to use not only gold-standard prosodic 
breaks, but also prosodic breaks that can be reasonably extracted by pre- 
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linguistic infants. While speech technology research showing prosodic 
break discovery is difficult was based on adult-directed speech corpora, 
utterance-internal breaks are easier to detect in IDS (Ludusan, Cristia, 
Martin, Mazuka, & Dupoux, 2016). 

Third, regarding added value, perhaps prosody, although prevalent 
and detectable, is redundant with other cues available for word seg-
mentation (e.g., phonotactic or lexical cues), so that prosodic breaks do 
not contribute additional information. This possibility is difficult to 
study with human infants, because we cannot require them to use only 
specific cues when all cues are present. Computational models pro-
grammed to use some of these cues, thus, enable us to evaluate the 
effective role of prosodic breaks when segmenting realistic corpora. 

1.1. Modeling word segmentation 

The process of infant word segmentation has received considerable 
attention from computational linguists. Various symbolic segmentation 
models have been proposed (e.g., Brent & Cartwright, 1996; Goldwater, 
Griffiths, & Johnson, 2009) that use as input a phonemic transcription 
and return a hypothesized segmentation, to be compared against 
(orthographic) word boundaries. Before summarizing this literature 
further, we acknowledge two limitations. First, strings of phonemes may 
not be the most accurate input representation for young infants' 
perception. However, algorithmic development is more developed for 
text than for acoustic input (Ludusan et al., 2014). Additionally, Daland 
and Pierrehumbert (2011) argue that it is not an unreasonable repre-
sentation format for older infants. Second, the ideal evaluation is against 
infants' segmentation of the exact same phrases. Such results are 
currently unavailable and are difficult to gather at scale given the low 
power of infant experiments. Therefore, performance against adult- 
defined gold standards is our best proxy at present. 

Two classes of algorithms are used in this study, sub-lexical and 
lexical. Sub-lexical algorithms attempt to detect possible word bound-
aries by relying on statistics over sequences of phonemes. Here, we use 
two such algorithms, one relying on transition probabilities (TP), and 
another on diphone frequencies (DiBS). TP was inspired by the intuition 
that transition probabilities within words are typically larger than be-
tween words, a property that infants are sensitive to (e.g., Saffran, Aslin, 
& Newport, 1996; see Saksida, Langus, & Nespor, 2017 for a computa-
tional approach). We employ two versions of the TP algorithm, one 
taking a decision whether a word boundary should be posited between 
two syllables locally (comparing the current TP to that of neighbouring 
disyllables; TP_R) and another based on global statistics (comparing the 
TP against an absolute value; TP_A). DiBS operates optimal Bayesian 
inference to learn the parameters of a mixture of within- and between- 
word diphones. Daland and Pierrehumbert (2011) summarizes the 
cognitive relevance of this approach, notably infants' sensitivity to 
phonotactics (Mattys, Jusczyk, Luce, & Morgan, 1999). 

Lexical algorithms attempt to build a lexicon and use it to break ut-
terances up into words. In these models, the assignment of word 
boundaries is a by-product of word recognition. We use two algorithms, 
PUDDLE (PUD; Monaghan & Christiansen, 2010) and Adaptor Grammar 
(AG; M. Johnson, Griffiths, & Goldwater, 2006). PUDDLE employs both 
lexical strategies and phonotactics. It starts by storing whole utterances 
it comes across in a lexicon component. Then, it tries to break new input 
utterances using the memorized chunks and, if they conform to the 
phonotactics derived from the lexicon, it adds the new chunks to the 
lexicon and updates the phonotactics. Using known chunks to segment 
incoming input is a behavior found even among 6-month-olds (Bortfeld, 
Morgan, Golinkoff, & Rathbun, 2005). Finally, Adaptor Grammar rep-
resents the optimal learner within the lexical sub-class, and its cognitive 
relevance of this approach for infant word segmentation has been 
argued for in Goldwater et al. (2009). 

Although there are many other segmentation algorithms, we use 
these as a representative sample, covering both sub-lexical and lexical 
strategies, as well as heuristic (TP_R, TP_A, PUDDLE) and optimal (DiBS, 

AG) algorithms. 

1.2. The present study 

This study quantitatively evaluates the effective role of prosodic 
boundaries on word segmentation, using a computational approach. It 
builds on previous computational evaluations of word segmentation in 
real corpora. Ludusan, Synnaeve, and Dupoux (2015) investigated one 
computational model in adult-directed English and Japanese corpora, 
finding that performance improved with prosodic boundary informa-
tion. Due to the specific characteristics of infant-directed input, the 
effectiveness of such information has to be tested directly with IDS 
input. Ludusan, Mazuka, Bernard, Cristia, and Dupoux (2017) investi-
gated the effects of prosodic information on word segmentation in 
Japanese IDS and two ADS corpora, using several segmentation algo-
rithms, and found effects that varied across algorithms and corpora. 
However, only gold standard prosodic boundaries were employed. 

Here, we fill this gap by focusing on IDS from a large naturalistic 
corpus and applying a phonetically-based prosodic segmentation algo-
rithm to estimate how children may access prosodic boundaries in real 
life. We apply the five word segmentation algorithms defined above with 
and without gold prosodic breaks (posited by human annotators), as 
well as with automatically extracted breaks. 

2. Methods 

2.1. Corpus 

The RIKEN corpus (Mazuka, Igarashi, & Nishikawa, 2006) contains 
recordings of spontaneous interactions between 22 Japanese mothers 
and their 18 to 24-month-old infants, while playing with toys or reading 
a book. This resulted in about 11 h of IDS, which were entirely annotated 
at the segmental and prosodic levels. 

The prosody in the corpus was labelled based on X-JToBI rules 
(Maekawa, Kikuchi, Igarashi, & Venditti, 2002) adapted to Japanese 
prosodic organization (Venditti, 2005). In this standard, prosodic breaks 
are annotated by expert native Japanese coders, based on their 
perception of the degree of disjuncture, from weakest (0, corresponding 
to word breaks in fast speech) to strongest (3, akin to intonation phrase 
boundaries). The annotators had access to all sources of phonetic and 
linguistic information to decide the strength of a break. This study uses 
levels 2 (corresponding to accentual phrase boundaries) and 3. 

Table 1 provides information on the number of words per utterance 
and number of prosodic phrases per utterance, counting as breaks only 
utterance breaks (without); utterance and level 3 breaks (brk3); utter-
ance, level 2, and level 3 breaks (brk23); or utterance and automatically 
identified breaks (brkA). Corpus statistics are available in Section S1 of 
the Supplementary Materials. 

2.2. Analyses 

We provide here key aspects of the analyses. For more information, 
refer to Sections S2-S3 of the Supplementary Materials. 

The automatic prosodic boundary detection algorithm (similar to the 
one in Ludusan & Dupoux, 2014) employs acoustic cues that have been 
shown to be used by infants for the recognition of prosodic boundaries 
(e.g., Wellmann et al., 2012). Specifically, we extracted at the syllable 
level the duration of following pause, the duration of current syllable 

Table 1 
Average number of words per utterance (wrd/utt) and prosodic phrases per 
utterance (phr/utt), for the four prosody conditions.  

Measure without brk3 brk23 brkA 

wrd/utt 3.52 2.48 2.06 2.92 
phr/utt 1 1.419 1.714 1.243  
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nucleus, the nucleus-onset-to-nucleus-onset duration and the difference 
between the average pitch value of the next syllable nucleus and that of 
the current syllable. The contribution of each cue was then normalized 
between 0 and 1 and their sum computed, for every syllable (an equal 
weight was given to each cue). The resulting syllable-based function was 
then used for positing prosodic boundaries, as follows: The local maxima 
of the function were determined and prosodic boundaries were placed 
after the syllables corresponding to those maxima. The system does not 
employ any sort of learning paradigm, placing boundaries based only on 
the strength of the acoustic cues marking that particular syllable. 
Therefore, the automatically obtained boundaries do not correspond to a 
specific prosodic boundary level, although higher-level phrase bound-
aries are more likely to be discovered, given that they are stronger 
marked acoustically. The manual segmentation provided with the 
corpus was used to derive the duration cues employed by the detection 
algorithm. Pitch was extracted using Praat (Boersma, 2001) and any 
tracking errors were hand-corrected. We evaluate the goodness of 
boundary placing with respect to the manual annotations provided with 
the corpus, by computing the F-score (the harmonic mean between 
precision and recall). Its value varies between 0 and 1, with the latter 
representing a perfect system. 

Word segmentation algorithms are part of the open source package 
WordSeg (Bernard et al., 2020). Each was run on the four prosodically- 
defined versions of the dataset (without, brk3, brk23, brkA). Thus, the 
input was a file containing on each line the sequence of phonemes (with 
word boundaries removed) corresponding to segmental content, with 
breaks as defined in each condition (e.g. for without, only utterance 
boundaries were breaks, whereas for brk23, breaks corresponded to 
utterance and levels 2–3). Prosodic boundary information should help 
the segmentation models by providing free information on word 
boundaries (right edge of word preceding boundary and left edge of 
word following it). This would have an impact on the values of the 
probabilities employed in sub-lexical models and on the dictionary items 
determined by lexical models. 

The returned segmentation was compared to the gold orthographic 
word segmentation, using token F-score – the harmonic average be-
tween token precision (how many word tokens, out of the total number 
of segmented word tokens, were correct) and token recall (how many 
word tokens, out of the total number of word tokens in the reference 
data, were found). All algorithms were run by means of 5-fold valida-
tion, the evaluation being performed each time on the last 20% of the 
corpus. Although only PUDDLE is incremental, previous work suggests 
performance is remarkably stable as function of corpus size for the other 
algorithms (Bernard et al., 2020). We also computed the word correct-
ness, defined as the percentage of correctly segmented words out of the 
total number of words, and the degree of under− /over-segmentation of 
the model. This measure represents the difference between the number 
of words found by the models and the actual words in the dataset, 
normalized by the latter. Its sign (positive/negative) gives the direction 
of the trend (over/under-segmentation), while its absolute value shows 
the degree of over/under-segmentation. 

The word segmentation results were analyzed using mixed-effects 
models. For each group of model classes (sub-lexical/lexical), we 
fitted a model having the token F-score as dependent variable, the 
prosody condition as fixed effect and the corpus sub-part as random 
intercept. We used a Bayesian framework, as we also wanted to deter-
mine the posterior probability of the prosody-enabled conditions to 
bring performance gains compared to the baseline case. The R (R Core 
Team, 2020) package brms (Bürkner, 2017) was employed, with a 
weakly informed prior (uniform distribution) and five Markov chains, 
each having 3000 iterations (of which 1000 for warm-up). 

3. Results 

We present here the main results of the study, more details being 
given in the Supplementary Materials, Section S4. 

3.1. Manual prosody 

Fig. 1 shows that manual prosody (light grey/grey bars) helps both 
sub-lexical and lexical word segmentation models, with a greater gain 
for the former.2 The absolute F-score gain is 3.5%–8.6% (sub-lexical) 
and 1.5%–2.1% (lexical). The improvement in segmentation perfor-
mance was mainly due to the correct segmentation of a greater per-
centage of words (Fig. S3, Supplementary Materials), the word 
correctness increasing for all models, by 0.3%–5.8% for brk3 and by 
1.3%–10.5% for brk23 condition. Prosody also helped the models 
reduce their over/under- segmentation, with all models except TP_A and 
PUD brk23 showing this effect (for more details see Supplementary 
Materials, Fig. S4). 

3.2. Automatic prosody 

Evaluating the goodness of the automatically determined prosodic 
boundaries, we observe a system favouring precision (0.685) over recall 
(0.304), with an overall F-score of 0.421. Despite this rather poor per-
formance, the automatically obtained prosodic boundaries correspond 
to word boundaries in 85.8% of the cases. 

The performance of the models integrating the automatic boundaries 
is illustrated in Fig. 1 (dark grey bars). Automatic boundaries improved 
performance slightly for sub-lexical models (between 0.6% and 0.8% F- 
score gain), but decreased it for lexical models (− 3.8% and − 1.1%). The 
number of correctly segmented words decreased for lexical models and 
increased for sub-lexical models. Additionally, only TP_R and DiBS saw 
improvements in under/over-segmentation when integrating automatic 
boundaries. 

4. Discussion and conclusions 

May infants profit from utterance-internal prosodic breaks when 
segmenting words from their everyday input? Our modeling results 
suggest, first and foremost, that the facilitatory effect of prosodic 
boundary, if it exists, is modest in size, compared to the intrinsic dif-
ferences between segmentation algorithms. This may relate to the fact 
that intra-utterance prosodic boundaries have a relatively low preva-
lence in IDS (see Table 1), and therefore do not have a lot of occasions to 
make a difference. This conclusion has to be qualified by two key issues: 
Which segmentation algorithm infants may be using, and how accurate 
their detection of such prosodic breaks are. If infants use a lexical 
strategy (as documented e.g. in Bortfeld et al., 2005), then they do not 
stand to gain much, but if they employ a sub-lexical strategy (as in 
Saffran et al., 1996) or treat all sentences as words (as suggested by 
Keren-Portnoy, Vihman, & Lindop Fisher, 2019) they would, provided 
they can retrieve the breaks expert adult annotators tagged in this 
corpus. However, as the annotators had access also to higher-level lin-
guistic information when taking a prosodic boundary decision, these 
results show the highest possible improvement brought by boundaries. 
As infants' prosodic break detection is errorful, they would gain little if 
using a sub-lexical strategy, and lose performance if they were using a 
lexical strategy. Our findings are consistent with those of previous 
studies, showing that prosodic boundaries in IDS are more easily iden-
tified than in adult-directed speech (Ludusan et al., 2016) (see section S2 
of the Supplementary Materials for more details) and that they offer a 
lower boost to segmentation compared to gold-standard boundaries 
(Ludusan et al., 2015). 

Our computational approach suggests two key areas of further 

2 The differences between the conditions with and without prosody are rather 
small, though, compared to the differences between algorithms. The difference 
between models (in the case without prosody) is nearly three times larger 
(22.9%, representing the difference between the best performing model, AG, 
and the worst performing one, DiBS) than the largest prosody gain, 8.6%. 
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research. With respect to computational modeling, future research could 
explore segmentation approaches taking as input the acoustic signal, as 
well as the integration of language-specific cues (such as lexical stress, 
which could be helpful in some languages, Yang, 2004; Börschinger & 
Johnson, 2014). In order to better understand these cross-linguistic as-
pects, additional work on other languages, with diverse prosodic 
structures, would be desirable. A second interesting area arises from the 
fact that prosodic cues seem beneficial only for certain algorithms, and 
not others. This raises a sort of “meta-algorithmic” problem: given that 
infants have a whole range of segmentation strategies in their toolkit, 
and perceive a large number of phonetic cues, how do they know which 
particular combination of segmentation strategy and phonetic cue is 
helpful in their particular case? This may be especially difficult to solve 
if the strategy-cue interaction is language dependant (see Fourtassi & 
Dupoux, 2014 for an attempt at solving a similar meta-algorithmic 
problem). 

Concerning infant laboratory experimentation, our study makes an 
interesting prediction: Utterance-internal breaks are most useful when 
infants employ sub-lexical strategies, and less so when using lexical 
ones. It is likely that infants younger than 6 months need to rely more on 
sub-lexical strategies, whereas older infants, who have been able to 
accumulate a pseudo-lexicon, should be in a better position to integrate 
lexical cues.3 If infants are able to use a meta-algorithmic approach to 
find optimal strategies, then we should observe a greater reliance on 
utterance-internal breaks at earlier ages than at later ages, a prediction 
that could be investigated by familiarizing infants with passages in 
which the target word has one edge aligned with an utterance-internal 
break. However, besides these two strategies investigated here, there 
are other sources of information available to infants, also at younger 
ages, to help with the segmentation (e.g. words appearing in isolation; 
Keren-Portnoy et al., 2019) and which are worth investigating. 

To conclude, this study illustrates the interest of complementing 
traditional language acquisition studies via laboratory experimentation 
with a computational modeling approach that simulates the learning 
process itself (Dupoux, 2018). Whereas the former addresses the exis-
tence of potential learning mechanisms or perceptual cues, the latter 
enables us to evaluate the effectiveness of such mechanisms and cues on 
realistic input data. More research is needed in this direction, notably, in 
linking more tightly the results of the learning simulations to actual 

outcome measures (see Larsen, Cristia, & Dupoux, 2017, for a potential 
approach). 
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