Connections and symbols II

AT1

Emmanuel Dupoux

Cogmaster, 2012
summary of preceding session

• “computational reduction”:
 – reduction of unboundedly complex behavior to the combination of simple ones
 • simple set of primitive processes
 • finite set of data types
 • a finite set of operations that combine the primitive processes to make more complex ones
 – what computational mechanisms underly complex behaviors (like language, reasoning, etc)?
 • Symbolic IA: (sequential & deterministic) computations with symbols and rules
 – eg: Turing machines, rewrite rules, finite state automata
 • Connexionist IA: (parallel & stochastic) computation with (continuous valued) neurone-like units
 – eg: Multilevel Perceptrons, Boltzman machines

• The Fodor & Pylyshyn challenge:
 – (current) connectionist architectures fail to capture complex behaviors
 – (future) connectionist architectures are ‘mere’ implementation of symbolic architectures
The Fodor & Pylyshyn argument

• mental representations have a constituent structure
 – they are not atomic or hollistic but have parts with specific roles
 • eg: the red cow; cheese or desert, Vx R(x), A->B
 – Some constituents can be recursive
 • eg: P. thinks that « M. is nice » -> J thinks that « P thinks that « M is nice » »

• mental processes are structure sensitive
 – eg: combinatorial semantics
 • semantics of « J. loves M. » derived from semantics of « J. », « loves » and « M. »
 – eg: logical inferences:
 • A->B, A entails B ; this does not depend on the meaning of A and B but on the structure of the representations

• as a result, mental computations are
 – systematic
 • all humans are mortal -> John is moral, Mary is mortal, etc.
 • « Paul likes fruits » grammatical -> « Paul likes fruits » also grammatical, etc
 – productive (achieve discrete infinity)
 • the list of thoughts/sentences is not finite (I can construct new thoughts with old ones)

• connectionist representations have none of these properties
Possible responses to the Fodor & Pylyshyn critique

– level confusion
 • F&P talk about a descriptive level not a computational one; the descriptive level is compatible with many architectures including connectionist ones; indeed, none of the physical implementations of symbol structures would satisfy the F&P criteria (eg, a physical computer).

– process confusion
 • F&P talk about conscious deliberative explicit thought processes (which are symbolic), not intuitive ones (which could be subsymbolic)

– Implementation matter
 • constructing a neurally plausible implementations of symbol manipulation is non trivial and interesting, and could reveal unexplained phenomena (eg graceful degradation)

– artificial dichotomy
 • There are many systems intermediate between classical architectures and connectionist ones. It is an empirical issue which one is appropriate to modelling human cognition.

– F&P criticize some classes of connectionist architectures, they do not demonstrate their points for all possible architectures.
 • Potential counterexamples:
 – Recurrent Networks (Elmann)
 – Tensor products (Smolensky)
Elman

• structure of the paper
 – representing time
 – SRN architecture
 – xor through time
 – badiiguuu
 – word segmentation (15 words)
 – part of speech (13 categories, 29 words, 15 sentence templates)
Backprop applied

Figure 2. A simple recurrent network in which octivotions are copied from hidden layer to context layer on a one-for-one basis, with fixed weight of 1.0. Dotted lines represent trainable connections. Because the patterns on the hidden units are saved as context, the hidden units must accomplish this mapping and at the same time develop representations which are useful encodings of the temporal properties of the sequential input. Thus, the internal representations that develop are sensitive to temporal context; the effect of time is implicit in these internal states. Note, however, that these representations of temporal context need not be literal. They represent a memory which is highly task- and stimulus-dependent.
• structure of Smolensky
 – representing structures by fillers and roles
 • examples: trees, lists, etc
 – tensor products and filler/role binding (definition)
 • local, semilocal and distributed
 – unbinding (exact and selfaddressed)
 – capacity and graceful saturation
 – continuous and infinite structures
 – binding and unbinding networks
 – analogy between binding units and hebb weights
 – example of a stack
 – structured roles
example of tensor product representations

Paul loves Mary -> loves(Paul,Mary)
-> pred=loves, arg1=Paul, arg2=Mary
-> pred*loves+arg1*Paul+arg2*Mary
binding and unbinding

Fig. 8. A network using sigma-pi binding units to perform tensor product binding.

Fig. 9. A network using multiplicative junctions to perform tensor product binding.

Binding network

Parallel Binding network (N=2)
• extensions of Elman’s SRN
 – computational capacity of SRN
 – reservoir computing
 • http://reservoir-computing.org
• extensions:
 – implementation of a phonological theory (Optimality Theory) in a tensor product network with energy relaxation
 • see the Harmonic Mind (Smolensky & Legendre)
 – Escaping the explosion in nb of neurons: holographic reduced representations
 • define A * B as an operation that preserves the dimensions (eg xor, circular convolution)
Conclusions

• What about the F&P Challenge?
 – tensor products are an interesting implementation/alternative to symbolic systems
 – recurrent networks could also be an alternative, but much less understood

• The hidden debate
 – innate vs learner structures (to be continued...)
Conclusions

• empirical impact of the debate
 – past tense in English
 • rule: play->played, fax->faxed
 • exceptions: sing->sang, put->put
 • Pinker & Prince (1988)
 • procedural vs declarative memory (Ullman et al, 1997; Pinker & Ullman, 2002)

Conclusions

• empirical impact of the debate (cont)
 – statistical learning vs algebraic learning in infants

 – exemplar-based versus abstract representations
 • object recognition (Biederman & Gerhardstein, 1993), face recognition, speech recognition (eg Goldinger, 1988; Johnson 1997, Pierrehumbert 2001)

Extensions

• computational reduction: finding the right architecture

• other connectionist architectures
 – Kohonen’s maps (competitive learning) (Kohonen, 1982)
 – Adaptive Resonance Theory (Grossberg, 1976)
 – Reinforcement learning (Barto, Sutton, Anderson, 1983)

• other computational frameworks
 – Probabilistic/Bayesian frameworks
 – Predictive Coding/Free Energy