Connections and symbols II

AT1 Emmanuel Dupoux

Cogmaster, 2012

summary of preceding session

- "computational reduction" :
 - reduction of unboundedly complex behavior to the combination of simple ones
 - simple set of primitive processes
 - finite set of data types
 - a finite set of operations that combine the primitive processes to make more complex ones
 - what computational mechanisms underly complex behaviors (like language, reasoning, etc)?
 - Symbolic IA: (sequential & deterministic) computations with symbols and rules
 - eg: Turing machines, rewrite rules, finite state automata
 - Connexionist IA: (parallel & stochastic) computation with (continuous valued)
 neurone-like units
 - eg: Multilevel Perceptrons, Boltzman machines
- The Fodor & Pylyshyn challenge:
 - (current) connectionist architectures fail to capture complex behaviors
 - (future) connectionist architectures are 'mere' implementation of symbolic architectures

The Fodor & Pylyshyn argument

- mental representations have a constituent structure
 - they are not atomic or hollistic but have parts with specific roles
 - eg: the red cow; cheese or desert, Vx R(x), A->B
 - Some constituents can be recursive
 - eg: P. thinks that « M. is nice » -> J thinks that « P thinks that « M is nice » »
- mental processes are structure sensitive
 - eg: combinatorial semantics
 - semantics of « J. loves M. » derived from semantics of « J. », « loves » and « M. »
 - eg: logical inferences:
 - A->B, A entails B ; this does not depend on the meaning of A and B but on the structure of the representations
- as a result, mental computations are
 - systematic
 - all humans are mortal -> John is moral, Mary is mortal, etc.
 - « Paul likes fruits » grammatical -> « Paul likes fruits » also grammatical, etc
 - productive (achieve discrete infinity)
 - the list of thoughts/sentences is not finite (I can construct new thoughts with old ones)
- connectionist representations have none of these properties

Possible responses to the Fodor & Pylyshyn critique

- level confusion
 - F&P talk about a descriptive level not a computational one; the descriptive level is compatible with many architectures including connectionnist ones; indeed, none of the physical implementations of symbol structures would satisfy the F&P criteria (eg, a physical computer).
- process confusion
 - F&P talk about conscious deliberative explicit thought processes (which are symbolic), not intuitive ones (which could be subsymbolic)
- Implementation matter
 - constructing a neurally plausible implementations of symbol manipulation is non trivial and interesting, and could reveal unexplained phenomena (eg graceful degradation)
- artificial dichotomy
 - There are many systems intermediate between classical architectures and connectionnist ones. It is an empirical issue which one is appropriate to modelling human cognition.
- F&P criticize some classes of connectionist architectures, they do not demonstrate their points for all possible architectures.
 - Potential counterexamples:
 - Recurrent Networks (Elmann)
 - Tensor products (Smolensky)

Elman

- structure of the paper
 - representing time
 - SRN architecture
 - xor through time
 - badiiguuu
 - word segmentation (15 words)
 - part of speech (13 categories, 29 words, 15 sentence templates)

OUTPUT UNITS

Backprop applied

CONTEXT UNITS

- structure of Smolensky
 - representing structures by fillers and roles
 - examples: trees, lists, etc
 - tensor products and filler/role binding (definition)
 - local, semilocal and distributed
 - unbinding (exact and selfadressed)
 - capacity and graceful saturation
 - continuous and infinite structures
 - binding and unbinding networks
 - analogy between binding units and hebb weights
 - example of a stack
 - structured roles

example of tensor product representations

Paul loves Mary-> loves(Paul,Mary)
-> pred=loves, arg1=Paul, arg2=Mary
-> pred*loves+arg1*Paul+arg2*Mary

binding and unbinding

Binding Units

Role Units

Role Units

Binding network

Parallel Binding network (N=2)

extensions of Elman's SRN

– computational capacity of SRN

- Servan-Schreiber, D., Cleeremans, A., & McClelland, J.L. (1988). Encoding sequentialstruc- lure in simple recurrent networks (CMU Tech. Rep. No. CMU-CS-88-183). Pittsburgh, PA: Carnegie-Mellon University, Computer Science Department.
- Lawrence, S., Giles, C. L., & Fong, S. (2000). Natural language grammatical inference with recurrent neural networks. IEEE Transactions on Knowledge and Data Engineering , 12(1), 126– 140.
- Pollack, J. B. (1991). The induction of dynamical recognizers. Machine Learning , 7(2–3), 227– 252. R
- Rodriguez, P. (2001). Simple recurrent networks learn context-free and context-sensitive languages by counting. Neural Computation, 13(9).

reservoir computing

- http://reservoir-computing.org
- Jaeger H (2007) Echo state network. Scholarpedia 2(9):2330. http:// www.scholarpedia.org/article/Echo_state_network

- extensions:
 - implementation of a phonological theory (Optimality Theory) in a tensor product network with energy relaxation
 - see the Harmonic Mind (Smolensky & Legendre)
 - Escaping the explosion in nb of neurons: holographic reduced representations
 - define A * B as an operation that preserves the dimensions (eg xor, circular convolution)

Conclusions

- What about the F&P Challenge?
 - tensor products are an interesting implementation/alternative to symbolic systems
 - recurrent networks could also be an alternative, but much less understood
- The hidden debate

innate vs learner structures (to be continued...)

Conclusions

- empirical impact of the debate
 - past tense in English

Cognitive Science, 6, 456-463.

- rule: play->played, fax->faxed
- exceptions: sing->sang, put->put 🖏
- Pinker & Prince (1988)
- procedural vs declarative memory (Ullman et al, 1997; Pinker & Ullman, 2002)

Pinker, S. & Prince, A. (1988) On language and connectionism *Cognition*, 28, 73-193. Ullman MT, Corkin S, et al. (1997). A neural dissociation within language: *Journal of Cognitive Neuroscience*, 9: 266–276. Pinker, S. & Ullman, M. (2002) The past and future of the past tense. *Trends in*

Lexicon Grammar suffix walk -ed_{past} suffix Х hold held_{past} held_{nas} suffix walk -ed_{nast} Used for: roots, idioms, irregulars, phrases, sentences, any some regulars regular form Form of computation: lookup, association combination. unification Subdivision of: declarative memory procedural system Associated with: words, facts rules, skills Principal

temporo-parietal cortex

Word stem (e.g. *walk* or *hold*) Grammatical feature (e.g. past tense)

frontal cortex, basal ganglia

Conclusions

- empirical impact of the debate (cont)
 - statistical learning vs algebraic learning in infants
 - Saffran et al, (1996), Marcus et al, (1999), Pena et al (2002)

Saffran, J., Aslin,R., Newport, E. (1996). *Science*, 274,1926. Marcus, G.F., Vijayan, S., Bandi Rao, S., Vishton, P. M. (1999). *Science*, 283, 77 Peña, M., Bonatti, L., Nespor, M., Mehler J. (2002). Signal-Driven Computations in Speech Processing, Science, 298, pp. 604-607.

exemplar-based versus abstract representations

 object recognition (Biederman & Gerhardstein, 1993), face recognition, speech recognition (eg Goldinger, 1988; Johnson 1997, Pierrehumbert 2001)

Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence and conditions for 3D viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance, 19, 1162-1182.
Johnson, K. (1997). Speech perception without speaker normalization: An exemplar model. In K. Johnson & J.W. Mullennix (eds.), Talker Variability in Speech Processing, pp. 145-165. San Diego: Academic Press.
Pierrehumbert, J. (2001). Exemplar dynamics: Word frequency, lenition and contrast. In J. Bybee and P. Hopper (eds.), Frequency and the Emergence of Linguistic Structure, pp. 137-157. Amsterdam: Benjamins.
Goldinger, S.D. (1998). Echoes of echoes? an episodic theory of lexical access. *Psychological Review* 105:251-279.

Extensions

- computational reduction: finding the right architecture
- other connectionnist architectures
 - Kohonen's maps (competitive learning) (Kohonen, 1982)
 - Adaptive Resonance Theory (Grossberg, 1976)
 - Reinforcement learning (Barto, Sutton, Anderson, 1983)
- other computational frameworks
 - Probabilistic/Bayesian frameworks
 - Predictive Coding/Free Energy

