

Phonological « deafnesses »: Summary of research

E. Dupoux

Ecole des Hautes Etudes en Sciences Sociales

Updated: Dec 2010

What are phonological 'deafnesses'?

- Phonological 'deafnesses' = difficulties in perceptual processing of specific non-native speech sounds.
- Examples:
 - Japanese difficulties with English /r/ vs /l/ (Goto, 1971; Miyawaki et al., 1975)
 - Spanish difficulties with Catalan /e/ vs /ε/ (Pallier et al, 1997)
- → Interpretation: non-native sounds are 'assimilated' to the closest native phoneme category. Deafness arises when two sounds are mapped on the same category (Best , 1994; Flege, 1995; Iverson et al, 2003).

Here, we investigate two new types of deafnesses, suprasegmental and phonotactic. We explore their existence cross-linguistically, their locus within the speech processing system (with RT and brain imagery techniques), and their robustness in bilinguals.

Background: Suprasegmentals and Phonotactics in borrowings

- Vowel Degemination in French
 - Phonology:
 - no contrast between short and long vowel
 - Loanwords:
 - "Tokyo" [to:kjo:] → [tokjo]
 - "Kyoto" [kjo:to] → [kjoto]
 - → map long vowels onto short ones
- Vowel Epenthesis in Japanese
 - Phonology:
 - legal syllables: V, CV, VN, CVN
 - illegal syllables: *CVC, *CCV, ...
 - Loanwords:
 - "Sphinx" → [sufiNkusu]
 - "Christmas" → [kurisumasu]
 - → insert the vowel [u] in illegal consonant strings

- Stress deletion in French
 - Phonology:
 - no lexical stress; phrase final stress
 - Loanwords:
 - "Clinton" [klinton] → [klinton]
 - "Arizona" [arizóna] → [arizoná]
 - → shift the stress to phrase final position

- > are these effects taking place in perception or production?
- if in perception, where and when?
- how and when do they develop in infants?
- are they phonological or acoustic?

Stress 'deafness' observed

a) Stress discrimination in French and Spanish

Task: multi-talker ABX (A B and X in different talkers)

b) Phoneme discrimination (with orthogonal variation in stress)

Task: multi-talker ABX, ignore stress

c) Stress vs phonemes discrimination in French, simpler task

Task: single talker AX

- → French, not Spanish, have difficulties in discriminating contrastive stress
- →Spanish, not French have difficulties in ignoring stress when performing phoneme discrimination
- →stress 'deafness' disappears in an AX task without talker variability at short SOA

Dupoux, E., Pallier, C., Sebastian, N., & Mehler, J. (1997). <u>A destressing 'deafness' in French?</u> *Journal of Memory and Language*, **36**, 406-421.

A robust method to study stress 'deafness'

- Task: sequence repetition
- Stimuli:
 - númi vs numí
- Procedure:
 - learning a two way classification:
 - n<u>ú</u>mi=[1]
 - num<u>í</u>=[2]
 - transcribing a sequence
 - n<u>ú</u>mi num<u>í</u> num<u>í</u>=[122]
 - sequences of increasing lengths: from 2 to 6
- Participants:
 - Monolingual French subjects

→ Stress deafness in a short term memory task only arise when the stimuli incorporate enough acoustic variability to discourage an acoustic response strategy

Cross-linguistic stress 'deafness'

	Spanish	French	Finnish	Hungarian	Polish
Lexical Stress	YES	NO	NO	NO	NO
Stress Pattern (word level)	Variable (last 3 syllables)	Phrase final	Word initial	Word initial	Word penult
Stress Pattern (utterance level)	Variable	Utterance final	Utterance final	Utterance final (modulo function words)	Variable (last or penult)

• sequence lengths: 2-6

- → Stress deafness generalizes to languages with initial stress like Finnish or Hungarian
- →Polish, a language with penult stress has only a marginal trend towards stress deafness.
- →interpretation: languages with transparent stress regularities loose the phonological representation of stress; languages with less transparent stress systems tend to keep it.

Peperkamp, S. & Dupoux, E. (2002).

<u>A typological study of stress 'deafness'</u>. In: C. Gussenhoven & N. Warner (eds.) *Laboratory Phonology 7*. Berlin: Mouton de Gruyter.

Cross-linguistic stress 'deafness' (bis)

Language	domain of stress	contrastive suprasegmentals	variability in position of stress	lexical exceptions
Standard French	phrase	none	fixed ^a	no
Southeastern French	phrase	none	variable ^b	no
Finnish	word	vowel length	fixed ^c	no
Hungarian	word	vowel length	fixed °	no
Polish	word	none	variable ^d	yes (0.1%)
Spanish	word	stress	variable ^e	yes (17%)

- Subjects: N=12 in each language
- Task: sequence repetition Conditions: stress vs phoneme sequence length: 5

- a. final, b. last non-schwa syllable, c. initial, d. penultimate in polysyllables, final in monosyllables, e. one of the last three syllables
- → Three classes of languages:
 - Totally deaf: French, SE French, Finnish, Hungarian
 - Partially deaf: Polish
 - Not Deaf: Spanish
- → Interpretation: lexical exceptions make the right predictions
- → Problem: incompatible with early acquisition of the French-Spanish contrast
- → Alternative interpretation: variability in position of stress (modulo sentence-observable phonological rules, ie, b.)

Peperkamp, S., Vendelin, I. & Dupoux, E. (2010). Perception of predictable stress: A cross-linguistic investigation. *Journal of Phonetics*, **38(3)**, 422-430.

The persistence of stress deafness

Participants: French late learners of Spanish

	Beginner	Intermediate	Advanced
Length of residence in spanish speaking countries	0.7 year	2 years	4.3 years
Regularly speaks Spanish in private life	7%	61%	68%
Regularly speaks Spanish in professional/student life	32%	50%	64%

a) Sequence repetition

- conditions:

* phoneme: fitu-fiku

* stress: num'i vs n'umi

- sequences of size 4

b) Speeded lexical decision conditions:

* test: « balc'on » vs « b'alcon »

* control: « blanco » vs « blanto »

→ Stress deafness is very persistent, and still found in relatively proficient late learners of Spanish

a) information transmitted in sequence repetition

b) minimal pair word/nonword discriminability

Dupoux, E., Sebastian-Galles, N. Navarete, E., & Peperkamp, S. (2007). Persistent stress `deafness': the case of French learners of Spanish. Cognition, **106**(2),682-706.

Stress « deafness » in simultaneous bilinguals?

Subjects:

- 23 simultaneous bilinguals (from birth)
- 20 control Spanish monolinguals
- 20 control French late learners of Spanish

Tasks:

- a) Sequence repetition
 - conditions: stress (num'i n'umi) vs phoneme (fitu-fiku)
 - sequences of size 2-6
- b) Idem with sequences of size 4 only
- c) Speeded lexical decision
 - stress word-nonword minimal pairs (bal'on -b'alon)

Measures:

- Deafness index=composite Z-score across the 3 tasks
- Biographic and subjective dominance measures

→Simultaneous bilinguals are bimodal, one mode is similar to native spanish, the other to native French (late learners of Spanish) →Early childhood, not current use or subjective preference, influences which mode is chosen.

Dupoux, E., Peperkamp, S, & Sebastian-Galles (2008) Limits on bilingualism revisited: stress 'deafness' in simultaneous French-Spanish bilinguals. *Cognition*. **106(2)**, 682-706.

The acquisition of stress 'deafness'

- Subjects
 - Spanish 9 month olds
 - French 9 month olds
- Experiment 1
 - switch design
 - High variability stimuli:
 (d'atu, s'api, k'iba, etc) vs
 (dat'u, sap'i, kib'a, etc.)
- Experiment 2:
 - Low variability stimuli: p'ima vs pim'a

→ At 9 months, French infants have already the stress 'deafness effect'
 → the acquisition of the distinction between predictable and unpredictable stress cannot be lexically driven

Skoruppa, K., Pons, F., Christophe, A., Bosch, L. Dupoux, E. Sebastián-Gallés, N., Limissuri, R.A., Peperkamp, S. (2009)

<u>Language-Specific stress perception by nine-month-old French and Spanish infants</u>. *Developmental Science*, **12:6**, 914-919

phonotactic 'deafness' observed: perceptual epenthesis

Vowel detection

ABX Task

Conditions:

cluster: ebuzo-ebzo

vowel length: ebuzo

-ebu zo

Cluster - Vowel score (%)

French Japanese

Dupoux, E., Kakehi, K., Hirose, Y., Pallier, C., & Mehler, J. (1999). <u>Epenthetic vowels in Japanese: A perceptual illusion?</u> *Journal of Experimental Psychology: Human Perception and Performance*, **25(6)**, 1568--1578.

Phonotactic deafness is prelexical

- Speeded lexical decision
 - words:

u-set: sokudo

• nonuset: mikado

- nonwords created by changing the vowel (u→a or vice versa)
- cluster items created by removing the vowel
- Participants:
 - monolingual Japanese subjects

→ the insertion of epenthetic /u/ occurs prior to lexical access

	u-set	nonu-set
Nonword	sokado	mikudo
Cluster	sokdo	mikdo
Word	sokudo	mikado

The time course of phonotactic deafness

Mismatch detection paradigm

High density ERPs results

Dehaene-Lambertz, G., Dupoux, E., & Gout, A. (2000). <u>Electrophysiological correlates of phonological processing: a cross-linguistic study.</u> *Journal of Cognitive Neuroscience*, **12**, 635-647.

The brain correlates of phonotactic deafness

Conditions Participants	Phonological	Acoustic	
Japanese	ebuzo – ebuzo – ebuuzo	ebuzo – ebuzo – ebzo	
French	ebuzo – ebuzo – ebzo	ebuzo – ebuzo – ebuuzo	
Mean errors	5.6%	13.6%	
Mean RTs	707 ms	732 ms	

- <u>Task:</u> AAX discrimination, single talker.
- <u>Participants:</u>
 French and Japanese monolinguals

→Phonological processing involves early acoustic processing areas, and areas involved in short term memory.

Plasticity of phonotactic deafness: Japanese Brazilian immigrants

Populations

Usage in Japanese/Brazilian

- Explicit: Vowel identification in illegal clusters (ebzo)
- Implicit: Sequence recall
- → Early learners (2nd Gen & Simult) drop the phonology of their mother tongue in favor of the dominant language in the environment.
- →Late learners (1st Gen & Late) retain the phonology of their childhood language.
- →Implicit or on-line tasks show a more categorical, monolingual processing profile than explicit or off-line tasks.

Parlato, E., Christophe, A, Hirose, Y., & Dupoux, E., (2010). Plasticity of illusory vowel perception in Brazilian-Japanese bilinguals. *Journal of the Acoustical Society of America*, **127**, 3738-3748.

The acquisition of phonotactic deafness

Experiment 1

- switch design
- High variability stimuli:
 (abuna, ebudo, iguna, etc) vs
 (abna, ebdo, igna, etc.)
- participants: 8month olds and 14 month olds, Japanese and French infants

Experiment 2:

Low variability stimuli: abuna vs abna

→At 14 months,
Japanese infants already
have the epenthesis
effect
→At 8 months, the
acquisition is underway
→the acquisition of the
epenthesis effect cannot
be lexically driven

High variability stimuli

Mazuka, R., Cao, Y., Dupoux, E., Christophe, A. (in press). The development of a phonological illusion: A cross-linguistic study with Japanese and French infants *Developmental Science*

Is phonotactic deafness phonological or phonetic?

	Japanese	Braz. Port.	Europ. Port.
Syllabic structure	*CVC _{-nasal}	*CVC _{+stop}	$^*CVC_{+stop}$
Phonetic structure	i and u devoicing	i and u devoicing	Unstressed vowel deletion
Epenthesis in the grammar	u or i	no	no
Epenthesis in loanwords	u	i	no

a. Epenthesis effect across languages

- Task 1: Vowel categorization
 - stimuli: ebizo → eb(i)zo continuum
 - ebuzo →eb(u)zo continuum
 - natural cluster ebzo
- Task 2: Speeded multitalker ABX discrimination

stimuli: - ebizo, ebuzo, eb(i)zo, eb(u)zo,ebzo

→No epenthesis in EP, despite same syllabic constraints as BP.
 → In BP and Jap, coarticulation cues influences the epenthetic vowel

→same results in vowel cat. & ABX tasks

→interpretation: perceptual epenthesis is phonetically driven

c. Correlation between Vowel catego and errors in speeded ABX

Dupoux, E., Parlato, E., Frota, S., Hirose, Y., Peperkamp, S. (in press) Is perceptual epenthesis phonological? *Journal of Memory and Language*

In brief

- What we know about phonological 'deafnesses'
 - it takes place in perception
 - before lexical recognition
 - before input to short term memory buffer
 - after acoustic/auditory analysis
 - it is very robust (if acoustic strategies are prevented)
 - it is driven by the phonological/phonetic properties of the language
 - it strongly resists training through the late acquisition of a second language
 - It is acquired during early childhood (9-14 months)

- What we don't know
 - how phonological (as opposed to phonetic) are the effects?
 - What are the learning mechanisms involved?
 - what consequences for models of perceptual processing?
 - what consequences for models of loanword adaptations?

See also

• Language-specific listening (other papers by E. Dupoux)

Phonotactic effects on perception

- Hallé, P., Segui, J., Frauenfelder, U. H., & Meunier, C. (1998). The processing of illegal consonant clusters: A case of perceptual assimilation?. *Journal of Experimental Psychology: Human Perception and Performance* 24, 592–608.
- Berent, I., Steriade, D., Lennertz, T & Vaknin, V. (2007).
 What we know about what we have never heard: Evidence from perceptual illusions. Cognition. 104(3), 591-63.
- Jusczyk, P. W., Luce, P. A., & Luce, C. J. (1994). Infants' sensitivity to phonotactic patterns in the native language. Journal of Memory and Language, 33, 630–645.
- Kabak, B. & W. Idsardi (2007). Perceptual distortions in the adaptation of English consonant clusters:
 Syllable structure or consonantal contact contraints? Language & Speech 50(1), 23-52.

Suprasegmental 'deafness'

Segmental 'deafness'

- Goto, H. (1971). Auditory perception by normal japanese adults of the sounds 'r' and 'l'.
 Neuropsychologia, 9, 317–323
- Miyawaki K, Strange W, Verbrugge R, Liberman AM, Jenkins JJ, Fujimura O (1975) An effect of linguistic experience: the discrimination of /r/ and /l/ by native speakers of Japanese and English. Percept Psychophysics, 18, 331–340.

Loanwords

Peperkamp, S. (2005) <u>A psycholinguistic theory of loanword adaptations</u>. In: M. Ettlinger, N. Fleischer & M. Park-Doob (eds.) *Proceedings of the 30th Annual Meeting of the Berkeley Linguistics Society*. Berkeley, CA: The Society, 341-352.

Thanks

- Bosch, L.
- Cao, Y.
- Christophe, A.
- Dehaene, S.
- Dehaene-Lambertz, G.
- Frota, S.
- Gout, A.
- Hirose, Y.
- Jacquemot C.
- Kakehi, K.
- Lebihan D.
- Limissuri, R.A.
- Mehler, J.
- Nakamura, K.
- Navarete, E.
- Pallier C.
- Parlato, E.
- Peperkamp, S.
- Pons, F.
- Sebastian-Galles, N.
- Skoruppa, C.
- Vendelin, I.

