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ABSTRACT
This paper reports on the results of the Zero Resource Speech
Challenge 2015, the first unified benchmark for zero resource
speech technology, which aims at the unsupervised discovery
of subword and word units from raw speech. This paper dis-
cusses the motivation for the challenge, its data sets, tasks and
baseline systems. We outline the ideas behind the systems
that were submitted for the two challenge tracks: unsuper-
vised subword unit modeling and spoken term discovery, and
summarize their results. The results obtained by participating
teams show great promise; many systems beat the provided
baselines and some even perform better than comparable su-
pervised systems.

Index Terms— zero resource speech challenge, feature
extraction, unsupervised term discovery, new paradigms

1. INTRODUCTION

Current speech technology relies on larger and larger amounts
of labeled data to train acoustic and language models. This
is not compatible with the development of speech technolo-
gies in under-resourced languages, where there is a long tail
of diverse languages used by small communities with limited
access to expert knowledge or labelled data. In addition, in-
fants learn acoustic and language models appropriate to their
mother tongue during their first year of life in a largely unsu-
pervised manner, providing a proof of principle that one could
bootstrap a speech recognition system from raw speech only.

The so-called ”zero resource setting” (zero labelled data)
is attracting a growing number of research teams [1], but
progress has been hampered so far by the absence of com-
mon evaluation tools and datasets. To a very large extent,
each published paper uses its own datasets, metrics, and
(sometimes proprietary) code, resulting in great difficulties to
replicate results, compare systems and measure progress.

In 2015, the first Zero Resource Speech Challenge [2] was
organized with the aim to address this issue by inviting par-
ticipating teams to compare their systems within a common
open source evaluation scheme. The challenge consisted of
two tracks. The aim of Track 1 (subword modeling) was to

produce a feature representation from unlabeled speech which
maximizes phoneme discriminability. In the unsupervised
spirit of the challenge, this track was evaluated without any
classifier training, but solely based on the discriminability of
phonemes within the feature space. The goal of Track 2 (spo-
ken term discovery) was the unsupervised discovery of word-
like units in the speech signal. The systems participating in
this track took as input raw speech files and output classes of
recurring speech fragments.

The Zero Resource Speech Challenge attracted partici-
pants from several groups, who presented their submitted sys-
tems in a Special Session at Interspeech 2015. Details of
the systems as well as an introductory paper by the chal-
lenge organizers can be found in the conference proceedings
[2, 3, 4, 5, 6, 7, 8, 9, 10]. Here, we summarize the challenge
design decisions and present and discuss the main results and
lessons of the submitted systems, providing the first compar-
ative overview of zero resource speech technology.

2. CHALLENGE DESIGN AND BASELINES

The goal of the Zero Resource Speech challenge was to
produce a replicable benchmark on which researchers can
compare approaches, with both evaluation code and data sets
available openly and freely. To this end, two data sets were
constructed from the publicly available Buckeye corpus of
conversational English [11] and the Xitsonga section of the
NCHLT corpus of South Africa’s languages [12]. For the
English part, 6 male and 6 female speakers were selected for
a total of 4h59m05s of speech was selected; for the Xitsonga
part, 12 male and 12 female for 2h29m07s. Instructions for
reproducing the data sets are available through the challenge
website1, so that researchers not initially involved in the
challenge can test their systems under the same conditions.

The evaluation tools used in the challenge are also pub-
licly available, including source code that can be easily
adapted to data sets outside the two datasets provided, see
[13, 14] for details. In the challenge, participants were re-
sponsible for evaluating their own systems, using source code
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provided by the organizers. To aid comparison and interpreta-
tion of the participants’ results, the challenge provided scores
for baseline systems run on the provided databases.

2.1. Track 1: Subword Unit Modeling

The task of unsupervised subword modeling is defined as
finding speech features that emphasize linguistically rele-
vant properties of speech, i.e. the phoneme structure, and
de-emphasize aspects that are not linguistically relevant, e.g.
speaker identity, emotion or channel. Participants received
the raw speech of the provided corpora and are tasked with
returning a feature representation that maximizes the discrim-
inability between phonemes.

The typical evaluation of feature representations usually
proceeds through training a phone classifier and evaluating
its classification accuracy. This implies making decisions re-
garding the choice of the classifier, the optimizing technique,
and the measures to limit overfitting that may limit the com-
parability of the results across systems. For this reason, in
the present challenge, we took a different approach and eval-
uated phoneme discriminability directly on the feature repre-
sentation using the Minimal-Pair ABX (MP-ABX) task [15,
16]. MP-ABX provides an unsupervised and non-parametric
way of evaluating speech representations that has previously
proven useful in analysing existing feature pipelines. It mea-
sures the ABX-discriminability between phoneme triples that
differ only in their center phoneme (the minimal pairs). For
phoneme triples a and x from category A and b from cate-
gory B, the ABX-discriminability in the challenge is defined
as the probability that the Dynamic Time Warping (DTW) di-
vergence between a and x is smaller than that between b and
x.

2.2. Track 2: Spoken Term Discovery

Spoken term discovery is the task of finding recurring speech
fragments, ideally corresponding to the words or word-like
units of a language. The challenge provided a total of 17
different metrics for studying each of these steps. Full de-
tails on these are available in the introductory paper [2], but
here we present a smaller set of metrics that highlight the per-
formance of the submitted systems. Spoken term discovery
systems typically consist of a sequence of three steps, each
of which can be evaluated independently against a gold an-
notation at the phoneme level [17]. The first step is pairwise
fragment discovery. In this step, pairs of speech fragments
in an audio stream are matched if their acoustic similarity is
high. At this level the normalized edit distance (“NED”) of
the phoneme sequences corresponding to the paired speech
intervals and the coverage (“COV”), which is the fraction of
the audio stream that is covered by the discovered fragments
are evaluated. In the second step of term discovery, the pre-
viously discovered fragments are clustered into classes. We
can evaluate the discovered clusters against the gold lexicon

(the “Type” score). In the third step of term discovery, the
discovered speech fragments are used to “parse” the audio
stream. At this stage, the challenge metrics calculated how
many word tokens were correctly segmented (the “Token”
score) as well as how many of the gold word boundaries were
found (the “Boundary” score).

2.3. Baselines and toplines

The challenge provided baselines for all evaluation measures.
We also provided toplines, i.e. scores derived from labeled
data, which give an indication of the best attainable scores.

For Track 1, on subword unit modeling, the baseline fea-
ture representation is MFCC’s, a common representation in
automatic speech recognition. The topline consists of pos-
teriorgrams derived from a Kaldi GMM-HMM system with
triphone states, speaker adaptation and a bigram word model
(details in [2]). Table 1 gives the resulting scores.

For Track 2, on spoken term discovery, we provided the
following baseline and topline scores. As the baseline, we
evaluated a previously existing spoken term discovery system
[18]. This systems performs all three steps of spoken term
discovery outlined above, so it is a suitable candidate for com-
parison.2 For the topline we evaluated the patterns discovered
by a an adaptor grammar [19] system based on the phoneme
annotation. Table 2 gives the resulting scores.

3. SUBMITTED SYSTEMS

The organizers received 28 registrations and a total of 7 pa-
pers (5 for Track 1 and 2 for Track 2) from 14 institutions
were accepted for Interspeech publication.

3.1. Track 1: Subword Unit Modeling

The scores of the systems submitted to Track 1 are shown
in Table 1. Three main ideas are present in the systems; us-
ing top-down information, using articulatory information, and
modeling the distribution of the features.

3.1.1. Exploiting top-down information

Renshaw et al. [9] and Thiollière et al. [10] approach the task
by exploiting top-down information. They generate word-like
pairs using an unsupervised term discovery system (similar to
the ones used in Track 2 of this challenge), then use the found
matches as input to a neural network, in an effort to find a rep-
resentation that brings the matches close together in the fea-
ture space. The results of this approach seem to consistently
beat the baseline, in one case producing the best score in
the benchmark. Renshaw et al. input the discovered patterns
into a correspondence auto-encoder (CAE), and report on sev-
eral variants, two of which are shown in Table 1, using word

2System available at github.com/arenjansen/ZRtools



Authors System English Xitsonga
across within across within

baseline MFCC 28.1 15.6 33.8 19.1
topline posteriorgrams 16.0 12.1 4.5 3.5

Thiollière et al. [10] STD+ABnet 17.9 12.0 16.6 11.7

Renshaw et al. [9] STD+CAE (English) 21.1 13.5 19.3 11.9
STD+CAE (Xitsonga) 18.5 11.6

Chen et al. [6] DPGMM 16.3 10.8 17.2 9.6

Badino et al. [4] AE6 26.3 17.3 23.6 14.1
AE12 26.8 16.7 27.4 16.0
AE12-Bin1 (soft) 28.7 19.7 26.4 17.1

Baljekar et al. [5] articulatory 29.8 18.4 29.7 18.1
inferred phonemes 46.0 42.8

Table 1: Results for Track 1 - Subword Unit Modeling. The table shows the ABX scores for the within and across speaker
tasks on the two languages in the challenge. Best unsupervised system per condition in bold. Scores for systems that make use
of supervision in some form are in italic. Scores for systems that produce binary features are underlined.

matches from either English or Xitsonga. Thiollière et al. use
the discovered segment pairs to train a siamese network [20],
to find an embedding in which matching fragments are close
together and mismatching fragments are distant. It is possi-
ble that the ability to use negative evidence gives the siamese
architecture an edge on the correspondance auto-encoder.

3.1.2. Articulatory information

Baljekar et al. [5] use features that are derived from a previ-
ously trained speech synthesis system for languages without
a writing system. They compare features that are based on
a cross-lingual phonetic system with features from segment-
based inferred phones, using articulatory features derived
directly from the acoustics. While this system uses side-
information gleaned from a partially supervised system, it
provides an intriguing insight into what is possible with ar-
ticulatory features, which have been proven to be useful in
supervised settings [21].

3.1.3. Modeling the feature space

Badino et al. [4] propose two auto-encoder variants (bina-
rized auto-encoders and hidden-markov-model encoders) to
learn very compact representations of the input features. This
results in representations that perform better than MFCC’s
with only 6 features. Interesting variants of the system pro-
duce binary features and can learn distinctive phonological
features, such as nasality and frication, from raw data. The
approach by Chen et al. [6] consist of a pipeline of talker-
normalized MFCC’s followed by a Dirichlet process Gaussian
mixture model (DPGMM). The DPGMM posteriors for each
of its inferred components are used directly as features in the

task. This approach proves surprisingly succesful in captur-
ing phoneme discriminability, in one case outperforming the
topline. This result is an indication that in the zero resource
setting, traditional wisdom has to be revisited. In the spirit of
the challenge, although not part of it, Agenbag & Niesler [3]
propose a system that employs dictionary learning to model
the acoustic space, leading to good results on TIMIT.

3.2. Spoken Term Discovery

The scores of the systems participating in Track 2 are shown
in Table 2. Two groups participated in this part of the chal-
lenge providing 6 systems in total. It is interesting to see that
parts of the baselines seem hard to beat. For example the base-
line NED is not beaten by any system. But for other measures
there is plenty of progress made. For example the type, token
and boundary scores show significant improvements.

Räsänen et al. [8] proposes to start spoken term discovery
based on the segmentation of the input signal into syllables.
They compare three different systems, one existing (Vseg)
and two novel (EnvMin and Osc) for segmenting the signal
into syllable-length units. The aim in the study is to pro-
duce quality candidate word onset and offset locations that are
subsequently clustered into longer recurring segments. This
approach is highly original and effectively exploits a priori
knowledge about the structure of the signal. The results of
the procedure tend to be between the baseline and the topline.
The systems are especially effective in recovering speech seg-
ments that correspond to lexical words. It would be worth
exploring how the ideas proposed by Räsänen et al. can be
combined with other spoken term discovery systems.

Lyzinski et al. [7] offer a comprehensive exploration of
the second step in the spoken term discovery process: cluster-



System NED Cov Type Token Boundary
English P R F P R F P R F

baseline 21.9 16.3 6.2 1.9 2.9 5.5 0.4 8.0 44.1 4.7 8.6
topline 0.0 100.0 50.3 56.2 53.1 68.2 60.8 64.3 88.4 86.7 87.5

Räsänen et al. [8] Vseg 89.6 40.6 13.5 11.3 12.3 21.6 4.8 7.9 76.1 28.5 41.4
EnvMin 88.0 42.2 12.7 10.8 11.6 21.6 4.7 7.8 75.7 27.4 40.3
Osc 70.8 42.4 14.1 12.9 13.5 22.6 6.1 9.6 75.7 33.7 46.7

Lyzinski et al. [7] CC-PLP 77.3 25.5 4.7 2.5 3.3 4.2 0.6 1.0 39.6 7.5 12.7
CC-FDLPS 61.2 80.2 3.1 9.2 4.6 2.4 3.5 2.8 18.8 64.0 29.0
FG-BNF 36.4 46.7 2.3 2.9 2.6 1.9 0.7 1.0 31.7 14.2 19.6

Xitsonga

baseline 12.0 16.2 3.2 1.4 2.0 2.6 0.5 0.8 22.3 5.6 8.9
topline 0.0 100.0 15.1 18.1 16.5 34.1 49.7 40.4 66.6 91.9 77.2

Räsänen et al. [8] Vseg 78.4 77.7 1.7 4.1 2.4 1.8 1.8 1.8 26.2 26.3 26.3
EnvMin 61.2 95.0 1.1 3.3 1.7 0.8 1.3 1.0 16.3 24.4 19.5
Osc 63.1 94.7 2.2 6.2 3.3 2.3 3.4 2.7 29.2 39.4 33.5

Lyzinski et al. [7] FG-PLP 36.1 30.2 3.0 2.7 2.8 2.0 0.9 1.2 19.4 11.2 14.2
CC-FDLPS 43.2 89.4 4.9 18.8 7.8 2.2 12.6 0.8 18.8 64.0 29.0
Louvain-BNF 34.1 67.6 2.6 6.0 3.6 1.5 2.3 2.0 14.8 29.5 19.7

Table 2: Results for Track 2 - Spoken Term Discovery. The table shows the Normalized Edit Distance (NED) and cover-
age (Cov) scores, in addition to the precision, recall and f1-scores for Types, Tokens and Boundaries. Best results for fully
unsupervised systems are in bold. Scores for systems using some form of supervision are in italic.

ing discovered pairwise matches into larger classes of word-
like units. The study proceeds from the first stage output, i.e.
pairwise matching segments, produced by an existing spo-
ken term discovery similar to the baseline of the challenge
[18], and evaluates the performance of a set of graph clus-
tering algorithms, of which simple Connected Components
(CC), and two modularity based algorithms, FG and Louvain,
give the best results. The clustering algorithms are evaluated
given different feature representations in the input to the STD
algorithm (PLP, FDLPS and supervised bottleneck features
trained on a corpus of English speech). This investigation
provides crucial insight and shows that the choice of the clus-
tering algorithm can have a large impact on the attainable per-
formance of a spoken term discovery system.

4. CONCLUSIONS

The aim of the Zero Resource Speech Challenge was to pro-
vide an open and unified benchmark for evaluating and com-
paring zero resource speech systems. The challenge intro-
duced two tracks on which to evaluate zero resource systems,
subword unit modeling and spoken term discovery, each high-
lighting an aspect of speech technology in which there was a
scarcity of unsupervised systems. The challenge resulted in
the comparison of an unprecedented number of systems on
the same data sets and using the same evaluation metrics.

The submitted systems show a wealth of novel ideas. For
Track 1, The systems employing unsupervised top-down in-

formation at the word level [9, 10] have introduced a com-
pletely new way of exploiting supervision in acoustic model-
ing. The systems based around modeling the acoustic space
in an unsupervised manner [3, 4, 6] provide insight into the
effectiveness of these methods that could be transferred to
supervised methods. Lastly, the systems using articulatory
information [5] show a promising and intriguing way of ex-
tracting and exploiting this type of information.

For Track 2, the systems introducing unsupervised sylla-
ble segmentation as a stepping stone in spoken term discovery
[8] point to a hitherto unexploited source of information about
the location of word-like units. The exploration of clustering
algorithms in [7] provides a much-needed underpinning for
this important step in spoken term discovery as well as high-
lighting the need for a good input feature representation.

In future directions, we hope to see the combination of the
many ideas showcased in this challenge, which is still open to
new participants. The interaction between the two tracks is for
now under-explored. For example, the high quality features
from Track 1 could be used to improve the term discovery in
Track 2. Or the feedback from Track 2 into Track 1 as was
shown in several systems [9, 10] could be applied to other fea-
ture extraction systems. In general, we expect that the tech-
niques developed in the challenge will supply the speech and
language technology fields with powerful, flexible algorithms
that can aid supervised speech technology systems in cases in
which manually annotated data is scarce or nonexistent.



5. REFERENCES

[1] Aren Jansen, Emmanuel Dupoux, Sharon Goldwater,
Mark Johnson, Sanjeev Khudanpur, Kenneth Church,
Naomi Feldman, Hynek Hermansky, Florian Metze,
Richard Rose, et al., “A summary of the 2012 JH
CLSP Workshop on zero resource speech technologies
and models of early language acquisition,” in Proceed-
ings of ICASSP 2013.

[2] Maarten Versteegh, Roland Thiollière, Thomas Schatz,
Xuan Nga Cao, Xavier Anguera, Aren Jansen, and Em-
manuel Dupoux, “The zero resource speech challenge
2015,” in Proceedings of Interspeech, 2015.

[3] Wiehan Agenbag and Thomas Niesler, “Automatic seg-
mentation and clustering of speech using sparse cod-
ing and metaheuristic search,” in Proceedings of Inter-
speech, 2015.

[4] Leonardo Badino, Alessio Mereta, and Lorenzo
Rosasco, “Discovering discrete subword units with
binarized autoencoders and hidden-markov-model en-
coders,” in Proceedings of Interspeech, 2015.

[5] Pallavi Baljekar, Sunayana Sitaram, Prasanna Kumar
Muthukumar, and Alan Black, “Using articulatory fea-
tures and inferred phonological segments in zero re-
source speech processing,” in Proceedings of Inter-
speech, 2015.

[6] Hongjie Chen, Cheung-Chi Leung, Lei Xie, Bin Ma,
and Haizhou Li, “Parallel inference of Dirichlet pro-
cess Gaussian mixture models for unsupervised acous-
tic modeling: A feasibility study,” in Proceedings of
Interspeech, 2015.

[7] Vince Lyzinski, Gregory Sell, and Aren Jansen, “An
evaluation of graph clustering methods for unsupervised
term discovery,” in Proceedings of Interspeech, 2015.

[8] Okko Räsänen, Gabriel Doyle, and Michael C. Frank,
“Unsupervised word discovery from speech using auto-
matic segmentation into syllable-like units,” in Proceed-
ings of Interspeech, 2015.

[9] Daniel Renshaw, Herman Kamper, Aren Jansen, and
Sharon Goldwater, “A comparison of neural network
methods for unsupervised representation learning on the
zero resource speech challenge,” in Proceedings of In-
terspeech, 2015.

[10] Roland Thiollière, Ewan Dunbar, Gabriel Synnaeve,
Maarten Versteegh, and Emmanuel Dupoux, “A hybrid
dynamic time warping-deep neural network architecture
for unsupervised acoustic modeling,” in Proceedings of
Interspeech, 2015.

[11] M. Pitt, L. Dilley, K. Johnson, S. Kiesling, W. Ray-
mond, E. Hume, and E. Fosler-Lussier, “Buck-
eye corpus of conversational speech (2nd edition),”
www.buckeyecorpus.osu.edu, 2007.

[12] N. de Vries, M. Davel, J. Badenhorst, W. Basson,
F. de Wet, E. Barnard, and A. de Waal, “A smartphone-
based ASR data collection tool for under-resourced lan-
guages,” Speech Communication, vol. 56, pp. 119–131,
2014.

[13] Thomas Schatz, Roland Thiolliere, Emmanuel Dupoux,
Gabriel Synnaeve, and Ewan Dunbar, “ABXpy v0.1,”
http://dx.doi.org/10.5281/zenodo.16239, Mar. 2015.

[14] Maarten Versteegh and Roland Thiolliere, “Ze-
rospeech term discovery evaluation toolkit,”
http://dx.doi.org/10.5281/zenodo.16330, Mar. 2015.

[15] T. Schatz, V. Peddinti, F. Back, A. Jansen, H. Herman-
sky, and E. Dupoux, “Evaluating speech features with
the minimal-pair abx task (i): Analysis of the classical
mfc/plp pipeline,” in Proceedings of Interspeech, 2013.

[16] T. Schatz, V. Peddinti, X.-N. Cao, F. Bach, H. Herman-
sky, and E. Dupoux, “Evaluating speech features with
the minimal-pair abx task (ii): Resistance to noise,” in
Proceedings of Interspeech, 2014.

[17] Bogdan Ludusan, Maarten Versteegh, Aren Jansen,
Guillaume Gravier, Xuan-Nga Cao, Mark Johnson, and
Emmanuel Dupoux, “Bridging the gap between speech
technology and natural language processing: an evalu-
ation toolbox for term discovery systems,” in Proceed-
ings of LREC, 2014.

[18] A. Jansen and B. Van Durme, “Efficient spoken term
discovery using randomized algorithms,” in Automatic
Speech Recognition and Understanding (ASRU), 2011
IEEE Workshop on, 2011, pp. 401–406.

[19] M. Johnson, T. Griffiths, and S. Goldwater, “Adaptor
grammars: A framework for specifying compositional
nonparametric Bayesian models,” in Advances in Neural
Information Processing Systems, B. Schölkopf, J. Platt,
and T. Hoffman, Eds., vol. 19, pp. 641–648. MIT Press,
2007.

[20] Gabriel Synnaeve, Thomas Schatz, and Emmanuel
Dupoux, “Phonetics embedding learning with side in-
formation,” in IEEE Spoken Language Technology
Workshop (SLT), 2014, pp. 106–111.

[21] Vikramjit Mitra, Ganesh Sivaraman, Hosung Nam,
Carol Espy-Wilson, and Elliot Saltzman, “Articulatory
features from deep neural networks and their role in
speech recognition,” in Proceedings of IEEE Interna-
tional Conference on Acoustic, Speech and Signal Pro-

cessing, 2014, pp. 3041–3045.


