Connections and symbols



* bref historique du connexionnisme et de I'lA
symbolique

* les années 80: la confrontation ideologique:
faux débat versus vraies questions

* Les nouvelles pistes
— compositionalité et produit tensoriel

— recursivité et systeme dynamique
— (gradualité et modeles bayesiens)



Symbols



Cognition and symbols

e reasoning = computation in a formal calculus

— Euclides, Leibniz (universal language + reasoning calculus), Boole (formal system
for logical and set theoretic reasoning), Frege (logisict programme for
mathematics), Peano, Russell, etc

* Formal system:

— A finite set of symbols (i.e. the alphabet), that can be used for constructing
formulas (i.e. finite strings of symbols).

— A grammar, which tells how well-formed formulas (abbreviated wff) are
constructed out of the symbols in the alphabet. It is usually required that there be

a decision procedure for deciding whether a formula is well formed or not.
— A set of axioms or axiom schemata: each axiom must be a wff.
— Aset of inference rules (going from wff to wff)

 Examples
— first order propositional logic (A,B..C, ->)
— second order logic (A,B, C, Va, ->)
— predicate logic (P(x))



Cognition and symbols (1)

* Thinking=computation over symbols

— computability theory (1930-) Godel, Post,
Kleene, Church, Turing, Markov

e Physical symbolic systems

— Finite state automaton, pushdown automaton,
Turing machines computational power

— Power of automata:
* Finite state automata
e Pushdown automata

e Turing machines with one tape,Turing machines
with several tapes, lambda calculus (eg lisp), string
rewriting system (eg production), recursive

functions

— Church thesis:
* Turing machines are on the top of the hierarchy
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Cognition and symbols (lI1)

* Language
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symbolic processing

 Newell (1980) articulated the role of the
mathematical theory of symbolic processing.

— Cognition involves the manipulation of symbols —
analogous to words, concepts, schema, etc.

— What are symbols?
e Definition is hard to pin down.

* Roughly, it’s like the values of a categorical variable
(male, female, red, blue, dog, cat).

* Operators on those symbols would then be things like
“is-a” “a-kind-of” “purpose” “shape” “part-of” “object”

n



*E.g. recognize a red apple

input = symbol(s) -> algorithms who work on input -> output = more symbol(s)

Input: Program:
Red(X) if (Orange(X) & Round(X) ... ) then Orange(X)
Round(X) ... if (Red(X) & Round(X) ...) then Apple(X)
Output: Graphical: Apple(X)

NN

Red(X) & Round(X) ...

S \

Color(X) -> Red(X) or Orange(X) Shape(X) -> Round(X) or ...



Connections



McCulloch & Pitts (1943)

* Neural networks as computing devices
— What logical operations could neurons compute?

* Five assumptions based on then-current knowledge
of neurons

— 1. The activity of a neuron is “all-or-none” (binary coding)

— 2. Each neuron has a fixed threshold on the required
number of synapses that need to be excited before the
neuron itself will be excited. Weights are identical.

— 3. Synaptic action causes a time delay before firing.
— 4. Inhibition 1s absolute.

— 5. The physical structure of a network of neurons doesn’t
change with time; connections and their strengths are static.



McCulloch/Pitts neurons

 McCulloch/Pitts neurons can then be used to
compute any (finite) logical function
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 BUT, McCulloch/Pitts networks can’t learn.



Hebb (1949)

The first rule for self-organized
learning

. . Area 17 \ Area 18
Hebb recognized the existence of
feedforward, long range lateral, and

E
feedback connections ' B
7 %
These cortical circuits admit self- // A
sustaining activity that reverberate ,

in « cell assemblies » ////
synapses are the fundamental
computational and learning unit
activity-dependent synaptic
plasticity as a basic operation

Hebb, D. (1949). Organization of Behavior: A
Neuropsychological Theory (New York: John
Wiley and Sons).




Learning in a Hebbian network

* “When an axon of cell A is near enough to
excite a cell B and repeatedly or persistently
takes part in firing it, some grown process or
metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells
firing B, is increased.”

LT Potentiation (Bliss & Lomo, 1973; Kelso et al, 1986)
LT Depression (Markram et al. 1997)



The “Hebb rule”

* Aw;=naa;
— where @’s are activation values (-1 or 1), and nj is a
learning rate parameter.
— Equation is applied until weights “saturate” (typically at 1)
and do not keep increasing as inputs are presented.
* Think of Hebbian learning as picking up on
correlations between features 1n the environment
— Features that co-occur will grow strong positive weights,

those that do not occur together will have grow negative
weights, random pairing produces zero weights



The perceptron
(Rosenblatt, 1958, 1962)

* First model for learning with a teacher (supervized
learning)

* McCulloch-Pitts neurons (linear-threshold) with
connections that can be modified by learning

N
X 1 {1if2wi.xi>0
1 y = =0
\\~ -1 otherwise
Xg
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Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review. 65(6), 386-408.



Perceptron Learning Rule

* Start with random connections w;
* Error-drivent learning rule (delta rule):
Aw, =1 (t-y) X,
t is the target value (given by the teacher)
y is the perceptron output
N Is a small constant (e.g. 0.1) called learning rate

e If the output is correct (t=y) the weights w. are not changed
e If the output is incorrect (t=y) the weights w, are changed
such that the output of the perceptron for the new weights
is closer to t (error decreases).
e The algorithm converges to the correct classification
e if the training data is linearly separable

e and m is sufficiently small



Example: learning the AND

A B |Output

00| O
01| O
10| O
11 1

*Initial weights: O, n=0.25
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Example: learning the AND

A B |Output

00| O
01| O
10| O
11 1

... and so on and so forth ...



Example: learning the AND

A B |Output

00| O
01| O
10| O
11 1

Final weights



Decision Boundary of a Perceptron
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e Perceptron is doing something similar to linear discriminant analysis, binomial
regression (or Bayes classification when the distributions are gaussian)
e Decision boundary is a hyperplane when more than 2 inputs



Generalization: Multiple outputs
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e similar multinomial LDA or multinomial regression



Minsky & Papert (1969)

* Presented a formal analysis of the properties
of perceptrons and revealed several

fundamental limitations.
* Limitations
— Can’t learn nonlinearly separable problems like the
XOR

— More...



Decision Boundary of a Perceptron
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Minsky & Papert cont.

* Limitations

— So....can’t learn nonlinearly separable problems
like the XOR

— Although including “hidden layers” allows one to
hand-design a network that can represent XOR and
related problems, they showed that the perceptron
learning rule can’t learn the required weights.

— They also showed that even those functions that
can be learned by perceptron rule learning may
require huge amounts of learning time



Fallout of
Minsky & Papert’s analysis
* This paper was nearly the death of this
budding field.

e Subsequent research was largely done in
“garages’”.
— i.e., only in obscure academic circles.



The revival: the 80s

* multilayered feedforward networks

— Generalization of the Delta Rule: backpropagation
of error

— learning of distributed representations



the Multi-Layer Perceptron

The revival |
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Expressive Capabilities of MLP

Boolean functions
* Every boolean function can be represented by network
with single hidden layer

* But might require exponential (in number of inputs)
hidden units

Continuous functions
* Every bounded continuous function can be approximated
with arbitrarily small error, by network with one hidden

layer [Cybenko 1989, Hornik 1989]

* Any function can be approximated to arbitrary accuracy by
a network with two hidden layers [Cybenko 1988]




Different Non-Linearly
Separable Problems

Types of Exclusive-OR Classes with | Most General

Structure Decision Regions Problem Meshed regions |Region Shapes

Single-Layer Half Plane

Bounded By
\ Hyperplane

Two-Layer Convex Open

Or
Closed Regions

Three-Layer Arbitrary

(Complexity
Limited by No.
of Nodes)




Example: Neural network for OCR

* feedforward O A
N ,4‘ °
network \ _‘\’: :
* trained using Back- | \
propagation
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Example: ALVINN
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The revival II: Symmetric dynamical networks

* Averysimple example: a winner-take all
network

inhibitory weights
excitatory weights

inputs

* at each step:
— compute the total input for all units
— compute the output for all units
— Iterate



The revival Il: Symmetric dynamical networks

Boltzman machine (Hinton & Sejnovsky, 1983)

— neurons: binary (-1, 1)

— network: symmetric weights

— update: stochastic (1 with probability 1/ (1+e-sumlinputs))

— dynamics: global energy minimization, basins of attraction

— learning rule: tries to reproduce the distribution of its
inputs (stochastically learns the basins of attraction)

Hopfield network (Hopfield 1982)
— deterministic variant (‘temperature’=0)
— learning rule becomes Hebb Rule.

— performs pattern completion, content-addressable
memory



The revival lll: McClelland & Rumelhart’s (1986)
Parallel Distributed Processing

e Basic mechanisms

— feature discovery and
competitive learning

* Psychological Applications

— schemata and sequential through
processes

— dynamical system and — speech perception (TRACE)
harmony theory — blackboard model of reading

— learning in Bolzmann — learning and memory
machines — learning past tense of english verbs

— internal representation — sentence processing: assigning roles
through backpropagation to constituents

 Formal analysis * Biological mechanisms

— linear algebra — anatomy of cortex

— activation functions — place recognition and goal location

— delta rule — neural plasticity and critical period

— amnesia and distributed memory



An example: early models of lexical access

 Morton (1969) Logogen theory

e Forster (1976) Serial search

Phonological Semantic/syntactic
accass flle access file
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Forster, K. I. (1976). Accessing the mental lexicon. In, New approaches to
language mechanisms. Amsterdam: North-Holland.
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a hew PDP model

 Elman & McClelland (1986)

4 .__..
Words tik | kAp

?a ulbl d al u| b| d
Phonemes | =
-_“iz\lﬁk(klf L] Li/|a] p|t
Features // / \\\ ///
Power ;IMX)@)@IXX; ) WX )Q
Vocalic (1 Y LA XYY )¢ W15
Diffuse }VI;J(XXXXX{ Q(XX‘XXX\I)Q g’j‘(XXX/IXX)Q
Acute [ JC ) X X X XXX X L XXX XXX ILX XX XXX XX
Consonantal (;% % ; % % § i i ;(_{XI TERA S
VOiced :; < ;YI X X I X x I X 2 1.0T=0— Referent (e.9., "beaker") O:,—c“)‘?} g p— Referent {e.g., "beaker”) !/,,_;e: 1
12118930058 008938660 ot - Emenn
% 0.8]—=— Unrelated (e.g., "carriage") E."D-B —— Unrelated {2.g., 'carriage")' ) !
: = f
E-o.s- 2l E 0.6 «/
o & E .
§ [] o 1 '
5 04 3 _5 0.4 4
é £ § Average target offset ,"'l
g 0.2 4 :,_ * 0.2 ,"
o e TN n
Allopena et al (1998) T C I




The revival lll: McClelland & Rumelhart’s (1986)
Parallel Distributed Processing

Cognition involves the spreading of activation, relaxation,
statistical correlation.

Represents a method for how symbolic systems might be
implemented

— Hypothesized that apparently symbolic processing is an
emergent property of subsymbolic operations.

* Advantages

— Fault tolerance & graceful degradation

— Can be used to model learning

— More naturally capture nonlinear relationships
— Fuzzy information retrieval

— bridges the gap with real neural processing



The critique: Pinker & Mehler (1988)

e Lachter & Bever: connectionist theories are a
return to associationism (Chomsky vs Skinner revisited)

* Pinker & Prince: connectionist models of the
capacity to derive the past tense of English verbs is
inadequate

— rules: wug =2 wugged
— exceptions: put -> put, go->went, dig->dug

* Fodor & Pylyshyn: connectionnist theories are
inadequate models of language and thought



Fodor & Pylyshyn

Position of the problem: classical theories vs connectionnism
— Agree:

* both classical theories & connectionism are representationalists (they assign some
‘meaning’ to the elements — symbols or nodes)

— Disagree

* classical theory encode structural relationships and processes (eg, constituents,
variables, rules)

* connectionnists only encore causal relationships and processes (x causes y to fire)
Arguments against connectionnist systems: mental representation and
processes are structure sensitive

— combinatorial semantics

* semantics of « J. loves M. » derived from semantics of « J. », « loves » and « M. »
— productivity

* the list of thoughts/sentences is not finite (I can construct new thoughts with old ones)
— systematicity

* | construct them in a systematic way

* eg: « xloves M. » (where x can be any proper noun)

* eg: If I can think « J. loves M. », | can think « M. loves J. »

— recursivity & constituent structure:
* If I can think « P. thinks that M. is nice » | can think « J thinks that P thinks that M is nice »
-> connectionist systems have none of the above properties



Fodor & Pylyshyn (cont)

* Objections to symbolic/classical systems

rapidity of cognitive processes/neural speed

difficulty of pattern recognition/content based retrieval in
conventional architectures

committed to rule vs exception dichotomy

inadaquate for intuitive /nonverbal behavior

acutely sensitive to damage/noise (vs graceful degradation)

storage in classical systems is passive

inadaquate account of gradual/frequency based application of rules
inadequate account of nondeterminism

no account of neuroscience

— none of these arguments are valid or relevant

* CONCLUSIONS

1.
2.

current connectionist theories are inadequate

if they were to be made adequate they would be mere
implementation of classical architecture



Questions

les arguments de Fodor contre les modeles
connectionnistes sont ils valides

les réponses de Fodor aux arguments des
connectionnistes sont elles pertinentes

que penser de la premiere conclusion (les modeles
connectionnistes sont inadéquats comme modeles de
la pensée et du langage)

que penser de la seconde conclusion (les modeles
connectionnistes qui sont adéquats ne sont que des
implémentations des modeles classiques)
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