
Behavior Research Methods, Instruments, & Computers
1997, 29 (3), 322-327

EXPE: An expandable programming language
for on-line psychological experiments

CHRISTOPHE PALLIER
Rutgers University, New Brunswick, New Jersey

and

EMMANUEL DUPOUX and XAVIER JEANNIN
Laboratoire de Sciences Cognitives et Psyclwlinguistique, Paris, France

EXPE is a DOSprogram for the design and running of experiments that involve the presentation of
audio or visual stimuli and the collection of on-line or off-linebehavioral responses. Its flexibility also
makes it a useful tool for the rapid design of protocols for testing neuropsychological patients. EXPE
provides a powerful scripting language that allows the user to specify all the components of an exper
iment in a human readable file. Subjects' responses are saved in a user-specified format as well as in
readable ASCIIfiles. The user can easily add new commands to the language: All the instructions are
calls to functions written in independent Borland Pascal units. Thus, users can link their own Pascal
procedures to EXPE to meet virtually any special need. This makes it possible, for example, to adapt
EXPEto new hardware, such as new sound or video boards.

When one designs a psychological experiment using
computerized equipment, one can use a general-purpose
programming language (C, Pascal, etc.), or one can use
one ofthe software/freeware packages developed specif
ically for psychological experiments. The first solution is
more common, but it has several drawbacks. Neither C nor
Pascal is very well suited to describing experiments: Both
force the experimenter to focus on many irrelevant de
tails. More importantly, these languages require a level of
programming skills that cannot be expected from the av
erage user, especially if precise timing or synchroniza
tion is needed. The second solution, the use ofspecialized
systems, has the advantage that such systems are simpler
and more accessible, especially with systems that provide
a graphic interface for the construction of experiments.
However, such software is often tied to specific kinds of
experiments, and it imposes relatively strict limits on ex
perimental design, stimulus presentation, feedback, and
so on. For example, it is generally impossible to modify
the format ofthe feedback or to adapt the number or type
of trials to the history of subject responses. Another se
rious problem with these programs is that they are not
open and are often tied to a special-purpose hardware
(e.g., response buttons/audio boards).

In this paper, we describe a program that we developed
5 years ago at the Laboratoire de Sciences Cognitives et

This article was written while CP was supported by a LAVOISIER
grant from the French ministry of foreign affairs and then by a grant
from the FYSSEN foundation. The audio functions rely on modules
programmed by Xavier Jeannin at the LSCP in Paris, and by John Mer
tus at Brown University. Correspondence should be addressed to C. Pal
lier, LSCp, 54 bd Raspail, 75006 Paris, France (e-mail: pallier@lscp.
ehess.fr).

Psycholinguistique (LSCP, Paris) to try to cope with these
problems. Our aim was to design a system that had both
the power and expandability of programming languages
and the ease ofuse ofthe more specialized software. Power
was achieved through a scripting system with general
purpose data and control structures. Expandability was
achieved through a modular, open architecture that al
lows the easy addition of new functions through Borland
Pascal modules. User ease was obtained by designing the
language with a maximally simplified syntax and many
primitive functions tailored to the needs of experimental
testing (trial definition, stimulus presentation, response
collection, timing, data saving, etc.).

Thus, EXPE is an interpreter of scripts that is similar
in spirit to BASIC. It provides variables, expression eval
uation, and all the necessary control structures (including
subroutines); the BASIC functions Read and Data have
been enhanced in many ways to allow a compact and leg
ible description ofexperimental design (more on this sub
ject in the section on EXPE's scripts). We want to stress,
however, that EXPE is not a high-level experiment gen
erator: Concepts ofexperimental blocks or groups are not
"hard-wired" primitives ofthe language. Thus, for exam
ple, EXPE will not automatically generate a Latin square
design; the user will have to specify the different groups
ofsubjects and the block order. Nevertheless, most EXPE
scripts are usually quite, short, and our experience at the
LSCP has shown that students can very quickly learn to
use it to design and run experiments. Indeed, EXPE has
been used extensively in the past 4 years to prepare and run
auditory and visual experiments. It has also been used to
test neuropsychological patients.

The hardware requirements have been kept to a mini
mum: EXPE is a DOS real-mode program that can run on

Copyright 1997 Psychonomic Society, Inc. 322



EXPE: A FLEXIBLE, EXPANDABLE LANGUAGE 323

old PCs with only 640K of memory (though some ex
periments may require a faster PC to handle the presen
tation of complex audio or video events). No complex
hardware is required for timing and response-time mea
surements; the response buttons are simple mechanical
switches that can be connected directly to the parallel
port of the computer. The audio functions rely on Bliss
audio drivers, a system designed by John Mertus at Brown
University. This makes EXPE compatible with audio
boards for which there exists a Bliss driver; 1 at the LSCp,
we use MediaVision's ProAudio Spectrum 16.

The paper is divided into two parts: Wedescribe (1) the
script language and try to convey how easy it is to pro
gram new experimental paradigms with it, and (2) the
expandability of the language through the linkage of
Pascal units.

EXPE SCRIPTS

Two Examples With Commentary
Figure 1 shows the script of a simple phoneme catego

rization experiment: The subject listens to a list of stim
uli, and after each one, has to press the key corresponding
to the perceived phoneme (this is just a simple example;
a real experiment would likely include the instructions
for the subject, a training block, and maybe feedback).

The core of many experiments is a series of trials that
differ only in terms of the actual stimuli used in each par
ticular trial. It is convenient to separate the code (i.e., the
commands to be executed in each trial) from the data (the
description of the stimuli). In Figure 1, the first block of
lines is the code section; the commands enclosed be
tween the "WithData ... LoopData" construct will be ex
ecuted once for each line of data (defined by the "Data
... EndData" construct). Within the "WithData ... Loop
Data" loop, #1 refers to the first column of the current
line in the data block and hence varies on each pass. So,
in the first pass, #1 corresponds to "stiml.adf"; in the
second pass, it corresponds to "stim3.adf," and so on, and
#2 corresponds to the second column. If the "database"
"Materials" contains 60 lines, the instructions are exe
cuted 60 times.

In this example, the whole experiment consists of a
single block ofuniform trials; each trial starts by the play-

WithData "Materials"
Listen 11
Save .1.2 ReadKey
Wait 2000

LoopData

Data "Materials"
stim1.adf P
stim3.adf K
stim7.adf D
stim2.adf P

EndData

Figure 1. Example of a phoneme categorization script.

ing of the auditory file, the name ofwhich is given in the
first column in the current data line ("Listen #1"). Then,
the file's name, the expected answer, and the subject's re
sponse are saved together in the result file ("Save #1 #2
ReadKey"). Finally, the computer waits 2 sec before
starting the next trial ("Wait 2000").

Once this script is written, say, in the text file "phondec.
pro," entering "expe phondec subjcode" on the DOS
command line will launch the experiment. When the ex
periment is completed, the raw results will be immedi
ately accessible in an ASCII file with four columns: the
subject code, the file name, the expected response, and the
actual response. Information about the subject and about
the date and time of the run is also stored in the results
file. It is easy to extract statistics from the results file with
programs like Count, Mystat, and Anova, provided in the
EXPE package; alternatively, the ASCII file can be im
ported into a spreadsheet or a statistical program.

In data blocks (databases) containing lists of stimuli,
it is good practice to add some information about the cat
egory of the stimulus to each line. This information can
then be saved with the response of the subject, facilitat
ing easy extraction of the results. It is important to note
that databases are not limited to storing stimulus lists. The
format inside a database is completely free, and the ac
tion taken depends on the code section.

For example, we conducted an experiment in which
subjects had to perform a click detection while listening
to auditorily presented words. Every 5 to 12 trials, a rec
ognition test was administrated to force subjects to pay
attention to the words. In order to achieve this, lines with
a special code were interspersed throughout the stimuli
list to instruct EXPE to present the subject with an oc
casional recognition test. An instruction in the main loop
branched between a click detection or a recognition test.

The database mechanism is quite powerful. The Re
sult File itself is actually a database, so it is possible to
access the history of subject responses within the exper
iment (e.g., to compute the mean reaction time [RT] in a
block). Also, a given script can have several databases,
which can be scanned sequentially or in parallel: With
Data ... LoopData loops can be embedded. For example,
one database can contain the name ofothers; this feature
can be used to store the order of experimental blocks.
The outer loop controls which list is used, and the inner
loops scan through this list.

A second example of an application of EXPE is the
script of a speeded phoneme detection experiment (Fig
ure 2). First, the instructions are displayed on the screen.
Then, the order of stimulus presentation is randomized
(for each subject) with the instruction "Shuffle." Inside
the loop, the instruction "RTtrial 2000 Listen" plays the
stimuli and monitors the keyboard and the parallel port
for a button- or keypress during 2 sec (2,000 msec). The
RT can then be read with the function "RT," and the code
of the button pressed is accessed with the function "But
ton" (ifno button has been pressed, the "Button" returns
"r-"), The entire data line is saved, along with the response
by the command "Save #0 button rt." Saving as much in-



324 PALLIER, DUPOUX, AND JEANNIN

Echo " INSTRUCTIONS FOR EXPERIMENT"
Echo "In this experiment. you will be presented first with a target phoneme"
Echo "on the screen, then by a spoken word."
Echo "Your task is to press the right button if the word contains"
Echo "the target phoneme, or the left button if the word does *not* contain it."
Echo
Echo "Respond as soon as you have heard the target phoneme."
readkey

Shuffle trials ;randomize~ the trial order

;wait one ~econd

;clear the ~creen

;di~ptay the target phoneme
;wait another ~econd

;clear the ~creen

;wait 500m~

;make a timed re~pon~e triat with
;deadline 2000m~

;~ave the triat characteri~tic~ and respon~e~

;!eedback for ~low and wrong re~pon~e~:

WriteXY 20 20 "Too Slow !" ; no but t on pres~

and (button!-.3) WriteXY 20 20 "Wrong Response"

.0 button rtSave

WithData trials
Wait 1000
Cls
WriteXY 38 12 .1
Wait 1000
Cls
Wait 500
RtTrial 2000 Listen .2

If button=='~'

If button!='~'

LoopData

Data trials ;target-phonemestimulu~-!ilede~ired-re~pon~e

p sheep.adf 1
M glop.adf 2
D disk.adf 1
K pump.adf 2

EndData

Figure 2. Example of a phoneme detection script.

formation as possible about each trial makes later analy
ses easier.

In a given script, several blocks of codes and data can
be interspersed freely. Complex designs can be made by
embedding WithData ... LoopData structures at any depth.
Conditionals and control structures allow for feedback or
trials to depend on the subject's response. A WithData ...
LoopData loop can be interrupted before the end of the
list (e.g., if the subject's performance has reached a cer
tain criterion). The next section briefly describes the ca
pacities of the language.

EXPE Syntax
EXPE syntax is deliberately minimalist. A program

consists ofa series oflines, each ofwhich can be a com
mand line, a data line (appearing between "Data" and
"EndData"), or a comment (introduced by a percent sign).
Typically, command lines are executed sequentially, one
after another, in the order in which they are encountered.
However, some commands allow looping over a block of
instructions until a condition is met (we have already men-
tioned WithData LoopData, but there is also While ...
EndWhile and For EndFor). As in most programming
languages, there also are conditional instructions (If ...

Then ... EndIf) that allow execution of a given instruc
tion only when a specific condition is met.

Each command line starts with a command, which may
be followed by one or several arguments that can be num
bers, strings ofcharacters, variables, or other commands.
Assignment (": ="), standard arithmetic ("+," "- ," "/,"
"*"), and logical ("and," "or," "xor") operations are spe
cial types ofcommands that take their arguments on their
left and right sides. The standard operator precedence
applies (i.e., 3 +4 *5 = 23). Commas for arguments and
parentheses for expressions are not mandatory (mini
malist syntax), but they can be used to make complex ex
pressions more legible.

Contrary to many programming languages, the user
does not have to pay attention to the argument type: Con
versions between numbers, strings, or Boolean expres
sions are performed implicitly as needed ("0" is equiva
lent to 0.0 and to False; however, improper conversions
[e.g., "3 + hello"] will generate a run-time error).

EXPE also has variables that can be manipulated just as
easily as constants. Again, variables have no particular
type and can be used as arguments or functions requiring
strings or numbers. Variables are especially useful for
counting subjects' good and bad responses. Several ofour



EXPE: A FLEXIBLE, EXPANDABLE LANGUAGE 325

Figure 3. Mixing two audio files.

experiments involve adaptative training where the train
ing block ends when a certain performance criterion has
been reached. As noted, inside a WithData ... LoopData
loop, "#i" refers to the "ith" item on the current database
line. In brief, EXPE takes care oftype checking, memory
allocation, input-output, and so on, and allows the user
to concentrate on the most important aspect of the re
search-the execution of the experiment.

Functions for Stimulus Presentation
We now turn to the specifics of EXPE concerning

audio/ video output and timing. The simple command
"Listen <filename>" allows an audio file to be played.
There is no limit on the size of audio files; EXPE reads
them from the disk and feeds them to the audio board in
real time. Currently, EXPE handles 16-bit Bliss.adf
mono and stereo audio files, raw PCM linear l o-bit files,
and Windows .wav pcm 8- and l o-bit files. The amount
of time it takes to load the file will depend on the hard
drive on the computer. Ifplayout must start at a very pre
cise time, it is possible to decompose this command in
"Load <filename>" and "Play." "Load" will fill the au
dio buffers with the beginning of the file and "Play" will
start the playout immediately (fetching more data on the
disk if necessary).

EXPE is not limited to presenting only an entire, pre
recorded audio file; it also provides a general audio mix
ing table that allows the user to specify millisecond
synchronized sequences of auditory events. The mixing
occurs in real time and allows the user to overlap or gate
stimuli or to play some files over the left and others over
the right channel. Figure 3 shows a simple example of a
stimulus made of two audio sounds played simultane
ously,one in the left channel and the other one in the right
channel and amplified by a factor of 2. Only the first
1,000 msec of each file is played.

By default, the mixing is done in real time. If this ex
ceeds the capacities of the machine (because the hard
drive or the CPU is too slow), it is possible to mix the
sounds off-line (i.e., before starting playback) in a tem
porary file that can be played afterward.

The current video functionalities are relatively primi
tive; the basic graphic functions of Borland Pascal are
accessible, as is a command to display pictures stored as
bitmaps in TIFF files. The drawing is done in a hidden
page that can be swapped rapidly with the page shown on
the screen, allowing measurement of RT from the onset
of the presentation. However, it is not yet possible to pre
sent a visual stimulus in the middle of the presentation of
an audio stimulus; we are planning a revised version of

Defitem
audio "file1.adf" 0
audio "file2.adf" 0

Enditem
Playitem

Length 1000ma Gain 1.0 LEFT
Length 1000ma Gain 2.0 RIGHT

EXPE in which visual events will be incorporated in the
audio mixer, allowing for the possibility of arbitrarily
complex sequences of audiovisual events.

With this basic set of instructions, EXPE can handle
many current psycholinguistic or neuropsychological
experiments that specify a relatively simple sequencing
ofevents. However, experiments requiring the rapid suc
cession of many visual frames (e.g., rapid serial visual
presentation) or complex synchronization of audio and
video events (cross-modal priming) may not be possible
with the basic functions provided. When such a limit is
reached, we recommend programming each particular
complex stimulus presentation directly in Pascal and link
ing it to EXPE code (see the next section, about expand
ing the language).

EXPE can also communicate with other hardware or
computers through the parallel port or the serial port. For
example, for an evoked-potential study, we have been
able to link through the parallel port a PC handling the
presentation ofaudio stimuli to another PC recording the
EEG. The first PC, programmed with EXPE, sent codes
that were specific and synchronized with each stimulus
to the second computer. In other experiments (head turn
ing), we were able to use the serial port to drive a video
tape recorder. The serial port has also been programmed
to control a digital audio tape (DAT) recorder during a
naming experiment (with the DAT recording the vocal
responses of the subject).

Timing and Responses
Control on intertrial times, feedback duration, and so

on, is achieved by the functions "Clock," "Wait," and
"WaitTill." "Clock" gives back the time elapsed since the
beginning of the experiment. "Wait <n>," Wait n msec,"
and "WaitTill <n>" will make the computer wait until the
clock reaches the value n. For example, to program a se
ries oftrials ofequal durations-say, 4 sec-"A: = clock"
can be set at the beginning of the trial, and "WaitTill
a+4000" can be put at the end.

Two types of functions are designed to obtain func
tions input from the subject-those that record off-time
responses (ReadKey,ReadString, etc.) and those that mea
sure on-line RTs. The latter can be achieved with exter
nal buttons linked to the parallel port (with millisecond
accuracy) or through the keyboard (with less accuracy).
For RTs the simplest function is "RTtrial <deadline>
<command>." The RT is measured from the real onset of
command (i.e., the first sample output in "Listen" or
video retrace for video functions). The functions "RT"
and "Response" can then be used to access, respectively,
the value of the RT and the button (or key) pressed. If
no button is pressed before deadline, RT is set at O. It is
sometimes useful to decompose the action of "RTtrial"
into more elementary instructions ("e.g., EnableRe
sponse," "RTonset := getonset <action>," "LatchRe
sponse") to allow more control in the case of complex
sequences of events. Proper connection of a voice key to
the parallel port enables one to use vocal instead of man
ual responses.



326 PALLIER, DUPOUX, AND JEANNIN

Saving Results
The data recorded by EXPE (subject responses) are

saved using the Save command. This command saves all
its arguments, in plain ASCII format, in a memory area
that is dumped onto the disk when the experiment ends.
User interruptions or run-time errors are caught, and the
data are saved on disk before the program exits. Results
can be logged onto the same large result .res file or onto
separate files for each subject. In addition, much other
information regarding the experiment is saved in the .res
file (date, time, experiment duration, type of machine,
version ofEXPE, etc.). Note that functions that perform
the saving, like all other EXPE commands, can be re
placed to use different formats. Wenow turn to an impor
tant feature of EXPE-its expandability.

EXPANDING EXPE

Hardware and software limitations ofany experimen
tal package are quickly reached by ingenious research
ers. As an example ofhardware limitation, the user already
may have hooked up 10 computers with a particular kind
of response button, but the hardware does not allow for
reading out these buttons. EXPE has been programmed
in a modular fashion, making adaptations to new hard
ware possible. The pieces ofcode dealing with the hard
ware are kept in separate Borland Pascal's units, which
means that adapting EXPE to new hardware involves only
local changes to these units. For video output, we rely on
Borland's BGI drivers. For the audio output, we use the
specifications ofJohn Mertus's Bliss drivers, and, again,
EXPE's code is device independent. Adapting EXPE to
new audio boards would require writing up a new Bliss
driver (5-6 very low level functions).2 Finally, timing and
response buttons are also modular parts of the code. In
short, it is possible to adapt EXPE to new input boards or
ports. For example, we have used it to command a robot
arm (moving objects in a theater designed for baby exper
iments) and to synchronize a NeuroScan EEG recorder
with auditory stimulus presentation.

Software limitations concern, for example, the types
ofgraphic file format the package can display, or the type
ofaudio file it can play. With most experimental software,
the experimenter has no recourse ifthe package cannot ac
commodate a particular format. With EXPE, the experi
menter can add commands to the language very easily. As
long as the user has access to the required Pascal proce
dure, it is easy to link this routine with the other functions,
resulting in an extension to EXPE's language.

Consider some examples. To save the results in a spe
cial format adapted to the analyzing tools being used, a
special-purpose Save command can be added to the lan
guage. Similarly, it is easy to link a modular piece ofcode
that achieves a special effect (e.g., self-paced reading) to
EXPE.

All of EXPE's commands are in fact implemented as
functions of the type "function myfunction:xvalue;far;"
where "xvalue" is a hybrid type that allows for transmis
sion of numbers or strings of characters. In order to add

new functions to the EXPE language, one must do the
following:

I. Write a Borland Pascal unit containing the code for the
new function.

2. Add a line like the following to the initialization section
of the unit:

New Func("MYFUNC",myfunction, short-help ).

("NewFunc" is part of the interface of a unit called
"xcore," which must be included by the unit.)

3. Add the name of the unit to the list in file named
"Module.pas."

4. Run the batch "Make" that invokes bpc to recompile
EXPE.

Then, at run time. the keyword "MYFUNC" is a new
command in the language that can be used within EXPE
scripts to call for the desired procedure. It is possible, in
a given unit, to add many other commands; the only thing
needed is a "NewFunc" statement for each of them. In a
nutshell, EXPE is a scripting interface to independently
written Pascal functions.

The arguments in the script can be accessed by using the
functions "GetStrArg," "GetIntArg," or "GetBooIArg."
These read the next argument in the current line and con
vert it to the relevant Pascal type. The user need not con
sider syntax, expression evaluation, and so on, since the
core of EXPE takes care of such details.

In brief, when the user has written code into an inde
pendent Borland Pascal unit;' he/she just has to add the
name of this module to the list in the file modules.pas
and to run "Make." This solution has the advantage of al
lowing the user to distribute his/her contributions as
independent .tpu files. Useful contributions could be in
corporated in the standard distribution of EXPE.

Availability
EXPE can be freely downloaded from the Internet at

the URL http://www.ehess.fr/centres/lscp/expelexpe.html.
Researchers using EXPE for their experiments are only re
quested to cite the present paper whenever they report on
their work. Weprovide, along with EXPE, documentation
and some tools for preparing experiments and performing
data transformations and statistical analyses (including
analyses of variance). The full package is self-contained
and is sufficient to prepare, run, and analyze many psy
chology experiments.

CONCLUSION

EXPE provides an expandable and powerful scripting
language for experiment construction. Although we do
not wish to review all existing experimental packages, the
most powerful ofthese packages-MEL (Schneider, 1988)
and PsyScope (Cohen, MacWhinney, Flatt, & Provost,
1993) also have underlying scriptlike languages. In these
packages, however, such scriptlike languages are ma
chine oriented and are normally not programmed directly



EXPE: A FLEXIBLE, EXPANDABLE LANGUAGE 327

by the user. Rather, a menu-driven or graphics interface
guides the user in the specification ofthe experiment. Such
specification is used to generate the appropriate script
code, which is then fed into the experiment engine. This
approach has the advantage that users do not need to do
any programming to implement an experiment. Typically,
however, the complexity and range of designs or proto
cols that such packages can express is limited. For in
stance, the interface may not allow the user to modify the
format of the feedback messages or to schedule trials that
depend on the history of subject responses. Indeed, the
user interfaces are often more restrictive and less power
ful than the underlying scripting language. When the user
tries to surmount these limitations, he/she has to abandon
the user interface altogether and cope with an unfriendly
machine-oriented scripting system.

EXPE lacks a "high-level" interface: Users cannot enter,
in menus or through a graphic interface, parameters such
as stimulus onset asynchrony or numbers of trials in a
block. On the other hand, the scripting language has been
designed to be human readable and to minimize the bur
den of programming. Still, the fact that using EXPE re
quires a basic understanding of instructive programming
may be a drawback for a certain class of users. Also, un
like MEL and PsyScope, EXPE does not include a library
of scripts for common experimental paradigms.

In summary, EXPE has the following advantages:
1. It provides specialized commands and structures for

stimulus presentation and response recording. The audio
functions are especially powerful, allowing for the play
ing of files of unlimited size and for mixing several files
in real time (which is useful, e.g., for dichotic experiments).

2. Users do not have to learn to use a compiler, as they
do with languages such as C or Pascal. EXPE is much
more similar in spirit to BASIC, and is thus simpler to mas
ter than C or Pascal. Users can write scripts on their fa
vorite word processor, and, at any time, they can get on
line help on EXPE's commands by calling "expe -?".

3. EXPE is open ended: If necessary, "power users"
can add new functions by programming them in Borland
Pascal and linking them to EXPE.

4. EXPE can be used without restrictions: The license
allows users to make an unlimited number of copies.

REFERENCES

COHEN, J., MACWHINNEY, B., FLATT, M., & PROVOST, J. (1993).
PsyScope: An interactive graphic system for designing and control
ling experiments in the psychology laboratory using Macintosh com
puters. Behavior Research Methods, Instruments. & Computers, 25,
257-271.

SCHNEIDER, W. (1988). Micro Experimental Laboratory: An integrated
system for IBM PC compatibles. Behavior Research Methods, Instru
ments, & Computers, 20, 206-217.

NOTES

I. Bliss drivers and tools are available on-line (ftp://jam.cog.brown.edu).
2. Writing up a new Bliss driver, however, is not necessarily an easy

task. The structure of Bliss drivers requires the use of assembly lan
guage. And the programmer must not be afraid of dealing with the
DMA and other capricious beasts.

3. It is also possible to link C code to Pascal, but with an important
restriction: No functions of the C run-time library can be used. Future
use of dll may solve this problem.

(Manuscript received November 13, 1995;
revision accepted for publication June 17, 1996.)


