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ABSTRACT

In  this  study we propose  a method of  prosodic  boundary 
detection  based  only  on  acoustic  cues  which  are  easily 
extractable  from  the  speech  signal  and  without  any 
supervision.  Drawing  a  parallel  between  the  process  of 
language  acquisition  in  babies  and  the  speech  processing 
techniques  for  under-resourced  languages,  we  take 
advantage of the findings of several psycholinguistic studies 
relative to the cues used by babies for the identification of 
prosodic boundaries. Several durational and pitch cues were 
investigated,  by  themselves  or  in  a  combination,  and 
relatively good performances were achieved. The best result 
obtained,  a  combination  of  all  the  cues,  compares  well 
against a previously proposed approach, without relying on 
any learning method or any lexical or syntactic cues.

Index  Terms  - Prosodic  boundaries,  acoustic  cues, 
prosody recognition

1. INTRODUCTION

Computer  and  mobile  speech  applications  are  being 
developed over an increasing number of languages, but few 
of  these  languages  have  labelled  linguistic  data  in  the 
abundant  quantities  necessary  for  the  intensive  training 
regime used in state of the art applications This creates the 
need to develop speech processing algorithms that operate 
under limited resources. At the extreme, the so-called “zero-
resource” setting refers to speech tasks that are performed 
on  the  raw  signal,  without  any  use  of  additional  expert 
resources  (annotations)  [12].  Unsupervised  acoustic 
modelling [14] and spoken term discovery [19] are among 
two  well  known  “zero-resource”  algorithms  that  have 
applications  in  a  variety  of  tasks:  audio  search,  speech 
document classification or recommendation, etc.

Continuous  speech  is  organized  in  perceptual 
constituents  based,  among  others,  on  physiological  and 
linguistics  (semantic)  factors.  We  define  a  prosodic 
boundary  to  be  a  delimiter  of  these  constituents.  The 
extraction  of  such  type of  prosodic  information is not  so 
well studied under low-resource conditions, although it has 
great  potential  in  that  regard,  given the fact  that  prosody 
relies on relatively simple and robust cues. For instance, we 
know that by the middle of their first year of life, human 
infants  are  able  to  segment  the  speech  input  in  terms  of 
prosodic  constituents  [5,  6].  This  ability  develops  in  the 
absence  of  a  significant  lexicon  or  even  acoustic  models, 
and at any rate, in the total absence of annotated data. 

In the literature on automatic processing of prosody of 
the  last  twenty  years  several  boundary  detection  systems 
were proposed. Most of these systems involved some sort of 
learning, either in a supervised manner (e.g. [25, 10, 2]), in 
a  semi-supervised  fashion  (e.g.  [13]),  or  totally 
unsupervised (e.g. [1, 11, 4]). Also, they tended to rely on 
higher level information, like lexical or syntactic [10, 1, 2, 
4,  13]  or  information  about  the  structure  of  the  studied 
language  [11].  Among  the  applications  for  this 
automatically  extracted  information  we  could  include 
automatic  prosodic  annotation,  automatic  speech 
recognition  [10]  or  speech  understanding  systems  [17]. 
More  recently,  prosodic  boundaries  where  shown  to 
improve spoken term discovery, by increasing the attained 
term precision [16].

In this  paper,  we explore  the automatic extraction  of 
prosodic boundaries using limited resources and low level 
cues.  We  conduct  a  feasibility  study  by  exploring  the 
validity of low level cues that have been shown to be useful 
to extract prosodic boundaries in human and infants. Indeed, 
before  developing  a  full  low-resource  algorithm,  it  is 
important  to determine which of these cues actually carry 
some weight and contribute to the recognition of prosodic 
boundaries  in  a  quantitative  way.  Prosodic  boundaries 
detected using a low-resource system could then be used in 
applications like spoken term discovery [16], which do not 
employ annotated data.

The paper is structured in the following way: Section 2 
presents the cues investigated in this study, along with the 
function used to quantify them. We introduce in Section 3 
the corpus used in the experiments, while in Section 4 we 
show the results obtained.  The paper is concluded with a 
short  discussion  and  some  outlines  of  possible  future 
directions.

2. METHOD

For  the  detection  of  prosodic  boundaries  we  define  an 
indicator  function  for  each  of  the  potential  prosodic 
boundary cues. This function quantifies the degree to which 
a  certain  acoustic  cue  marks  the  existence  of  a  prosodic 
boundary and it is normalised so that it falls between zero 
and one. By doing so, we can easily extend the algorithm to 
the  case  when  multiple  cues  are  considered,  by  simply 
summing the contributions  of  all  the cues.  This  approach 
would  also  allow  for  a  weighed  combinations  of  cues, 
which we do not cover in this paper.

The  cues  considered  in  the  current  study  are 
enumerated in the following list. We focused on these four 



cues  because  they  are  the  most  likely  universal  cues 
candidates involved in the marking of prosodic boundaries 
[9, 22].

• silent pauses
• nucleus duration
• nucleus-onset-to-nucleus-onset duration
• nucleus fundamental frequency (F0)
Since  this  paper's  objective  is  primarily  a  feasibility 

study, we decided, for reasons of replicability, to assess the 
usefulness  of  the  various  features  using  the  gold 
transcription. However, we restricted ourselves to cues that 
could, in principle, be extracted from raw speech, based on 
some independently published methods.

Silent  pauses  represent  an  important  cue  in  speech 
perception  and  usually  their  duration  is  correlated  to  the 
boundary  strength  perceived  by  the  listener  [8].  For  this 
reason we chose pause length as the numerical indicator of 
this cue, indicator which will be associated to the syllable 
preceding  the  silent  pauses.  There  appears  to  be  no 
generally agreed minimum duration for a pause, studies in 
the literature  usually considering  values  between 100 and 
200 ms to be the minimum [9]. Here, we set as minimum 
pause length 100 ms, enabling a fine grained cue which was 
set to zero (no pause), or to the duration of the pause. It is to 
be noted that we used here gold labels to indicate pauses, 
and  thus  even  the  shorter  pauses  were  true  pauses,  not 
phonetic events like the closure of stop consonants.

Prosodic  boundaries  are  also  characterised  by  pre-
boundary  lengthening  effects,  in  which  the  rhyme 
(composed  of  the  nucleus  and  the  coda)  of  the  syllable 
immediately preceding the boundary tends to be longer than 
that of the same syllable not in phrase-final position. Pre-
boundary  lengthening  is  considered  to  be  an  universal 
phenomenon,  having  been  investigated  and  observed  in 
several dozen languages [9]. Here, we decided to use only 
nucleus duration because computing rhyme duration would 
probably require some form of alignment with an acoustic 
model,  hence  supervised  learning.  In  contrast,  nuclei  can 
plausibly be detected using simple acoustic cues (e.g. [23, 
30]).  We therefore introduced as a numerical  indicator  of 
phrase-final lengthening the following function: whenever a 
syllable nucleus appeared to be a local maximum (i.e. with a 
duration  more  than  both  the  preceding  and  following 
syllable), the function was set to the duration of the nucleus, 
otherwise it was set to zero.

As  a  related  measure,  we  used  the  nucleus-onset-to-
nucleus-onset duration (henceforth the onset cue). This cue 
is  based  on  the  combination  of  two different  phenomena 
occurring at boundary locations: the aforementioned phrase-
final  lengthening  and  phrase-inital  lengthening  / 
strengthening. This latter phenomenon concerns chiefly the 
onset of the syllable just after the boundary. The measure of 
separation  between  the  onsets  of  vowels  of  adjacent 
syllables  can  be  therefore  seen  as  a  synthetic  variable, 

Figure 1. Waveform of a phrase from the corpus and the cumulative cues functions corresponding to it. The dashed 
lines in the two panels mark the position of the prosodic boundaries, while the asterisks on top of the 

function bars in the lower panel represent the position of each syllable nucleus.



integrating  the  duration  of  the  nucleus,  the  duration  of  a 
potential  coda,  the duration  of  a  potential  pause,  and  the 
duration  of  the  next  onset.  The  expectation  is  that  this 
measure should be maximal when the two syllables straddle 
a  phrase  boundary  [7].  The  corresponding  numerical 
indicator was defined in the same manner as for the nucleus 
duration: it takes non-zero values only for syllables whose 
onset cue is a local maximum; in that case, the function will 
be equal to the duration of the onset cue.

Finally,  we  introduced  a  measure  relative  to  pitch. 
Major phrase boundaries are usually associated with pitch 
resets (i.e. a large discontinuity in pitch) [22]. As we wanted 
to focus on this particular pattern we removed any variation 
due to other factors influencing the intonational pattern, by 
using only the mean F0 value inside the nucleus. For cases 
when no  F0 value  was  found inside  the  nucleus  (usually 
happening  when  creakiness  is  present)  we  employed  an 
algorithm for pitch detection which returns values for any 
portion of the speech signal [3]. We are aware that prosodic 
boundaries  are  typically  associated  also  with  other  pitch 
patterns.  However,  such  patterns  are  typically  language 
specific and would therefore require some learning in order 
to  be  applicable  to  any  corpus.  In  the  case  of  tonal 
languages, pitch fulfils additional roles, thus pitch variations 
could  also signal  lexical  and  grammatical  identities.  Still, 
previous studies have shown that even for tonal languages 
the  cue  chosen  here,  the pitch  reset,  is  used  for  marking 
prosodic  boundaries  (e.g.  [27]).  The  following  indicator 
function was used for F0: for every nucleus corresponding 
to  a  minimum  in  the  F0  function,  we  considered  as 
measurement  the  size  of  the  reset,  i.e.  the  F0  difference 
between itself and the following nucleus.

Each  cue  function  was  then  rescaled  to  1,  through a 
division  by  its  maximum  value  over  the  entire  news 
fragment file. In this way, each cue has the same importance 
in the calculation of the final function, when several  cues 
are combined. Once the detection function if computed, its 
local  maxima are determined and prosodic boundaries are 
placed after the nuclei corresponding to these maxima.

Figure  1  shows  as  an  example  the  waveform of  the 
phase: “My tape machine records well, but the knobs are too 
small, the buttons are flimsy and the counter  misplaced.”, 
along with a cumulative representation of the acoustic cues 
functions  computed  for  it.  It  can  be  observed  that  all 
boundaries are marked by at least one acoustic cue, if not 
several of them.

3. MATERIALS

The Boston University  (BU) radio  news  corpus  [18]  was 
used  for  the  evaluation  of  the  proposed  prosodic 
segmentation cues. We have decided to run the experiments 
on English because there are only a few languages which 
have speech resources annotated for prosody. Also, the BU 
corpus has been widely used for the evaluation of systems 
for automatic labelling of prosodic events and, thus, we can 

compare  our  results  with  those  obtained  by  previously 
proposed algorithms. Even though English is not an under-
resourced language, we believe that the cues we employ in 
this study are universal  enough [9,  22] to be successfully 
used for any other language.

The BU corpus  contains  10 hours  of  radio  broadcast 
news recorded by 7 speakers. Out of these, approximately 
3.5  hours  (6  speakers)  have  been  prosodically  annotated 
based  on  the  ToBI  standard  [21].  ToBI  has  5  levels  of 
annotation  for  prosodic  breaks,  ranging  from level  0  (the 
least  level  of  disjuncture)  to  level  4  (highest  level  of 
disjuncture). In this paper we aim at detecting intermediate 
phrase  boundaries  (ToBI  level  3)  and  intonational  phrase 
boundaries  (ToBI  level  4).  We  have  selected  for  the 
experiments all the recordings containing both level 3 and 
level  4  breaks  and  having  been  aligned  phonemically, 
giving in total approximately 3h of data. The level 3 and 4 
prosodic  breaks  of  these files were  manually checked for 
correctness  and  the  phoneme  boundaries  re-aligned  by 
forced alignment, using HTK [29].

4. EXPERIMENTS

Several  experiments were carried out in order  to evaluate 
the importance of each individual cue, as well as that of the 
combination of all acoustic cues. For evaluation purposes, 
the  boundaries  were  aligned  to  the  syllable  boundary 
following the corresponding syllable nucleus.  The syllable 
boundaries  were  obtained  by  applying  sonority-based 
syllabification rules to the phonemic transcription.

We  evaluated  the  performance  of  the  system  by 
computing the precision, recall and F-score. The precision-
recall  curve  of  the  system  was  obtained  by  varying  the 
threshold over which a boundary decision is made. For each 
cue and the combination of cues,  we tested 100 threshold 
values using the percentiles of the indicator functions. 

4.1. The role of nucleus normalisation

Before examining the goodness of each individual cue, we 
first investigated the issue of normalisation of the nucleus 
duration. In general, when dealing with nuclei durations, a 
per-class  normalisation  step  is  applied  to  the  data  [26]. 
While,  usually, we have access  to the phoneme class,  for 
under-resourced languages that might not be the case. Thus, 
this complex normalisation would be impossible to perform.

Besides  the  segment  class,  an  important  source  of 
variation  can  be  the  stressed/unstressed  distinction,  this 
being especially true in the vicinity of prosodic boundaries 
[28].  In  order  to  account  for  this  difference,  we  first 
computed the ratio between the mean nucleus duration of all 
stressed  nuclei  in  our  corpus  and  that  of  all  unstressed 
nuclei.  The value  obtained,  1.413,  was  then  used  for  the 
normalisation of all stressed nuclei.  For this study, we had 
access to information regarding the lexical stress from the 
annotation of the corpus,  but even in a low-resource setting



it  can  still  be  obtained,  through  the  use  of  unsupervised 
methods of prominence detection (e.g. [15]).

The results obtained for nucleus duration are illustrated 
in Figure 2. It shows that even a simple stressed/unstressed 
normalisation  method  can  improve  performance.  For  the 
rest  of  the paper,  when referring  to  nucleus  duration,  we 
intend the normalised version.  Note that  we do not apply 
normalisation  to  the  onset  cue;  for  it  to  be  properly 
normalised, one would need a model of the duration of each 
of  the  phonemes  appearing  between  the  two  onsets, 
something which would require supervised labels.

4.2. The performance of individual cues

The performance of each individual cue for the detection is 
illustrated in Figure 3. It shows a clear difference between 
them: a  relatively low precision  and  a low recall  for  F0, 
higher recall and precision for the nucleus duration cue and 
a very high precision, but a low recall for the pause cue. The 
onset cue, which is a combination, among others, of pause 
and nucleus duration,  gives results ranging between these 
last two: a similar pattern to the nucleus duration, but with a 
higher precision.

Table 1. Best F-score obtained for the individual cues and 
their combination.

Acoustic cue F-score

pause .482

nucleus .498

onset .519

F0 .324

sum .588

In the first four lines of Table 1 we have displayed the 
best F-score obtained with each individual cue. We can see 
a similar distribution of the results as in the precision-recall 
curve, except that, due to its low recall, the pause results are 
much closer to those of  nucleus or  onset. These three cues 
are grouped around an F-score of 50%, while  F0 behaves 
worse, at around 30%.

4.3. The role of multiple cues

Perceptual studies have demonstrated that babies and adults 
can robustly perceive prosodic boundaries when more than 
one acoustic cue are present.  Based on these findings, we 
explored  cue  combinations  with  the  expectation  that 
different cues could add complementary information, and/or 
increase the confidence of the found boundaries. We used 
two approaches:  a  simple (blind)  cue  combination,  and  a 
supervised optimal cue combination.  The last  approach is 
only presented to set an upper bound on what these kind of 
cues can achieve. 

The blind cue combination is done by simply summing 
the  corresponding  individual  indicator  functions  and 
applying  the  same  criterion  as  for  individual  cues.  Its 
performance,  compared  to  that  of  individual  cues  can  be 
observed in Figure 3 (sum).

Having used the BU corpus for the experiments, we can 
compare  our  results  to  previous  proposals  for  boundary 
detection. While our system does not reach the same levels 
of performance as the proposed supervised systems [10, 2], 
it gives results in the same range as those obtained using an 
unsupervised  approach,  but  which  uses  higher  level 
information (lexical and syntactic) [1]. 

Ananthakrishnan's  study  [1]  gives  results  for  four 
systems, based on different clustering methods and distance 
measures.  Their  F-scores  range from .58 to .66,  with one 
system   favouring   precision   over  recall,   while  the  rest

Figure 2. Precision-recall curve for non-normalised and 
normalised nucleus duration.

Figure 3. Precision-recall curve for each of the four acoustic 
cues investigated and their combination



showing an opposite  trend.  The F-score attained with the 
cues combination,  .588, is within this range of values.  The 
precision-recall  curve  for  our  combination  of  cues  is 
displayed in Figure 4, along with four points, representing 
the  systems in  [1].  It  can  be  observed  that  the  proposed 
approach performs the same as the most similar system (in 
the sense that they both favour precision over recall), gmm. 
This  is  true  even  though it  employs only simple acoustic 
cues, without any learning or parameter optimization.

The  blind  cue  combination  that  we  explored  above 
requires the sum of the indicator function to reach a certain 
threshold.  This  includes  for  instance  a  single  cue  with  a 
strong  value.  Infant  studies  have  shown  that  babies  can 
perceive prosodic boundaries only if more than one acoustic 
cue would signal it [20, 24], with a similar behaviour found 
in adults. This suggests an additional strategy whereby the 
conjunction  of  two  cues,  regardless  of  their  strength,  is 
taken  as  an  additional  evidence  for  the  presence  of  a 
boundary.  By  employing  this  rule,  we  would  expect  to 
obtain  higher  recall  rates  for  the  areas  having  a  high 
precision. 

We  considered  as  baseline  the  blind  combination  of 
cues (sum) and we added to it different cue conjunctions. 
All  combinations of cues  were investigated,  ranging from 
two cues to all four cues. We illustrate some of the results 
obtained with the conjunction of cues  in Figure 5 (in the 
legend,  P  represents  pause,  N  nucleus,  O  onset  and  F 
fundamental  frequency).  It  appears  that  most  cues 
combination decrease performance. The only combinations 
helpful  are  those  involving  two acoustic  cues  and  one  of 
them has a  very  high precision  (in  our  case,  pause).  For 
them,  we  can  observe  a  significant  increase  in  terms  of 
recall for the same level of precision, at the expense of a 
slightly  lower  maximum  attainable  precision.  As  an 
example,  the  best  combination  here  (PN),  has,  for  the 
maximum  level of  precision it obtains,  a recall  rate almost

double  than  that  of  the  baseline  (sum)  at  an  equivalent 
precision level, at a cost of a maximum precision of 98.3% 
instead of 99.4%.

Although we have seen that the use of this additional 
strategy  can  help  the  prosodic  boundary  detection,  it 
remains  to  be  see  whether  the  cue  combination  that  was 
optimal for our corpus (PN) generalizes to other corpora. If 
optimal cue selection depends on the corpus (or language, 
for that reason) one could try to learn it by using as labelled 
boundaries those marked by silent pauses, similarly to the 
approach used in [11].

5. CONCLUSIONS

We have investigated in this study the usefulness of several 
acoustic cues in the detection of prosodic boundaries. Only 
cues which can be extracted directly from the speech signal 
were used and good results were obtained. While the best 
results  presented  here,  represent  the  upper  bound  for 
performance  using  these  features,  our  study  proves  that 
psycho-linguistically motivated  acoustic  cues  can be  used 
successfully  for  the  automatic  detection  of  prosodic 
boundaries.  Furthermore,  we  have  shown  that  combining 
these  cues,  along  with  considering  cases  of  boundaries 
marked by multiple cues, improves performance. This is in 
line with findings in infant studies [20, 24] which show that 
babies rely on a combination of cues when deciding on the 
existence or not of a boundary.

We  obtained  good  performances  with  these  simple 
acoustic cues, but it was disappointing to see that the F0 cue 
was  not  very  helpful.  One  possible  cause  would  be  the 
simple measurement employed in the study. In this sense, 
we  would  like  to  use  in  the  future  a  pitch  stylization 
algorithm in order to obtain a better estimate of the global 
intonational contour. A second reason might be the fact that 
only one F0 pattern (F0 reset) was considered here, while 
both intonational and intermediate phrase boundaries were 

Figure 5: Precision-recall curve when multiple cues are usedFigure 4. Comparison of the current approach with the 
systems proposed by Ananthakrishnan [1]



sought for. We know that prosodic boundaries are marked 
by several types of patterns [22] and in a follow-up study 
we  plan  to  investigate  the  learning  of  the  F0  patterns 
associated  to  prosodic  boundaries,  in  a  similar  manner  to 
how the lexical and syntactic probabilities were estimated in 
[1]. By using the prosodic boundaries found through the use 
of  the other  cues,  we hope  to  discover  more  F0 patterns 
denoting finality.

The present study used an English corpus, but we are 
interested in seeing how the cues used here would predict 
prosodic boundaries in other languages.  We would expect 
them  to  be  discriminative  also  for  other  languages,  but 
probably language specific weights would have to be used. 
With  this  respect,  we  would  like  to  examine  how  these 
weights can be learned with or without annotated data and if 
significant differences exist between these two approaches. 
Future work will focus on these aspects also.
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