Connections and symbols II

AT1

Emmanuel Dupoux
summary of preceding session

• “computational reduction”:
 – reduction of unboundedly complex behavior to the combination of simple ones
 • simple set of primitive processes
 • finite set of data types
 • a finite set of operations that combine the primitive processes to make more complex ones
 – what computational mechanisms underly complex behaviors (like language, reasoning, etc)?
 • Symbolic IA: (sequential & deterministic) computations with symbols and rules
 – eg: Turing machines, rewrite rules, finite state automata
 • Connexionist IA: (parallel & stochastic) computation with (continuous valued) neurone-like units
 – eg: Multilevel Perceptrons, Boltzman machines

• The Fodor & Pylyshyn challenge:
 – (current) connectionist architectures fail to capture complex behaviors
 – (future) connectionist architectures are ‘mere’ implementation of symbolic architectures
The Fodor & Pylyshyn argument

• mental representations have a constituent structure
 – they are not atomic or hollistic but have parts with specific roles
 • eg: the red cow; cheese or desert, Vx R(x), A→B
 – Some constituents can be recursive
 • eg: P. thinks that « M. is nice » → J thinks that « P thinks that « M is nice » »

• mental processes are structure sensitive
 – eg: combinatorial semantics
 • semantics of « J. loves M. » derived from semantics of « J. », « loves » and « M. »
 – eg: logical inferences:
 • A→B, A entails B ; this does not depend on the meaning of A and B but on the structure of the representations

• as a result, mental computations are
 – systematic
 • all humans are mortal -> John is moral, Mary is mortal, etc.
 • « Paul likes fruits » grammatical -> « Paul likes fruits » also grammatical, etc
 – productive (achieve discrete infinity)
 • the list of thoughts/sentences is not finite (I can construct new thoughts with old ones)

• connectionist representations have none of these properties
Possible responses to the Fodor & Pylyshyn critique

– level confusion
 • F&P talk about a descriptive level not a computational one; the descriptive level is compatible with many architectures including connectionnist ones; indeed, none of the physical implementations of symbol structures would satisfy the F&P criteria (eg, a physical computer).

– process confusion
 • F&P talk about conscious deliberative explicit thought processes (which are symbolic), not intuitive ones (which could be subsymbolic)

– Implementation matter
 • constructing a neurally plausible implementations of symbol manipulation is non trivial and interesting, and could reveal unexplained phenomena (eg graceful degradation)

– artificial dichotomy
 • There are many systems intermediate between classical architectures and connectionist ones. It is an empirical issue which one is appropriate to modelling human cognition.

– F&P criticize some classes of connectionist architectures, they do not demonstrate their points for all possible architectures.
 • Potential counterexamples:
 – Recurrent Networks (Elmann)
 – Tensor products (Smolensky)
Elman

• structure of the paper
 – representing time
 – SRN architecture
 – xor through time
 – badiiguuu
 – word segmentation (15 words)
 – part of speech (13 categories, 29 words, 15 sentence templates)
Backprop applied
• structure of Smolensky
 – representing structures by fillers and roles
 • examples: trees, lists, etc
 – tensor products and filler/role binding (definition)
 • local, semilocal and distributed
 – unbinding (exact and selfaddressed)
 – capacity and graceful saturation
 – continuous and infinite structures
 – binding and unbinding networks
 – analogy between binding units and hebb weights
 – example of a stack
 – structured roles
example of tensor product representations

Paul loves Mary -> loves(Paul,Mary)
-> pred=loves, arg1=Paul, arg2=Mary
-> pred*loves+arg1*Paul+arg2*Mary

Local

Distributed
binding and unbinding

Fig. 8. A network using sigma-pi binding units to perform tensor product binding.

Fig. 9. A network using multiplicative junctions to perform tensor product binding.

Fig. 10. An extension of the network of Fig. 8 that can perform two variable bindings in parallel.
• extensions of Elman’s SRN
 – computational capacity of SRN

 – reservoir computing
 • http://reservoir-computing.org
• extensions:
 – implementation of a phonological theory (Optimality Theory) in a tensor product network with energy relaxation
 • see the Harmonic Mind (Smolensky & Legendre)
 – Escaping the explosion in nb of neurons: holographic reduced representations
 • define A * B as an operation that preserves the dimensions (eg xor, circular convolution)
Conclusions

• What about the F&P Challenge?
 – tensor products are an interesting implementation/alternative to symbolic systems
 – recurrent networks could also be an alternative, but much less understood

• The hidden debate
 – innate vs learner structures (to be continued...)

Conclusions

• empirical impact of the debate
 – past tense in English
 • rule: play->played, fax->faxed
 • exceptions: sing->sang, put->put
 • Pinker & Prince (1988)
 • procedural vs declarative memory (Ullman et al, 1997; Pinker & Ullman, 2002)

Conclusions

• empirical impact of the debate (cont)
 – statistical learning vs algebraic learning in infants
 Peña, M., Bonatti, L., Nespor, M., Mehler J. (2002). Signal-Driven Computations in Speech

 – exemplar-based versus abstract representations
 • object recognition (Biederman & Gerhardstein, 1993), face
 recognition, speech recognition (eg Goldinger, 1988; Johnson
 1997, Pierrehumbert 2001)
Extensions

• computational reduction: finding the right architecture

• other connectionist architectures
 – Kohonen’s maps (competitive learning) (Kohonen, 1982)
 – Adaptive Resonance Theory (Grossberg, 1976)
 – Reinforcement learning (Barto, Sutton, Anderson, 1983)

• other computational frameworks
 – Probabilistic/Bayesian frameworks
 – Predictive Coding/Free Energy