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a b s t r a c t

Patients with Huntington's disease suffer from disturbances in the perception of emotions;

they do not correctly read the body, vocal and facial expressions of others. With regard to

the expression of emotions, it has been shown that they are impaired in expressing

emotions through face but up until now, little research has been conducted about their

ability to express emotions through spoken language.

To better understand emotion production in both voice and language in Huntington's

Disease (HD), we tested 115 individuals: 68 patients (HD), 22 participants carrying the

mutant HD gene without any motor symptoms (pre-manifest HD), and 25 controls in a

single-centre prospective observational follow-up study. Participants were recorded in

interviews in which they were asked to recall sad, angry, happy, and neutral stories.

Emotion expression through voice and language was investigated by comparing the

identifiability of emotions expressed by controls, preHD and HD patients in these in-

terviews. To assess separately vocal and linguistic expression of emotions in a blind

design, we used machine learning models instead of a human jury performing a forced-

choice recognition test. Results from this study showed that patients with HD had diffi-

culty expressing emotions through both voice and language compared to preHD partici-

pants and controls, who behaved similarly and above chance. In addition, we did not find

any differences in expression of emotions between preHD and healthy controls. We further

validated our newly proposed methodology with a human jury on the speech produced by

the controls. These results are consistent with the hypothesis that emotional deficits in HD

are caused by impaired sensori-motor representations of emotions, in line with embodied

cognition theories. This study also shows how machine learning models can be leveraged

to assess emotion expression in a blind and reproducible way.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1 e Summary of emotional processes in Huntington's
disease.
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1. Introduction

Huntington's disease (HD) is a rare autosomal-dominant

neurodegenerative disorder that primarily affects the stria-

tum (Tabrizi et al., 2013; Vonsattel et al., 1985). It is charac-

terised by motor, cognitive, and psychiatric disorders, with a

median progressive course leading to death within 35 years

from symptom onset (Walker, 2007). While motor disorders

have been the subject of most studies, they are relatively well

tolerated by the patients' entourage (Ho et al., 2011).

Conversely, the disruption of patients' social interactions and

communication difficulties are one the major causes of pa-

tients' social withdrawal and family break-ups. Despite their

major importance, they remain poorly understood and

insufficiently quantified (Hamilton, 2003; Hartelius et al., 2010;

Ho et al., 2011; Jona et al., 2017). Effective communication re-

quires cognitive and linguistic skills, but also social abilities

such as the perception and production of emotions. Deficits in

emotion perception are a recognised symptom of patients

with Huntington's disease. It impairs their ability to decipher

and navigate social situations (Bora et al., 2016; Trinkler et al.,

2013). However, less is known about these individuals' ability
to express emotions, presumably because assessing emotion

production is more technically challenging than emotion

perception. In particular, the expression of emotions through

spoken language has not been explored (C. Kordsachia et al.,

2017), despite its critical role for interpersonal communica-

tion. This information became even more crucial during the

pandemic with the use of telephone communication as the

only mean of interaction. The aim of our study is therefore to

assess the ability of patients to produce emotions through

spoken language.

There is ample evidence that patients with HD have im-

pairments in the recognition of emotional faces (Bora et al.,

2016; Kordsachia et al., 2018), body expressions (de Gelder

et al., 2008; Zarotti et al., 2019) and voices (Kordsachia et al.,

2017; Speedie et al., 1990; Sprengelmeyer et al., 2006), and

these impairments extend to negative and positive emotions

(Robotham et al., 2011). These deficits can be detected even in

the pre-manifest stage of the disease, before the onset of

motor symptoms in carriers of the mutant huntingtin gene

(Bora et al., 2016; Johnson et al., 2007). Regarding emotion

production, only the impairment of facial emotion production

has been established (Hayes et al., 2009; Kordsachia et al.,

2018; Trinkler et al., 2013, 2017). Given that there is a physio-

logical congruence between body and facial expression in

both healthy participants (Zarotti et al., 2019) and in patients

with motor impairments (Lenzoni et al., 2020), it can be

assumed that body and facial emotion expression are

concomitantly impaired. Even though speech plays a critical

role in human interpersonal communication, to the best of

our knowledge, no study has yet investigated the expression

of emotions through spoken language in HD. See Fig. 1 for

schematic overview of what is known concerning emotional

processes in HD. The communication of emotions through

spoken language is reflected both in the voice and the lin-

guistic content (called language here). These two media

depend on different brain structures (Friederici, 2017;

Guenther, 2016) and can be altered separately. It has been
shown that different dimensions of the voice, such as its

fundamental frequency, energy, or speech rate, are affected

by emotions (Frick, 1985; Paeschke et al., 1999; Scherer, 1995).

Similarly, the individual's affective state impacts on linguistic

production, including word choice and syntactic structure

(Schuller et al., 2011).

Despite their language processing disorders such as syntax

or morphology processing (See (Jacquemot & Bachoud-L�evi,

2021) for complete review), it has been shown that in-

dividuals with HD do not seem to be impaired in the percep-

tion of emotions conveyed by language. Indeed, as observed in

a semantic task associating words and emotional content

(Hayes et al., 2007) and in the interpretation of a story (Trinkler

et al., 2013), participants with HD obtain similar results to

those of controls. In contrast, they are impaired in the

perception of emotions through voice (Hayes et al., 2007;

Kordsachia et al., 2017; Robotham et al., 2011). Assessing the

production and the perception of emotions by voice or lin-

guistic content is therefore essential to reach a global vision of

emotion processing in HD patients.

Here, we sought to fill these gaps in the literature by testing

independently the expression of emotions through voice and

language in preHD and HD individuals.

Yet, dissociating emotion expression carried by voice and

language in speech represents a methodological and techno-

logical challenge. Studies exploring facial emotional expres-

sions (Hayes et al., 2009; Trinkler et al., 2013) used external

human scorers to subjectively classify emotions using a

forced-choice recognition test. However, this is not applicable

to our study since humans cannot perceptually separate the

production of emotions by voice and language. Speech can be

filtered to make language unintelligible, but at the cost of in-

formation loss. Moreover, HD individuals suffer from voice

impairments unrelated to emotions that easily distinguish

them from controls (Chan et al., 2019; Perez et al., 2018; Riad

et al., 2020; Rusz et al., 2014). Indeed, patients exhibit speech

disorders that are not emotion-specific, such as dysarthria or

speech initiation disorders (Chan et al., 2019; Ludlow et al.,

1987; Rusz et al., 2014). Mild speech impairments can even

be detected in preHD participants (Chan et al., 2019; Riad et al.,

2020; Rusz et al., 2014). Therefore, it is difficult to obtain a blind

and dissociated comparison of the emotions conveyed in

voice and language with naive listeners. Apart from a human
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jury, studies on emotional prosody also used statistical anal-

ysis of the speech signal (ex: fundamental frequency, energy)

(Alhinti et al., 2021; M€obes et al., 2008). However, the link be-

tween emotional states and signal characteristics, such as

fundamental frequency, intensity, formants are not straight-

forward (Schuller et al., 2011). This means that we do not

know the exact formula that connects emotions, such as

anger or joy, to the exact value of the speech signal, especially

given the importance of variations across individuals. This

limits the information from simple statistical analyses of

these signal parameters to study vocal emotion production.

The same notion applies to the linguistic information (syntax

and semantic) that can be extracted from spoken sentences.

To overcome these difficulties, we developed machine

learning emotion recognition models that act as an expert

panel to compare the expression of emotions through voice

and language between controls, preHD participants and HD

participants. This strategy allowed us to assess emotion

expression from voice and language separately and without

being biased by the disease severity or by spoken language

problems unrelated to emotions.

We therefore collected recordings of neutral and emotional

speech from healthy controls, preHD individuals and HD in-

dividuals. Taking as an assumption that recalling an

emotional story elicits the corresponding emotion (Harmon-

Jones et al., 2007; Nazareth et al., 2019), we obtained

emotional discourses by recording participants while they

narrate stories associated with fear, anger and joy. The par-

ticipants' interviews were segmented and transcribed by

speech therapy students. Then, to compare emotions identi-

fiability between controls, preHD individuals and HD in-

dividuals, we compared how machine learning models

classified emotions from the vocal signal or the annotated text

for each group.
2. Material and methods

2.1. Overview

We collected emotional speech at the hospital by asking

control, preHD and HD participants, to narrate emotional

(anger, sadness, joy) and neutral stories. Interviews were split

in stretches and labelled with the name of the elicited

emotion. Stretches consist of semantically consistent chunks

(Shriberg et al., 2000; Titeux et al., 2021). Stretches from each

group (HD, preHD, and controls) and each modality (voice and

language) were combined into six sets (3 groups x 2 modal-

ities). We then trained and tested one emotion classifier on

each of our six datasets to assess emotion expression through

both modalities and for all groups separately (methods are

displayed in Fig. 2A). Emotion classifiers are algorithms that

can learn how to distinguish emotions on a dataset (either

audio signal or text annotation). The classifiers play the role of

an expert jury performing a forced-choice recognition test.

We compared the labelling of emotion provided by the

classifiers for each stretch to its actual label to measure the

accuracy of each classifier. The rationale to use machine

learning to examine emotion production is the following: all

things being equal in terms of training size, machine learning
model and all other parameters, the ability to classify accu-

rately the emotion of a stretch should be equivalent for each

group if there is no difference in emotion production. Any

difference compared to control will indicate a difference in the

group capacity to express emotions.

For the sake of simplicity, wewill use the term language for

linguistic content in our article. Methods for the voice and

language experiments were pre-registered before running any

analyses to ensure the validity and avoid inflated results

(https://aspredicted.org/OGK_UZA https://aspredicted.org/

IQO_YTZ). There were no deviations from the preregistered

protocol along the study. We report how we determined our

sample size, all data exclusions, all inclusion/exclusion

criteria, whether inclusion/exclusion criteria were established

prior to data analysis, all manipulations, and all measures in

the study. The link for the open-source code of our analyses is

provided at OSF j Vocal and linguistic emotion expression

deficits in Huntington's disease.

We further validated our methods with human judgement

of the vocal and linguistic production as it is done in classical

experiments (Hayes et al., 2009; Trinkler et al., 2013).

2.2. Participants

In this study, 115 participants were included from two

observational cohorts (BIOHD NCT01412125 and Repair-HD

NCT03119246) at the Hospital Henri-Mondor Cr�eteil, France:

90 participants with at least 36 CAG repeats on the mutant

Htt gene (including 22 gene carriers without the manifest

disease (preHD), 39 patients at Stage 1, 27 Stage at 2, 2 at

Stage 3 according to the total functional score (Shoulson,

1981), and 25 healthy controls (Table 1). Participants carrying

the mutant Htt gene were considered as preHD if both their

Total Motor Score (TMS) is less than 5 (Tabrizi et al., 2009) and

their Total functional capacity (TFC) equals 13 using the

Unified Huntington's Disease Rating Scale (UHDRS,

Huntington Study Group, 1996). Participants were all French

native speakers.

They all signed an informed consent form. Ethical approval

was given by the institutional review board from Henri Mon-

dor Hospital (Cr�eteil, France) for the Bio HD study and the CPP

Saint Louis French part of the Repair-HD study. It complied

with the Helsinki Declaration, current Good Clinical Practice

guidelines, and local laws and regulations. None of the par-

ticipants had any previous or current language, neurological

or psychiatric history except HD.

2.3. Clinical evaluation

Concerning the clinical evaluation, participantswere assessed

by certified examiners through the UHDRS. We reported nine

measures classically used for both clinical practice and thera-

peutic trials (see Table 1): the UHDRS Total Motor Score (TMS),

five cognitive assessments (the Symbol Digit Modalities Test

(SDMT), the Verbal Fluency test 1-min (VF), and the three

components of the Stroop test (word (SW); colour (SC); inter-

ference (SI)), and two functional scales (the Total Functional

Capacity (TFC) and the Independence scale (UHDRS IS)).

All the demographics and the summary of clinical scores

are displayed in Table 1.

https://aspredicted.org/OGK_UZA
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Fig. 2 e Voice and language experiments. A. Method's flowchart. Voice and linguistic content (language) of the interviews

are separated to create six datasets (3 groups x 2 modalities). Features are extracted from the data and one emotion

classifier is trained and tested on each dataset. Emotion classifiers' accuracy is then compared across groups within each

modality. B. Results of accuracy comparison within each modality across the three groups. The HD group accuracy is

significantly lower than controls, but this is not the case for the preHD group.

Table 1 e Interviewee demographics and clinical scores.

Sub-groups Controls preHD HD

N 25 22 68

Gender 12F/13M 11F/11M 42F/26M

Age (years) 53.6 (8.8) 49.0 (11.9) 54.3 (10.9)

CAG Triplets e 41.7 (2.3) 43.8 (3.1)

DBS e 42 .9 (13.2) 46.1 (13.3)

cUHDRS e 16.9 (1.4) 9.6 (3.5)

TFC e 13 (0) 10.5 (2.1)

SW e 98.8 (12.9) 64.6 (20.7)

SC e 73.0 (12.1) 46.4 (14.9)

SI e 43.9 (10.6) 26.0 (10.2)

SDMT e 51.5 (11.5) 26.5 (9.8)

TMS e .5 (1.2) 33.2 (15.8)

DBS: Disease Burden Score; cUHDRS: composite Unified Hunting-

ton's Disease Rating Scale; TFC: Total functional capacity; SW:

Stroop word reading; SDMT Symbol Digit modality Test; TMS: Total

Motor Score; CAG repeats: number of CAG repeats. The Disease

Burden Score is computed as age � (CAG-35.5) (Langhben et al.,

2007).
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2.4. Data collection

Interviewers were all neuropsychologists. Participants

completed a standardised battery of speech tasks at the hos-

pital. They were asked to narrate both emotional and neutral

stories. The stories were prompted by the interviewers asking

standardised questions (ex: “May you tell me a story that you

find sad, really unhappy, or really depressing”). In most cases,

participants spoke for less than 1 min, therefore interviewers

were instructed to prompt individuals with pre-defined in-

structions such as “For instance, you may tell me about an

incident heard on the news, a movie, something you saw on

television?"). It was clearly stated that they should trigger non

personal stories as much as possible. Task 1 (neutral) con-

sisted in describing the latest 24 h and tasks 2, 3, and 4 were
designed to elicit emotions by telling a story making the par-

ticipants sad, angry, and happy, respectively. The speech

tasks were separated by non-emotional speech (Automatic

recitation of months of the year, the Cookie Theft description,

and the storytelling of the Little Red Riding Hood) (McNally

et al., 1994) not assessed here. Tasks’ order was fixed. All

sessions ended with the recall of the happy story, Task 4, to

avoid ending the experiment with a negative emotion. The

whole session lasted less than 15 min (14.5 ± 6.1 min on

average). Patients could interrupt the session anytime.

Participants were recorded in similar acoustic conditions,

with a ZOOMH4n Pro recorder, sampled at 44.1 kHz with a 16-

bit resolution.

2.5. Samples preprocessing

Speech therapists excluded speech samples with too high

ambient noise precluding any analysis (two files discarded).

Then, they transcribed the language content in text and split

by stretch the stream of continuous speech from each task in

stretches using the software Praat. Annotations were

managed with the Seshat platform (Titeux et al., 2021). The

annotation of a single interview lasted approximately 8 h,

therefore, to ensure the quality of the annotation, we

randomly selected five interviews and asked two speech pa-

thologists to annotate them independently. Inter-annotator

agreements computed with the Gamma Agreements, deno-

ted ɣ (Mathet et al., 2015; Titeux& Riad, 2021), for stretch limits

and turn-takings were high for the 4 tasks: Neutral

(ɣ ¼ 78.0% ± 6.9), Sad (ɣ ¼ 84.3% ± 7.9), Angry (ɣ ¼ 77.6 ± 4.9),

Happy (ɣ ¼ 66.0 ± 19.2). This allowed to annotate the

remaining 110 interviews by a single speech therapist.

Each stretch was labelled with the emotion corresponding

to the task it was uttered into (Task 1: neutral, Task 2: sad,

Task 3: angry, and Task 4: happy). They were dispatched in

data sets according to their group (HD, preHD, and controls)

https://doi.org/10.1016/j.cortex.2022.05.024
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and the modality (voice and language). We balanced the

datasets classes to avoid confounding the performance of the

machine learning models with the quantity of training data.

To do so, stretches were removed randomly from the dataset

to ensure the same number of stretches and same number of

emotions for the voice and the text. This yielded 1356

stretches for each group, both for the voice and the language

modalities.

We then extracted relevant affective information in a

fixed-size vector from the audio stretches and linguistic con-

tent to be able to automatically classify emotion. We denoted

this fixed-size vector the ‘features’.

For the audio stretches, we selected a minimal set of fea-

tures, the Extended Geneva Minimalistic Acoustic Parameter

Set (eGeMAPS) (Eyben et al., 2016) designed by interdisci-

plinary voice and speech scientists to provide a relevant set of

features for affective computing. We chose these features due

to their high performance to classify emotions in several voice

dataset from different cultures (Eyben et al., 2016). The fea-

tures are related to energy (e.g., harmonic to noise ratio), to

pitch (e.g., fundamental frequency statistics), and articulation

(e.g., formant statistics). We extracted these voice features

with the openSMILE toolkit (Eyben et al., 2010).

For the text modality, we used the features from the LASER

(Language-Agnostic SEntence Representations) sentence

embedding model (Artetxe & Schwenk, 2019); LASER being a

language-agnostic model which transforms a sentence of

words of arbitrary length into a fixed-size vector. It was

designed to perform well in a variety of natural language

processing tasks in more than 90 languages, especially when

the data were scarce to train the models. LASER obtained

excellent performance in multi-lingual document classifica-

tion or natural language inference (find relationships of en-

tailments between sentences).

Then, emotion classifiers were developed for each data

set, trained, and tested on the datasets’ features. Emotion

classifier algorithms were built with random forests, imple-

mented in scikit-learn (Pedregosa et al., 2011). To train and

test emotion classifiers on our datasets we repeated a 10-fold

nested cross validation scheme proceeding as follows. We

split our data within each dataset in 10 folds. Nine were used

for training and then the remaining one as a test set. After 10

permutations between training sets and test sets, we ob-

tained the assessment of the whole data set with a measure

of accuracy for each test set, yielding 10 measures of accu-

racy for each of the six models. The accuracy of an emotion

classifier on a set of stimuli (audio or text) labelled with

emotions is computed as the percentage of correct pre-

dictions (predicted label equals actual label) on this set (see

Fig. 2A).

To assess whether the impairment in emotion production

through voice in HD is restricted to a specific step during

speech production, we ran our audio models with subsets of

the features related to energy (Harmonic to noise ratio fea-

tures, alpha ratio statistic, hammarberg index statistics), pitch

(F0 statistics, jitter features, shimmer features), or articulation

(MFCC features, formants statistics, spectral flux features).We

selected these 3 different sets of features as they represent the

main steps to produce fluent articulated speech: respiratory

(energy), phonatory (pitch) and articulatory.
2.6. Statistical analysis

To assess the identifiability of emotion expression through

voice and language, we compared the accuracy for the two

modalities across the three participants ’groups (controls,

preHD, and HD). We first used a Kruskal-Wallis test on the

three series of accuracies (controls, preHD, andHD), andwhen

it led to significant difference between groups within each

modality (rejection of the null hypothesis), we conducted

post-hoc Wilcoxon Mann Whitney tests to compare accu-

racies group by group. The tests were one-tailed, and Bon-

ferroni correction was applied. Because of the structure of the

data, traditional tests could not be applied as such, and we

resorted to resampling to perform the tests (see Appendix 1 for

details). Because the influence of age, gender or task difficulty

emotion recognition relies on a complex interaction between

these three parameters and the nature of the task, we did not

add them in our analyses (Alaerts et al., 2011; Lambrecht et al.,

2014; Lenzoni et al., 2020; Richter et al., 2011; Snowden et al.,

2008).

2.7. Comparison between machine and human
classification

To check whether our method was consistent, 12 healthy

scorerswith no hearing impairments (31.4 years bymean - s.d.

10.5-, half females, halfmales) were asked to classify the voice

and the text (language) modalities assessed by the machine

learning algorithms. Theywere all French native speakers. For

this purpose, annotations were used as the linguistic content

and were provided as stretches of text to the scorer. The audio

stretches were filtered (we used a Butterworth low pass filter

of 4th order, with a cut-off frequency of 250 Hz) to remove

intelligibility of words and keep prosody. The 1356 text

stretches and the 1356 filtered voice stretches were rando-

mised and divided in six scoring sets for each modality,

yielding twelve sets of scoring. Each scorer oversaw one audio

scoring set and one text scoring set. Half of them scored first

language and then voice (G1), the other half performed the

scoring in a reverse order (G2). Text scoring lasted around

15e30 min whereas language scoring for a set lasted between

75 and 90 min for each scorer. We measured agreement be-

tween human groups and our model on stretches that were

correctly labelled by each individual group. We compared it

with agreement between Group 1 (respectively Group 2) on

stretches correctly labelled by Group 1 (respectively Group 2).

Agreement was measured with the kappa score.
3. Results

Accuracies for each group and each modality are reported in

Fig. 2B. We found that our models’ accuracies were signifi-

cantly lower for HD patients than for controls and preHD for

both modalities (corrected p-value < 001 for each statistical

test). This shows that HD patients are impaired in expression

of emotions through voice and language compared to controls

independently from the stage of the disease (results not

shown). All types of emotions are impaired across at least one

modality (see Fig. 3). Detailed results for each emotion are

https://doi.org/10.1016/j.cortex.2022.05.024
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given in Appendix 2. Accuracies for the preHD group were

equivalent to that of controls (voice: corrected p-value ¼ .14,

language: corrected p-value >.5). Hence, preHD participants

show no sign of impairment in emotion expression through

voice and language compared to controls.

The accuracy in classifying emotion was also significantly

lower in HD than in controls when restraining the features to

the ones tapping energy (see Method), pitch or articulation. In

contrast, accuracy in classifying emotion for preHD did not

differ from those of controls in any modality (Fig. 4).

The comparison of our method to a human jury highlights

its validity (See Fig. 5) The accuracy of the human juries was

lower than themachine ones for bothmodalities (audio: 31.5%

on average for human groups vs 48% for our model; text: 48%

on average for human groups vs 60% for our model). We also

found that our model and the two human scorers groups

correctly classify the same stretches for both modalities

(audio: kappa score ¼ .31 on average between human groups

(G1 vs G2) and .39 on average between each human group and

our model; text: .79 on average between the two human

groups (G1 vs G2) and .7 on average between each human

group and our model).
4. Discussion

4.1. Results summary

Here, we assessed emotional expression through spoken

language of individuals carrying the mutant Htt gene leading

to HD in comparison with control participants. As speech

combines both the voice (including prosody and vocal signals)

and the linguistic content (language), we developed amachine

learningmethod to disentangle emotional expression through

voice and through language in a blind and efficient manner.

Elicited emotions were classified by emotion classifiers, acting

as expert juries. Our models classified stretches of spoken
Fig. 3 e Mean of the voice and language accuracy for each emotio

provided through the different splits and the different modalitie

between the different splits and the different modalities thus pr

the lowering of all expressions through speech.
language better than chance for preHD and HD patients, both

for voice and language-based models. We found that HD

participants have reduced expression of emotions both

through voice and language compared to controls and preHD

participants. Our machine learning models performed better

than human scorers exposed to similar stretches. By studying

voice and language separately, we added themissing evidence

about the spoken language production of emotion. These re-

sults enrich the theories of emotional processing in HD. They

also show how machine learning models can be leveraged to

study emotion expression.

4.2. Automated evaluation of emotion expression

Speech algorithms are currently being developed to detect and

classify emotions from spoken language (Akçay & O�guz, 2020;

Picard, 1997; Zhao et al., 2014) and more specifically for in-

dividuals affected with neurological disorders (Alhinti et al.,

2020; Rusz et al., 2014). They mostly focus on maximizing

emotion detection in speech without distinguishing the per-

formance of healthy participants and patients as we did. Yet,

these models offer a remarkable opportunity to compare the

expressiveness of emotions in spoken language. To the best of

our knowledge, machine learning models have never been

used to quantify the identifiability of emotions in spoken

language of individuals with neurological disorders.

Traditional methods seeking to compare the expression of

emotions between patients and controls use either a statisti-

cal comparison of pre-defined spoken language markers

(Alhinti et al., 2021) or a human jury (Hayes et al., 2009;

Trinkler et al., 2013). These methods preclude analysing

variation of everyday emotions beyond stereotypical con-

strained intense emotions in static set-ups (Yitzhak et al.,

2020). Our methods allow assessing naturally triggered emo-

tions (Harmon-Jones et al., 2007; Nazareth et al., 2019) without

any assumptions between the speechmarkers and the nature

of emotion. It presents three advantages compared to a
n and each group. This figure provides a view per emotion,

s (Voice and language). Yet, we took the accuracy averaged

ecluding a direct statistical comparison but giving a hint on
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human jury. First, it is not sensitive to the impact of the dis-

ease on the motor aspects of speech, since one model is

trained on each population. If the emotions are still expressed

despite themotor problems, themodelswill be able to identify

it. This is not the case with a human jury which can be biased

by differences across participants unrelated to the expression

of emotions. This was particularly sensitive in our study since

Patients with Huntington's disease suffer from dysarthria,

inappropriate pauses or breathing, and temporal irregularities

of speech (Perez et al., 2018; Riad et al., 2020; Rusz et al., 2014)

independently of emotional expression. Additionally, ma-

chine Learning models allow selective testing of various di-

mensions that are intertwined in the speech signal, for

instance through the choice of features. This enabled us not

only to study language and voice separately, but also to
compare emotion expression through different speech effec-

tors (energy, pitch, and articulation; see Appendix). Finally,

using a standardised methodmakes it easier to reproduce the

analysis, to compare it with new studies; it does not require

organising a human experiment with a jury, which is chal-

lenging and time consuming. The use of human juries also

brings other problems such as huge variability when the

sample size is low. Thus, this method could even be adapted

to study emotion expression through othermodalities such as

body and gestures by feeding the model pictures as input to

machine learning algorithms.

This shows that machine learning models are great addi-

tions to classic approaches using human juries. This opens a

room for more straightforward and reproducible research in

the study of the production of emotions.

https://doi.org/10.1016/j.cortex.2022.05.024
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4.3. Embodied cognition & spoken language

Previous studies attempted to explain the reported deficits in

expression and perception of emotions in HD with the theo-

retical framework of embodied cognition (Kordsachia et al.,

2017; Trinkler et al., 2017). In the embodied cognition theory,

high-level cognitive processes use reactivation of sensory and

motor systems. Applied to emotions, it suggests that

perceiving others’ emotional states involves sensori-motor

reexperiencing as opposed to a mere mobilization of ab-

stract conceptual representations of emotions (Niedenthal,

2007). Evidence from studies with neurotypical populations

support this view. For instance, the dampening or amplifica-

tion of facial feedback modulates the accuracy to perceive

emotions (Neal & Chartrand, 2011).

The hypothesis made in previous studies is that in HD, the

deterioration of motor processing components alters sensori-

motor representation of emotions, causing the observed im-

pairments in expression and recognition of emotion. Reported

results provide credibility to this argument because they are

consistent with three important predictions of this hypothesis.

First, this hypothesis states that expression and recognition

mechanisms are caused by the same underlying mechanism.

Thus, we shall observe joint deficits in perception and produc-

tion of emotions, and these deficits should extend to all emo-

tions. Results obtained on expression and recognition of facial

emotion inHDare in linewith this prediction (Hayeset al., 2009).

showed a coupled expression-recognition deficit for facial

disgust in HD (Robotham et al., 2011). by equalising the number

of positive and negative stimuli, showed that both positive and

negative emotions were impaired similarly (Trinkler et al.,

2013). and (Trinkler et al., 2017) extended these results and

found that facial emotion expression deficits were correlated

with impairments in emotion recognition of facial emotions in

HD and that these impairments extend to all emotions.

Second, this hypothesis predicts that emotional impair-

ments are tied to motoric impairments rather than dysfunc-

tions in internal experience of emotions or cognitive

disorders. Results reported in the literature also support this

second prediction. HD patients scored as controls on the

alexithymia test (Trinkler et al., 2017) suggesting an intact

internal experience of emotions. Additionally, evidence for an

intact conceptual understanding of emotions in HD was re-

ported in several studies (Kordsachia et al., 2017). Furthermore

(Yitzhak et al., 2020), showed that amongst 4 factors (cognitive

screening, motor symptoms, depressive symptoms, and the

estimated progression of HDpathology) onlymotor symptoms

were correlated with HD patients’ performances in a facial

expression recognition task.

Third, following this hypothesis, patients suffering from

other movement disorders should exhibit joint deficits in

expression and recognition of emotions. Accordingly, it has

been shown that in Parkinson’s disease (Mermillod et al.,

2011), in multiple sclerosis (Henry et al., 2009; P€ottgen et al.,

2013) or in myotonic dystrophy (Lenzoni et al., 2020) similar

expression/recognition deficits are observed. Consistently,

they extend to several emotions and modalities.

Our results on emotion expression through voice provide

additional evidence to support the hypothesis of altered

sensori-motor representations of emotions in HD. The
hypothesis predicts that 1) expression of emotions through

motor functions is impaired in HD, and thus expression of

emotions through voice should be impaired 2) expression and

recognition deficits are joint impairments, and as recognition

of emotions through voice is impaired in HD, expression of

emotions through voice should also be impaired. Consis-

tently, we found that expression of emotions through voice is

impaired in HD. Additionally, we found that this impairment

does not seem to be effector (energy, pitch, and articulation)

specific.

More difficult to integrate is the preserved perception of

emotional language reported in previous studies (Hayes et al.,

2007; Trinkler et al., 2013). Following our finding that the

expression of emotions through language is impaired, it

derogates from the joint perception/production impairment

predicted by embodied cognition theory. Nevertheless, as

(Winkielman et al., 2018) points out, when the tasks do not

require emotional implications, the conceptual channel could

remain functional without simulating emotions. HD patients

could be impaired in the perception of emotional language but

could compensate for their deficit with intact conceptual

abilities (Kordsachia et al., 2017). The two hypotheses are not

exclusive: although embodied representations and conceptual

representations rely on two different networks, their activa-

tion is not competitive but complementary. They depend on

the context and the purpose of the task (Winkielman et al.,

2018). For example, when asked to list properties associated

with emotional concepts (e.g., frustration), participants' facial
muscles are activated more in an emotional context (they are

asked to respond as they would to a good friend) than in a

formal context (they are asked to respond as they would to a

supervisor) (Niedenthal et al., 2009; Winkielman et al., 2018).

Coupled with the interaction between conceptual or

embodied language and emotions, this could explain the dif-

ferences with voice processing.

Another possibility is that the incongruence between

perception and production of emotional language is not

dependent on emotional processing. The tasks used in

perception consisted of classifying either emotional words or

emotional stories (Hayes et al., 2007; Trinkler et al., 2013).

Although in some cases emotional words may induce

emotion, the context of the tasks may not activate emotions.

Therefore, it may not be comparable to our production tasks

based on the elicitation of emotions with emotional stories.

Alternatively, the emotional language impairment could be

based on production deficits (decreased fluency, syntactic and

semantic deficits in Huntington's disease patients), which are

more marked in production than in perception (Ludlow et al.,

1987). The production deficit would therefore be independent

of the emotional processing deficit.

The processing of action words has been the subject of a

similar debate. Patients with Parkinson's and Huntington's
disease have difficulties with syntax, verb perception and

production, and the coupling betweenmotor and action (Birba

et al., 2017). These results are consistent with both the theory

of embodied cognition and what (Mahon & Caramazza, 2008)

have called the disembodied cognition hypothesis. Counter-

examples such as the retention of nouns but the impossible

use of tools in apraxic patients or abstract words such as

“freedom” that do not induce either simulation or action

https://doi.org/10.1016/j.cortex.2022.05.024
https://doi.org/10.1016/j.cortex.2022.05.024


c o r t e x 1 5 5 ( 2 0 2 2 ) 1 5 0e1 6 1158
would confine the embodiment theory to emotion or action

words and could not be applied to language in general. This

led to an intermediate theory of embodied cognition, the

“grounding through interaction”, in which conceptual repre-

sentations can be maintained without motor activations, but

sensory and motor systems complement and enrich abstract

and symbolic representations (Mahon & Caramazza, 2008).

The instantiation of a concept would involve the retrieval of

specific sensory and motor information. The “suppression” of

sensory and motor systems (as in the case of brain damage)

would result in impoverished or “isolated” concepts. From this

point of view, sensory and motor information contribute to

the “complete” representation of a concept. The activation of

sensory and motor processes during conceptual processing is

not necessarily “incidental” or “irrelevant” to conceptual

processing. The activation of specific sensory and motor rep-

resentations complements the generality and flexibility of

“abstract” and “symbolic” conceptual representations. How-

ever, this theory was dedicated to action words and not to

emotion words and the entanglement between emotion the-

ories and language processing remains to be clarified.

As our methodology tested voice and language in an

equivalent way based on elicited emotions, the impairment of

emotion production by language and voice presumably re-

flects a deficit of emotion expression in HD patients. Previous

studies used the framework of embodied cognition to explain

the consequences of motor disorders on emotional processes

(Trinkler et al., 2017), action language (Birba et al., 2017) or

other processes such as mental rotation (Cona et al., 2020),

and memory (Dijkstra et al., 2007). Our results are consistent

with this framework.

4.4. Clinical perspectives

HD patients have difficulties in expressing their emotions

through both voice and language may partly account for the

disrupted communication between patients and their care-

givers (Ho et al., 2011). This difficulty in sharing emotions

might create misunderstanding and frustration. This contra-

dicts our previous view that expression of emotions through

spoken language was preserved (Trinkler et al., 2017) and

could compensate impaired motor expression of emotions.

Our results suggest that this might not be the case. Awareness

of HD patients' emotion expression impairments should be

raised amongst patients and caregivers to improve their

interactions.

Second, our results could also be of use for the design of a

smart device to monitor Huntington’s disease at home.

Currently, the disease's follow-up requires regular consulta-

tions at the hospital with several neurological, psychiatric,

and cognitive tests, which implies both a financial and human

cost. Even though HD patients are impaired in emotion

expression through spoken language, it is possible to classify

emotions in their speech above chance. Thus, an automatic

emotion classifier for HD patients could help track their mood

and alert caregivers when psychiatric syndromes such as

depression, irritability or apathy start developing. They can be

hard to spot on a day-to-day basis, and patients and caregivers

would benefit from early medical care for these symptoms. In
addition, methods are being developed to derive patients'
clinical scores from speech (Perez et al., 2018; Riad et al., 2020;

Romana et al., 2020). Eventually, these methods could be used

to monitor HD at home through the evolution of clinical

scores. The identifiability of emotions for each HD individual

may constitute an interesting clinical endpoint to monitor as

well. It may also potentially be included in clinical trials to

spare the capabilities of HD patients' social interactions of

HD's individuals rather than on, and not only attenuate motor

symptoms.

4.5. Limitations

Our study presents some limitations that could be overcome

in future works. While being in range with the literature, the

number of participants and the amount of data for each

participantwas limited in our study because of the complexity

of retrieving speech data in controlled experiments. Hence,

we could not conduct fine grained analysis such as correla-

tions between the identifiability of emotions and motor and

cognitive score for each individual.
5. Conclusions

Machine learning allowed us to disentangle voice and lan-

guage in overt speech in HD. The impact of HD on emotion

perception can be potentially translated in models of striatal

lesions and tested empirically. This represents an important

line of subsequent work, for the specifications of the

embodied cognition theory in a more quantitative manner,

with direct implications for a complete understanding of

emotions in HD. Models might apply to other conditions and

emotions expressed by bodies or faces, for example.
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