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ABSTRACT

We show that it is possible to learn an efficient acoustic model
using only a small amount of easily available word-level sim-
ilarity annotations. In contrast to the detailed phonetic label-
ing required by classical speech recognition technologies, the
only information our method requires are pairs of speech ex-
cerpts which are known to be similar (same word) and pairs
of speech excerpts which are known to be different (different
words). An acoustic model is obtained by training shallow
and deep neural networks, using an architecture and a cost
function well-adapted to the nature of the provided informa-
tion. The resulting model is evaluated on an ABX minimal-
pair discrimination task and is shown to perform much better
(11.8% ABX error rate) than raw speech features (19.6%),
not far from a fully supervised baseline (best neural network:
9.2%, HMM-GMM: 11%).

Index Terms— speech, ABX, deep neural network, side
information, semi-supervised, speech embeddings, acoustic
model

1. INTRODUCTION

State-of-the art speech recognition systems rely on the avail-
ability of large quantities of human-annotated signals. How-
ever, it is also of interest, both for theoretical and practical
reasons, to explore the possibility of constructing speech tech-
nologies in settings where such a resource is not available.
Theoretically, algorithms performing unsupervised or weakly
supervised discovery of linguistic structure represent plausi-
ble models of language acquisition in the human infant [1]].
Practically, such algorithms can be put to use in situations of
low resources [2,3]].

Previous works have shown that same-different side infor-
mation can benefit metric learning [4]]. Siamese networks [5]]
describe a very similar model architecture as ours, used to au-
thentify handwritten signatures. Hadsell et al. [6] also used
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an asymmetric loss for same-different pairs to learn invariant-
properties manifolds (on images). However, to our knowl-
edge, such an approach has not been attempted in the area of
speech recognition. In the cognitive science literature, previ-
ous work have shown that top-down information derived from
a lexicon learned in an unsupervised fashion can help refine
phoneme categories [[7H10]. These studies, however, did not
use raw speech signals as input, but used either a fine grained
allophonic transcription [7,/8,|10] or distributions based on
phonetic measurements [11]].

Here, we examine whether speech features can be derived
from a Neural Net (NN) architecture using side information.
We assume that the learner has managed to segment some
words out of the continuous speech stream, presumably using
some version of spoken term discovery [3]]. We use the result-
ing lexicon of word forms to learn an embedding of speech
sounds which is more invariant than the original speech repre-
sentation to variations in the acoustic realization of phonemes.
The idea is to establish a loss function whereby two instances
of the same word are pulled together, and two instances of
different words are differentiated. The loss function is actu-
ally computed at the frame level, after an alignment through
Dynamic Time Warping. In this paper, we focus on testing
whether this kind of side-information about the lexicon is suf-
ficient to train an acoustic model, in principle. To this end, we
use the “gold” human-annotated lexicon to derive the side-
information. Future work will investigate whether our results
generalize to the fully unsupervised case, whereby a lexicon
derived from spoken term discovery and/or word segmenta-
tion [12] is used.

In the next section, we describe how to prepare the
dataset, how to build an “ABnet” and discuss loss functions.
In section 3., we present our results, detailing our training
setup and evaluation procedure. We conclude by laying out
the possible extensions of this work.

2. METHODS

2.1. Data preparation

For the speech signal, frames are taken every 10ms and each
is encoded by a 40 log-energy Mel-scale filter bank represent-



ing 25ms of speech (Hamming windowed), without deltas or
delta-delta coefficients. This encoding was used by several
state-of-the-art supervised deep-learning phone-recognition
systems [[13}/14].

Separately for each of the tree sets (train, validation,
test) of the standard split of the TIMIT corpus (without
sentences from the sa set), we searched for all the words
of more than 5 characters that are repeated (by the same
talker or another) and applied dynamic time warping (DTW,
[13]) to their speech signal (see Figure [I). That gives us
train/validation/test sets of aligned speech frames that rep-
resent, in principle, the same phonemes. Here, we ignored
heteronyms like (to) record and (the) record, which were con-
sidered identical. We sampled the same number of different
word pairs in order to generate negative examples. This way,
we have about the same statistics of same speakers for both
of the words in a pair, and statistically the same phonetics.
We did not DTW align these pairs of different words, we
just aligned them linearly on the shorter word. It can happen
(by chance) that some of these negative examples are indeed
positive pairs (of same things, even though we labeled them
as “different”), but that is not the most likely case (there are
about 39 core English phonemes, even if these are distributed
following a power law).

Fig. 1: 2 left plots: filterbanks (y-axis) along frames (x-axis)
for the word “welfare”. Right: dynamic time warping of the
left-most one to the other.

2.2. ABnet Architecture

We designed a neural network that takes two chunks of speech
as input and projects them in the vector space formed by the
last layers. To train this neural network, we optimize a dis-
tance or similarity in this embedding space, between the two
inputs of the network: minimize this distance if they are the
“same” or maximize it if they are “different”. To give an ex-
ample in practice: for the results section, our “small” ABnet
takes 2 DTW-aligned chunks of 70ms (7 frames) of speech
and percolates them up to the distance- or similarity-based
loss function (see Figure @) At first, we used as the loss
function the normalized Euclidean distance in the last layer
(in 100 dimensions) if the two inputs were representing the
“same” thing, or minus this distance is they were “different”.
We quickly found out that it was better to minimize two dis-
tances, one for the case “same”, and one for “different”.

For the nonlinearity, we used rectified linear units because
they are used widely in state of the art deep neural networks
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Fig. 2: AB “neural net”. We feed to two copies of the same
network the aligned stacked frames of a pair of words (A and
B). The outputs are compared using a dissimilarity function.
During training, the loss function tries to minimize the dis-
similarity for “same” pairs and maximize it for “different”
pairs. The loss is backpropagated in both sides of the network
equivalently.

nowadays (speech, vision) and they performed as well as sig-
moid units for our task, while being faster to train. Rectified
linear units activation function corresponds to:

h(v) = max(0,v)

For the cost function, we tried several metrics, and present
the following in the results: the Normalized Euclideaan Dis-
tance (Lossygp), the squared similarity (Loss¢og2), and cosine
squared cosine (Losscogcos2) as explained below. Consider
Y4 and Yy being the output representations for input words
A and B:

NED(Y4, Y] . f same
LOSSNED(A,B) == ( A B) Zf _m
1 —NED(Y4,Yp) if different
i o=
r—Yy
NED(z,y) = ———r
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This normalized Euclidean distance makes sense but does
not give conclusive results, as it seems to be very hard to train
our architecture with it. Particularly the “different” case is
much easier to solve than the “same” one, and without “dif-
ferent”, the null function is an obvious solution (mapping ev-
erything to 0g=100)-

1—cos?(Ya,Ys)
cos?(Ya,YR)

if same

Losscos? (4, B) = { if different
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Using the cosine similarity (not squared) as the loss func-
tion can train our ABnet and gives interesting results. Note
however that cosine is maximal when the angle is O (collinear)
while it is minimal when the angle is 7 (anti-collinear). That
forces two things:

o “different” examples embedding representations are
drawn towards anti-collinearity, which is harder to
achieve than orthogonality in a high dimensional space]

e this loss function entails that we will have negative
units, which may be a hindrance in our case of using
rectified linear units (using the biases).

So instead, we used the squared cosine similarity (COS?)
as noted above, in which “different” examples should be or-
thogonal, while “same” examples should be collinear or anti-
collinear.

LosscoSCOS2 (A, B) = { (1 2 COS(YA’ YB))/2 Zf Séme
cos*(Ya,Yn) if different

With the above observations in mind, we devised a loss
function that makes the “same” examples embedding repre-
sentations collinear, while making the “different” ones or-
thogonal. Note that both parts of this loss function prohibit
vectors to be anti-correlated. This loss function also pulls the
output to be positive (with angles in the [0; 77/2] quadrant).

The whole feedforward computation of the smaller ABnet
that we present in the results is thus:

dist(max(0, H? - max(0, HV - X 4)), max(0, H®? -
max(0, HY - Xp)))

with H® of dimensions 200 x 100 and H® of dimensions
280 x 200. The bigger (so called “deep”’) ABnet is comprised
of 4 rectified linear units, noted: 280 x 1000 x RELU x 1000 x
RELU x 1000 x RELU x 100 x RELU.

3. RESULTS

3.1. Setup

All the code to reproduce these results is free (BSD 3-clause)
and available on GithuH} To compare our models, we also
implemented two supervised (with phones annotations) ar-
chitectures that we trained on TIMIT in a standard fashion
(on forced aligned phone’s states from HTK, e.g. as in [[16]]).
The first supervised architecture is a supervised version of
our embedding with the last ReLU layer replaced by a logis-
tic regression (softmax), with output in the 186 phone states:
60 phones + start/end silences, 3 states for each phone. It

collinearity is hard to achieve too, but at least the inputs are supposed to
be “similar” sounds
https://github.com/SnippyHolloW/abnet

is called “supervised 7” as it takes 7 consecutive frames as
input. This supervised architecture gives 49.9% of phone’s
state frame accuracy on the TIMIT test set. The second con-
sists of 4 1000-dimensional-ReLLU hidden layers followed by
the same logistic regression that has competitive phone error
rates (24.6% on the TIMIT test set).

Finally, we also included a supervised HMM-GMM base-
line trained on the train set with HTK. As speech features, we
used 13 MFC coeficients plus the first and second temporal
derivatives. We used a three-state monophone 17 mixtures ar-
chitecture and talker-specific MLLR adaptation (both during
training and during test). We also trained a bigram language
model for the decoding. This baseline achieved 25.5% phone
error rate on the test set.

3.2. Training and visualization

All the models (weakly supervised embedding and supervised
ones) were trained using Adadelta [17]], an adaptive learning
rate method correcting the magnitude of the updates using an
accumulation of past gradients (on a sliding window) and a
local approximation of the Hessian. While the same results
should be obtainable with plain stochastic gradient descent,
Adadelta is faster to converge and requires (almost) no tuning:
we used a rho (hyper-parameter on the momentum) value of
0.9 and an epsilon (precision of the updates) of 1076,
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Fig. 3: Similarities (COSC0s?) for the “same” and “different”
subsets of the datasets on the training set (used for learning)
and on the validation set (used for early stopping).

For the DTW-aligned dataset, the training set consisted of
62,625 paired same words, yielding 5.66M frames for “same”
and 4.49M for “different” (both for same and different, we see
the frames by AB pairs), with ratios of same speaker and over
different speakers (in the pairs) of 0.0014 and 0.0022 respec-
tively. Note that a lot of these frames are duplicates and not all
the frames of the TIMIT train set are seen in our DTW-aligned
word pairs dataset. 10% of the training set were held-out as
a validation set for early-stopping. The evolution of the sim-
ilarities for the cOSC0s? is shown in Figure [3| Unlike some
other loss functions, we do not see any unbalance between the
“same” and “different” conditions. For the supervised learn-
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ing (with phonetic annotation), we use the standard TIMIT
split: the train set is comprised of 1.1M frames, the valida-
tion set (for early stopping) of 122K frames, and the test set
(frame accuracy results) of 57K frames, all three had different
speakers. Each frame is always seen with its surrounding +/-3
frames (or +/-5 in the case of an 11 stack) but it still means
that we have 1 training example per frame.

In Figure @ we compare the representation learnt with
our best ABnet (deep 7 COSCOS? architecture) to the initial
speech features (fbanksl) in their coding of the 39 core En-
glish phones from the TIMIT annotations. Specifically, for
each representation, we performed bi-clustering on the ma-
trix containing on line 4, column j, the average activation of
dimension 7 of the representation when the sound being rep-
resented is an acoustic realisation of phone j. The dimensions
of the representation correspond to frequency channels in the
fbanksI representations. They have no clear a priori interpre-
tation for the ABnet representation. Interestingly, the clusters
of phones obtained through bi-clustering are not very differ-
ent for the two representations. However, there are at least
two clear differences. First, the learnt representation, when
averaged over each phone, is much sparser than the original
representation: each channel only responds to a few phones.
Second, when averaged over each phone, the learnt represen-
tation is almost categorial, i.e. it is possible to find roughly a
one-to-one mapping between clusters of channels and clusters
of phones such that the channels are only activated (on aver-
age) when presented with a phone from the associated phone
cluster. In contrast, fbanksI representation is not categorial at
all. Overall, this shows that, beyond the quantitative improve-
ment in phoneme discriminability, tics embedding learnt by
our ABnet is qualitatively different from the original spectro-
temporal representation.

3.3. Evaluation ABX

We evaluate the resulting models in a minimal-pair ABX
phone discrimination task [18]]. This evaluation method relies
on the simple idea that, in a good model, representations of
different occurrences of a same phone should be “close” to
each other and “far away” from occurrences of other phones.
It does not require choosing or training a particular classifier,
the only thing needed being a notion of distance on the space
of the representations of speech sounds by the model. Here,
we use as a distance the sum of the frame-to-frame cosine or
the symmetric Kullback-Leibler (KL) divergence along the
optimal DTW path. The use of DTW can be understood as
providing some invariance to changes in the time course of
the speech sounds. The choice of the frame-to-frame metric
is based on the kind of representation considered. The use
of a cosine distance can be understood as providing some in-
variance to changes in the loudness of the speech sounds and
is suitable for representations where scaling is best ignored,
such as filterbank representations for example. The use of
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Fig. 4: Bi-clustering of the mean activations of (top plot) the
40 filterbank features (y-axis) and (bottom plot) the most acti-
vated 58 embedding features (y-axis), with the phonetic input
(x-axis). The phones are clustered as fricatives: blue, stops:
purple, liquids (and semi-vowels and flaps): green, nasals: or-
ange, vowels: red.

a Kullback-Leibler distance is suited to representations that
can be interpreted as probability distributions, such as the
(rescaled) posteriorgrams over phonemes obtained with the
supervised baselines.

To perform the evaluation, all sequences of three consecu-
tive phones p; — py — p3 in TIMIT are extracted. Then triplets
of these triphones are formed such that the first triphone (A)
and the second triphone (B) differ only by their central phone
and are spoken by the same talker, and such that the last tri-
phone (X) is constituted from the exact same phones as ei-
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Fig. 5: Average phone discrimination error-rate (ABX task, averaged over talkers and triphone contexts). In dark grey (black)
are the filterbanks and stacked filterbanks that are used as input features for subsequent models. The middle cluster (pastels
of orange) represents our ABnets. In green are the supervised neural networks, and in blue are the supervised HMM-GMM
trained with HTK. “small” indicates a network with one hidden layer of 200 units, while “deep” indicates a network with 3
hidden layers, plus the last one whose size depends on the task (100 for the embedding, 186 for the supervised phone states).
When not noted in parenthesis, the “distance” used for the ABX task was the cosine similarity.

ther A or B, but spoken by a different talker. All possible
triplets verifying this pattern are formed and for each of them
the representations a, b, x by the model under evaluation of
the three triphones A, B, X are computed. DTW distances
d(a,x) and d(b, x) between respectively a and x and b and
x are then computed based on the frame-to-frame cosine or
KL distance. If X is like A (i.e. constituted from the exact
same phones as A), the model correctly classifies the triplet
if d(a,z) < d(b, x); if X is like B, the model correctly clas-
sifies the triplet if d(b, z) < d(a,x). For each possible pair
(p1,p2) of phones, an average proportion s,1 p2 of correctly
classified triplets is computed over all triplets A, B, X where
the central phone of A is either p; or p- and the central phone
of B is either p» or p;. The ABX discrimination score is ob-
tained as the average of sy, ,, over all possible pairs (p1, p2)
of phones, weighted by w;ws, where w; is the frequency of
occurrence of the phone p; in TIMIT. The ABX error-rate is
obtained as one minus the ABX score.

All the results in this ABX phone discrimination task are
summarized in Figure 5} The chance level for the error rate
in this task is at 50%. At 11.8% error-rate, our best ABnet
(coscos? with KL) improves by almost 9% in absolute over
the speech features it was trained with as input (fbanks7).
Note that raw speech features perform better in ABX with
the cosine similarity than the symmetric KL divergence. We

tried other stacks of speech features: (fbanks 1), and an 11
stacked frames (fbanks 11) version (the input of the compet-
itive supervised deep neural network). Stacking more and
more speech features (more and more temporal / phonotac-
tical context) helps, but with rapidly diminishing returns. We
confirmed that the random projections alone were not respon-
sible for our gain over raw features by testing the ABnet with
random weights (small 7 - no training. This even added noise
and yielded a worse score than speech features.

Overall, deeper models perform better. Also, we can
clearly see that some loss functions are better than others,
with NED being marginally better than raw speech features
(18% ABX error rate), while cOS? gets better (deep 7 COS? is
as 14.4%) and cosCos? has the best scores, with the cosine
similarity (12.2%), or the KL divergence (11.8%).

As a comparison, we looked at the ABX scores of two
supervised neural network, both matching our ABnet archi-
tectures (“small” or “deep”), but with an additional Softmax
at the end. The first (sup-small 7) has an ABX error-rate of
14.9% with the cosine similarity and 9.2% with the KL di-
vergence. The second is a deep (4 hidden layer) neural net-
work (sup-deep 11) with 11 frames as input, it gives the best
phone error rate, an ABX error-rate of 13.8% with the cosine
similarity, and 9.6% with the KL divergence. For evaluating
the ABX performance on the HMM-GMM baseline, we first



derived a frame-by frame posteriogram from an N-best de-
coding lattice (with N=62). The results are not very favorable
when using the cosine distance, but achieve 11.0% of error
rates with the KL divergence. It is remarkable, though, that
the supervised neural network achieves a better performance
than the HMM-GMM baseline despite the fact that the latter
but not the former incorporates a bigram language model.

4. DISCUSSION

We trained an acoustic model using only a small amount
of easily available annotations and evaluated it in an ABX
minimal-pair discrimination task. The resulting model, with
an average ABX error of 11.8%, was much closer in per-
formance to a fully supervised baseline (9.2%) than to raw
speech features (19.5%). This work has implications for
two distinct fields of research: low-resource speech tech-
nologies and studies of early language acquisition [[19]. For
low-resources speech technology, it provides a practical way
to learn an efficient acoustic model. For studies of language
acquisition, it lends plausibility to the hypothesis that simple
measures of similarity between word-size units of speech
signal constitute one of the sources of information that are
used by infants when learning the phonetic categories of their
language.

In future work, we will investigate further the nature of
the learnt phonetic embedding by studying in detail the differ-
ences and similarities with the embeddings obtained by fully
supervised methods. We can use clustering over the embed-
ding (and use a Mahalanobis distance as the loss function), to
see if we learn phone-states, phones, tri-phones, syllables...
We can also alternatively re-do the dynamic time warping us-
ing our embedding features. We will also try and make the
method truly zero-resource by using Spoken Term Discovery
technologies [3] to provide the required similarity labels from
raw speech. This will require testing the method’s robustness
to noise in the similarity labels. Finally, we will investigate
ways of combining the learnt acoustic model with a language
model to build a full speech recognition pipeline in a low-
resource setting.
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