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This paper explores differences between Connectionist y»oposals for cognitive
architecture and the sorts of models that have traditionally bcen assumed in
cognitive science. We claim that the major distinction is that, while both Con-
nectionist and Classical architectures postulate representational mental states,
the latter but not the former are committed to a symbol-level of representation,
or 10 a ‘language of thought': i.e., to representational states that have combina-
torial syntactic and semantic structure. Several arguments for combinatorial
structure in mental representations ure then reviewed. These include arguments
based or :he ‘systematicity’ of mental representation: i.e., on the fact that
cognitive capacities clways exhibit certain symmetries, so that the ability to
enieriain a given thought implies the ability to entertain thoughts with semanti-
cally related contents. We claim that such arguments make a powerful case that
mind/brain architecture is not Connectionist at the cognitive level. We then
consider the possibility that Connectionism may provide an account of the
neural (or ‘abstract reuroiogical’) structures in which Classical cognitive archi-
tecture is implemented. We survey a number of the standard arguments that
have been offered in favor of Connectionism, and conclide that they are cohe-
rent only on this interpretation.
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1. Introduction

Connectionist or PDP models are catching on. There are conferences and
new books nearly every day, and the popuiar science press hails this new
wave of theorizing as a breakthrough in understanding the mind (a typical
example is the article in the May issue of Science 86, called “How we think:
A new theory™). There are also, inevitably, descriptions of the emergence of
Connectionism as a Kuhnian “paradigm shift”. (See Schneider, 1987, for an
example of this and for further evidence of the tendency to view Connec-
tionism as the “new wave” of Cognitive Science.)

The fan club includes the most unilikely collection of people. Connectio-
nism gives solace both to philosophers who think that relying on the pseudo-
scientific intentional or semantic notions of folk psychology (like goals and
beliefsy) mislead psychologists into taking the computational approach (e.g.,
P.M. Churchland, 1981; P.S. Churchland, 1986; Dennett, 1986); and tc those
with nearly the opposii 2 perspective, who think that computational psycholo-
gy is bankrupt because it doesn’t address issues of intentionality or meaning
(e.g., Dreyfus & Dreyius, in press). On the computer science side, Connec-
tionism appeals to theorists who think that serial machines are too weak and
must be replaced by radically new parallel machines (Fahiman & Hinton,
1986), while on the biological side it appeals to those who believe that cogni-
tion can only be understood if we study it as neuroscience (e.g., Arbib, 1975;
Sejnowski, 1981). It is also attractive to psychologists who think that much
of the mind (including the part involved in using imagery) is not discrete
(e.g., Kosslyn & Hatfield, 1984), or who think that cognitive science has not
paid enough attention to stochastic mechanisms or to “holistic” mechanisms
(e.g., Lakoff, 1986), and so on and on. It also appeals to many young cogni-
tive scientists who view the approach as not only anti-establishment (and
therefore desirable) but also rigorous and mathematicai (see, however, foot-
note 2). Almost everyone who is discontent with contemporary cognitive
psychoiogy and current “information processing” models of the mind has
rushed to embrace “the Connectionist alternative”.

When taker: as a way of modeling cognitive architecture, Connectionism
really does represent an approach that is quite different from that of the
Classical cognitive science that it seeks to replace. Classical models of the
mind were derived from the structure of Turing and Von Neumann machines.
They are not, of course, committed to the details of these machines as
exemplified in Turing’s original formulaticn or in typical commercial comput-
ers; only to the basic idea that the kind of computing that is relevant to
understanding cognition involves operations on symbols (see Fodor 1976,
1987; Newell, 1980, 1982; Pylyshyn, 1980, 1984a, b). In contrast, Connec-
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tionists propose to design systems that can exhibit intelligent behavior without
storing, retrieving, or otherwise opcrating on structured symbolic expres-
sions. The style of processing carried out in such models is thus strikingly
unlike what goes on when conventional machines are computing some func-
tion.

Connectionist systems are networks consisting of very large numbers of
simple but highly interconnected “units™. Certain assumptions arc generally
made both about the units and the connections: Each unit is assumed to
receive real-valued activity (either excitatory or inhibitory or both) along its
input lines. Typically the units do little more than sum this activity and change
their state as a function (usuaily a threshold function) of this sum. Each
connection is allowed to modulate the activity it transmits as a function of an
intrinsic (but modifiable) property called its “weight™. Hence the activity on
an input line is typically some non-linear function of the state of activity of
its sources. The behavior of the aciwork as a whole is a function of the initial
state of activation of the units and of the weights cn its connections. which
serve as its only form of memory.

Numerous elaborations of this basic Connectionist architecture are possi-
ble. For example, Connectionist models often have stochastic mechanisms
for determining the level of activity or the state of a unit. Moreover, units
may be connected to owside environments. In this case the units are some-
times assumed to respond to 2 parrow range of combinations of parameter
values and are said to have a certain “receptive field” in parameter-space.
These are called “value units™ (Ballard, 1986). In some versions of Connsc-
tionist architecture, environmental properties are encoded by the pattern of
states of entire populations of units. Such “coarse coding™ techniques are
among the ways of achieving what Connectionist call “distributed representa-
tion”.! The term ‘Connectionist model’ (like “Turing Machine’ or “Van
Neumann machine’) is thus appiied to a famify of mechanisms that differ in
details but share a galaxy of architectural commitments. We shall retura 0
the characterization of these commitments below.

Connectionist networks have been analysed extensively—in some cases

"The difference between Conncctionist networks in which the state of 2 single wsit eacodes properiies of
the world (i.e., the so-calied ‘focalist” networks) and ones in whick the pattern of states of 2n emtire popaiation
of units does the encoding (the so called ‘distributed” representation networks) & copsidered to be mxptmm
by many people working ou Counectionist models. Although Comsectionists debate the relative sperits of
localist (or ‘compact’) versus distribuied representations (¢.g., Feldman. 1986), the distinctios il wsuafly be
of little consequence for our purposes, for reasons that we give later. For simplicity, whea we w&h refer
indifferently o either single unit codes or aggregate distributed codes, we shall refer to the ‘sndes’ i 2
network. When the distinction is relevant to our discussion, bowever, we shall explicitly mark 1he difference
by refcrring cither to units or to aggregate of units.
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using advanced mathematical techniques.? They have also been simulated on
computers and shown to exhibit interesting aggrega’z properties. For exam-
ple, thev can be “wired” to recognize patterns, to exhibit rule-like behavioral
regularities, ar.d to realizc virtually any mapping from patterns of (input)
parameters to patterns of (output) parameters—though in most cases multi-
parameter, muiti-valued mappings require very large numbers of units. Of
even greater interest is the fact that such networks can be made to learn; this
is achieved by modifying the weights on the connections as a function of
certain kinds of feedback (the exact way in which this is done constitutes a
preoccupation of Connectionist research and has lead to the development of
such important technigues as “back propagation™).

In short, the =tudy of Connectionist machines has led to a number of
striking and unanticipated findings; it’s surprising how much computing can
be done with a uniform network of simple interconnected elements.
Moreover, these models have an appearance of neural plausibility that Clas-
sical architectures are sometimes said to lack. Perhaps, then, a new Cognitive
Science based on Connectionist networks should replace the old Cognitive
Science based on Classical computers. Surely this is a proposal that cught to
be taken seriously: if it is warranted, it implies a major redirection of re-
search. .

Unfortunately, however, discussions of the relative merits of the two ar-
chitectures have thus far been marked by a variety of confusions and irrele-
vances. Ii’s our view that when you clear away these misconceptions what’s
left is a real disagreement about the nature of mental processes and mentai
representations. But it seems to us that it is a matter that was substantially
put to rest about thirty years ago; and the arguments that then appeared to
militate decisively in favor of the Classical view appear to us to do so still.

In the present paper we will proceed as follows. First, we discuss some
methodological questions about levels of explanation that have become en-
meshed in the substantive controversy over Connectionism. Second, we try
to say what it is that makes Connectionist and Classical theories of mental

“One of the attractions of Connectionism for many people is that it does employ some heavy mathematical
machinery, as can be seen from a glance at many of the chapters of the two volume collection by Rumelhart,
McClelland and the PDP Research Grouap (1986). But in contrast to many other mathematically sophisticated
areas of cognitive science, such: as avtomata theory or parts of Artificial Irtelligence (particularly the study of
search, or of reasoning and knowledge representation), the mathematics has not been used to map out the
limits of what the proposed class of mechanisms can do. Like a great deal of Artificial Intelligence research,
the Connectionist approach remains almosi entirely experimental; mechanisms that look interesting are pro-
posed and explored by implementing them on computers and subjecting them to empirical trials to see what
they will do. As a consequence, although there is a great deal of mathematical work within the tradition, one
has very little idca what various Connectionist networks and mechanisms are good for in general.
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structure incompatible. Third, we review and extend some of the traditional
arguments for the Classical architecture. Though these arguments have been
somewhat recast, very little that we’ll have to say here is entirely new. But
we hope to make it clear how various aspects of the Classical doctrine cohere
and why rejecting the Classical picture of reasoning leads Connectionists to
say the very implausible things they do about logic and semantics. In part
four, we return to the question what makes the Connectionist approach ap-
pear attractive to so many people. In doing so we’ll consider some arguments
that have been offered in favor of Connectionist nefworks as general models

of cognitive processing.

Levels of explanation

There are two major traditions in modern theorizing about the mind, one
that we’ll call ‘Representationalist’ and one that we’ll call ‘Eliminativist’.
Representationalists hold that postulating representational (or ‘intentional’
or ‘semaniic’) states is essential to a theory of cognition; according to Rep-
resentationalists, there are states of the mind which function to encode states
of the world. Eliminativists, by contrast, think that psychological theories can
dispense v.ith sucli semantic notions as representation. According (o
Eliminativists the appropriate vocabulary for psychological theorizing is
neurological or, perhaps behavioral, or perhaps syntactic; in any event, not
a vocabulary that characierizes mental states in terms of what they represent.
(For a neurological version of eliminativism, see P.S. Churchland, 1986; fcr
a behavioral version, see Watson, 1930; for a syntactic version, see Stich,
1983.)

Connectionists are on the Representationalist side of this issue. As
Rumelhart and McClelland (1986a, p. 121) say, PDPs “are explicitly con-
cerned with the problem of internal representation”. Correspondingly, the
specification of what the states of a network represent is an essential part of
a Connectionist model. Consider, for exampie, the well-known Connectionist
account of the bistability of the Necker cube (Feldman & Ballard, 1982).
“Simple units representing the visual features of the two alternatives are
arranged in competing coalitions, with inhibitory ... links between rival fea-
tures and positive links within each coalition .... The result is a network that
has two dominant stable states” (see Figure 1). Notice that, in this as in all
other such Connectionist models, the commitment i0 mental representation
is explicit: the label of a node is taken to express the representational content
of the state that the device is in when the node is excited, and there are nodes
corresponding to monadic and to relational properties of the reversibic cube
when it is seen in one way or the other.
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Figure 1. A Connectionist network model illustrating the swo stable representations of
the Necker cude. (Reproduced from Feldman and Ballard, 1982, p. 221,
with permission of the publisher, Ablex Publishing Corporetion.)

There are, to be sure, times when Connectionists appear to vacillate be-
tween Representationalism and the claim that the “cognitive level” is dispens-
able in favor of a more precise and biologically-motivated level of theory. In
particular. there is a lot of talk in the Connectionist literature about processes
that are “sub-symbolic”—and therefore presumably not representational. But
this is misleading: Connectionist modeling is consistently Representationalist
iii practice, and Representationalism is generally endorsed by the very
theorists who also like the idea of cognition ‘eme:ing from the subsym-
bolic’. Thus, Rumelhart and McClelland (1986a, p. 121} insist that PDP mod-
els are “... strongly committed ¢~ the study of representation and process”.
Similarly, though Smolensky (1988, p. 2) takes Connectionism to articulate
regularities at the “sub-symbolic level” of analysis, it turns out that sub-sym-
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bolic states do have a semantics, though it’s not the semantics of representa-
tions at the “conceptual level”. According to Smolen sky, the semantical dis-
tinction between symbolic and sub-symbolic theories is just that “entities that
are typically represented in the symbolic paradigm by [single] symbols are
typically represented in the sub-symbollc paradigm by a large number of
sub-symbols”.> Both the conceptual and the sub-symbolic levels thus post-
ulate representational states, but sub-symbolic theories slice them thirner.

We are stressing the Representationalist character of Connectionist
theorizing because much Connectionist methodological writing has been
preoccupied with the question ‘What level of explanation is appropriate for
theories of cognitive architecture? (see, for example, the exchange between
Broadbent, 1985, and Rumelhart & McClelland, 1985). Aad, as we’re about
to see, what one says about the levels question depends a Iot on what stand
one takes about whether there are representational states.

It seems certain that tie world has causal structure at very many different
levels of analysis, with the individuals recognized at the lowest levels being,
in general, very small and the individuals recognized at the highest levels
being, in general, very large. Thus there is a scientific story to be told about
quarks; and a scientific story to be told about atoms; and a scientific story to
be told about molecules ... ditto rocks and stones and rivers ... ditto galaxies.
And the story that scientists tell about the causal structure that the world has
at any one of these levels may be quite different from the story that they tell
about its causal structure at the next level up or down. The methodological
implication for psychology is this: If you want to have an argument about
cognitive architecture, you have to specify the level of analysis that’s supposed
to be at issue.

If you’re not a Representationalist, this is quite tricky since it is then not
obvious what makes a phenomcnon cognitive. But specifying the level of
analysis relevant for theories of cognitive architecture is no problem for either
Classicists or Connecitionists. Since Classicists and Connectionists are both
Representationalists, for them any level at which states of the system are
taken to encode properties of the world counts as a cognitive level; and no
other levels do. (Representations of “the world” include of course, represen-
tations of symbols; for example, the concept WORD is a construct at the
cognitive level because it represents something, namely words.) Correspond-

3Smolensky secems to think that the idea of postulatmg a level of representations with a semantics of
subconceptual features is unique to network theories. This is an extraordmarv view considering the extent to
which Classical theorists have been concerned with feature analyses in every area of psychology from phonetics
to visual perception io iexicography. In fact, the question whether there are *sub-conceptual’ features is neutral
with respect to the question whether cogpnitive architecture is Classical or Connectionist.
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sions of cogniiive architecture are about. Put differently, the architecture of
the cognitive system consists of the set of basic operations, resources, func-
tions, principles, etc. (generally the sorts of properties that would be described
in a “user’s manual” for that architecture if it were available on a computer),
whose domain and range are the representational states of the organism.*

It follows, that, if you want to make good the Connectionist theory as a
theory cf cognitive architecture, you have to show that the processes which
operate on the representationa! states of an organism are those which are
specified by a Connectionist architecture. It is, for example, no use at all,
from the cognitive psychologist’s point of view, to show that the nonrepresen-
tational (e.g., neurologicai, 0: molecular, or quantum mechanical) states of
an organism constitute a Connectionist network, because that would leave
open the question whetlier the mind is a such 2 network at the psychuiogical
level. It is, in particular, perfectly possible that nonrepresentational neurolo-
gical states are interconnected in the ways described by Connectionist models
but thiat the representational states theniselves are not. This is because, just as
it is possible to implement a Cunnectionist cognitive architecture in a network
of causally interacting nonrepreseniaiionai elemenis, so too it is perfectly
possible to implement a Classical cogritive architecture in such a network.’
In fact, the quesiion whether Connectionist networks should be treated as
models at some level of implementation is moot, and will be discussed at
some length in Sectior 4.

It is important to be clear about this matter of levels on pain of simply
trivializing the issues about cognitive architecture. Consider, for example,
the following remark of Rumelhart’s: “It has seemed to me for some years
now that there must be a unified account in which the so-called rule-governed
and [the] exceptional cases were dealt with by a unified underlying process——a

ingly, it’s the architecture of representational states and processes that discus-

Sometimes, however, even Representationalists fail to appreciate that it is representation that distinguishes
cognitive from noncegniiive levels. Thus, for exampic, although Smolensky (1988) is clearly a Represen-
tationalist, his official answer to the question “What distinguishes those dynamical systems that are cognitive
from those that are not?™ makes the misiake of appealing to complexity rather than intentionality: “A river
... fails to be a cognitive dynamical system only because it cannot satisfy a large range of goals under 2 lerge
range of conditions.” But, of course, that depends on how you individuate goals arid conditions; the river that
wants to get to the sea wants first to get half way to the sea, and then to get hait way more, ..., and so on;
quite a lot of goals all told. The real point, of course, is that states that represent goals play a role in the
ctiology of the behaviors of people but not in the etiology of the ‘behavior’ of rivers.

*That Classical zrchitectures can be implemented in netwerks is noi disputed hy Conncctionists; see for
example Rumelhart and McClelland (1986a, p. 118): “... one can make an arbitrary computational machine
out of linear threshold units, including, for example, a machine that can carry out all the cperations necessary
for implementing a Turing machinc; the one limitation is that real hiological systems cannot be Turing
machines because they have finite hardware.™.
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process which produces rule-like and rule-exception behavior through the
application of a single process ... [In this process] ... both the rule-like and
non-rule-like behavior is a product of the interaction of a very large number
of ‘sub-symbolic’ processes.” (Rumelhart, 1984, p. 60). It’s clear from the
context that Rumelhart takes this idea to be very tendentious; one of the
Connectionist claims that Classical theories are required to deny.

But in fact it’s not. For, of course there are ‘sub-symbolic’ interactions that
implement both rule like and rule violating behavior; for example, quantum
mechanical processes do. That's not what Classical theorists deny; indeed,
it’s not denied by anybody who is even vaguely a materialist. Nor does a
Classical theorist deny that rule-following and rule-violating behaviors are
both implemented by the very same neurological machinery. For a Classical

~theorist, neurons implement all cognitive processes in precisely the same
way: viz., by supporting the basic operations that are required for symbol-
processing.

What would be an interesting and tendentious claim is that there’s no
distinction between rule-following and rule-violating mentation at the cogni-
tive or representational or symbolic level; specifically, that it is not the case
that the eiiology of rule-foliowing behavior is mediated by the representation
of expiicit rules.® We will consider this idea in Section 4, where we will argue
that it too is not what divides Classical from Connectionist architecture; Clas-
sicai models permit a principied distinction between the etiologies of mental
processes that are explicitly rule-governed and mental processes that aren’t;
but they don’t demand one.

In short, the issue between Classical and Connectionist architecture is not
about the explicitness of rules; as we’ll presently see, Classical architecture
is not, per se, committed to the idea that explicit rules mediate the etiology
of behavior. And it is not about the reality of representational states; Classi-
cists and Connectionists are all Representational Realists. And it is not about
nonrepresentational architecture; a Connectionist neural network can per-
fectly well implement a Classical architecture at the cognitive level.

So, then, what is the disagreement between Classical and Connectionist
architecture about?

*There is a different idea, frequently encountered in the Connectionist literature, that this one is easily
confused with: viz., that the distinction between regularities and exceptions is merely stochastic (what makes
‘went’ ai inrcgular past tense is just that the more frequent construction is the one exhibited by ‘walked’). It
seems obvious that if this claim is correct it can be readily assimilated to Classical architecture (see Section 4).
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2. The nature of the dispute

Classicists and Connectionists all assign semantic content to something.
Roughly, Connectionists assign semantic content to ‘nodes’ (:nat is. to units
or aggregates of units; see footnote 1)—i.c., to the sorts of things that are
typicaily labeied in Connectionist diagrams; whereas Classicists assign seman-
tic content to expressions—i.e., to the sorts of things that get written on the
tapes of Turing machines and stored at addresses in Von Neumann
machines.” But Classical theories disagree with Connectionist theories about
what primitive relations hold among these content-bearing entities. Connec-
tionist theories acknowledge only causal connectedness as a primitive relation
among nodes; when you know how activation and inhibition flow among
them, you know evervthing there is to know about how the nodes in a net-
work are related. By contrast, Classical theories acknowledge not only causal
relations among the semantically evaluable objects that they posit, but also
a range of structural relations, of which constituency is paradigmatic.

This difference has far reaching consequences for the ways that the two
kinds of theories treat a variety of cognitive phenomena, some of which we
will presenily examine at length. But, underlying the disagreements about
details are two architectural differences between the theories:

(1) Combinatorial syntax and semantics for mental representations. Classical
theories—but not Connectionist theories—postulate a ‘language of
thought’ (see, for example, Fodor, 1975); they take mental representa-
tions to have a combinatorial syntax and semantics, in which (a) there
is a distinction between structurally atomic and structuraily molecular
representations; {b) structurally molecular representations have syntac-
tic comstituents that are themselves either structurally molecular or
structurally atomic; and (c) the semantic coriteni of a {(inclecuiar) rep-
resentation is a function of the semantic contents of its syntactic parts,
together with its comstituent structure. For purposes of convenience,
we’ll sometime abbreviate (a)—(c) by speaking of Classicai theories as

-

"This way of putting it will do for present purposes. But a subtler reading of Connectionist theories might
take it to be total machine states that have content, c.g., the state of having such and such a node excited.
Postulating connections among labelled nodes would then be equivalent to postulating causal relations among
the corresponding content bearing machine states: To say that the excitation of the node labelled ‘dog’ is
caused by the excitation of nodes labelied [d]. [0], [g] is to say that the machine’s represcnting its input as
consisting of the phonetic sequence [dog] causes it to represent its input as consisting of the word ‘dog’. And
so forth. Most of the time the distinction between these two ways of talking does not matter for our purposes,
s0 we shall adopt one or the other as convenient.
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commigted to “complex” mental representations or to “symbol struc-
tures”.

(2) Structure sensitivity of processes. In Classical models, the principles by
which mental states are transformed, or by which an input selects the
corresponding output, are defined over structural properties of mental
reprcsentations. Because Classical mental representations have com-
binatorial structure, it is possible for Classical mental operations to apply
to them by refeicnice to their form. The result is that a paradigmatic
Classical mental process operates upon any mental representation that
satisfies a given structural description, and transforms it into a mental
representation that satisfies another structural description. (So, for
example, in a model of inference one might recognize an operation that
applies to any representation of the form P&Q and transforms it into a
representation of the form P.) Notice that since formal properties can
be defined at a variety of levels of abstraction, such an operation can
apply equally to representations that differ widely in their structural
complexity. The operation that applies to representations of the form
P&Q to produce P is satisfied by, for example, an expression like
“(AvBvC) & (DvEvVF)”, from which it derives the expression
“(AvBvC)”.

We take (1) and (2) as the claims that define Classical models, and we take
these claims quite literally; they constrain the physical realizations of symbol
structures. In particular, the symbol structures in a Classical model are as-
sumed to correspond to real physical structures in the brain and the com-
binatorial structure of a representation is supposed to have a counterpart in
structural relations among physical properties of the brain. For example, the
relation ‘part of’, which holds between a relatively simple symbol and a more
complex one, is assumed to correspond to some physical relation among
brain states.’ This is why Newell (1980) speaks of computational systems such
as brains and Classical computers as “physical symbols systems”.

Ssometimes the difference between simply postulating represcntational states and postulating representa-
tions with a combinatorial syntax and semantics is marked by distinguishing theories tha* postulate symbols
from thcories that postulate symbol cyeremc. The latter theories, but not the former, are committed to a
“language of thought™. For this usage, see Kosslyn and Hatfield (1984) who take the refusa! to postulate
symbol systems to be the characteristic respect in which Connectionist architectures differ from Classical
architectures. We agree with this diagnosis.

Perhaps the notion that relations among physical properties of the brain instantiate (or encode) the
combinatorial structure f an expression bears some elaboration. One way to understand what is involved is
to consider the conditions that must hold on a mapping (which we refer to as the ‘physical instantiation
mapping’) from expressions to brain states if the causal relations among brain states are to depend on tl)&
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This bears emphasis because the Classical theory is committed not only to
there being a system of physically instantiated symbols, but also to the claim
that the physical properties onto which the structure of the symbols is mapped
are the very properties that cause the system to behave as it does. In other
words the physical counterparts of the symbols, and their structural proper-
ties, cause the system’s behavior. A system which has symbolic expressions,
but whose operation does not de¢ pend upon the structure of these expressions,
does not quaiify as a Classical machine since it fails to satisfy condition (2).
In this respect, a Classical model is very different from one in which behavior
is caused by mechanisms, such as energy minimization, that are not respon-
sive to the physical encoding of the structure of representations.

From now on, when we speak of ‘Classical’ models, we will have in mind
any model that has complex mental representations, as characterized in (1)
and structure-sensitive mental processes, as characterized in (2). Our account
of Classical architecture is therefore neutral with respect to such issues as
whether or not there is a separate executive. For example, Classical machines
can have an “object-oriented™ architecture, like that of the computer lan-
guage Smesltalk, or a “message passing” architecture, like that of Hewett’s

combinatorial structure of the encoded expressions. In defining this mapping it is not enough merely to specify
a physical encoding for each symbol; in order for the structures of expressions to have causal roles, structural
relations must be cacoded by physical properties of brain states (or by sets of functionally equivaient physical
propetiies of brain state).

Because, in general, Classical models assume that the expressions that get physically instantiated in brains
have a generative syntax, the definition of an appropriate physical instantiation mapping has to be built up in
terms of (a) the definition of a primitive mapping from atomic symbols to relatively elementary physical states,
and (b) a specification of how the structure of complex expressions maps onto the structure of relatively
complex or composite physical states. Such a structure-preserving mapping is typically given recursively,
making use of the combinatorial syntax by which complex expressions are built up out of simpler ones. For
example, the physical instantiation mapping F fo~ complex expressions would be defined by recussion, given
the definition of F for atomic symbols and given the structure of the compiex expression, the laiter being
specified in terms of the ‘structure building’ rules which constitute the generative syntax for complex expres-
sions. Take, for example, the expression ‘(A&B)&C’. A suitable definition for a mapping in this case might
contain the statement that for any expressions P and @, F|[P&Q] = B(F|{P),F[Q]). where the function B
specifics the physical relation that holds between physical states F[P] and F[Q). Here the property B serves
to physically encode, (or ‘instzntiate’) the relation that holds between the expressions P and O, on the one
hand, and the cxpressions P&Q on the other.

In using this rule for the example above P and Q would have the valucs ‘A&B’ and ‘C’ respectively, so
that the mapping rule would have to be applied twice to pick the relevant physical structures. In defining the
mapping recursively in this way we ensure that the relatiun between the expressions ‘A’ and ‘B, and the
composite expression ‘A&B’, is encoded in terms of a physical relation between constituent states that is
identical (or functionally equivalent} to the: physical relation used to encode the relation between expressions
*A&B’ and *C’, and their composite expression ‘(A&B)&C’. This type of mapping is weil known because of
its usc in Tarski’s definition of an interpretation of a language in a model. The idea of a mapping from symbolic
expressions to a structure of physica! states is discussed in Pylyshyn (1984a, pp. 54-69), where it is referred
to as an ‘instantiation function’ and in Stabler (1985), where it is called a ‘realization mapping’.
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(1977) Actors—so long as the objects or the messages have a combinaiorial
structure which is causally implicated in the processing. Classical architecture
is also neutral on the question whether the operations on the symbols are
constrained to occur one at a time or whether many operations can occur at
the same time.

Here, then, is the pian for what follows. In the rest of this section, we will
sketch the Connecticnist proposal for a computational architecture that does
away with complex mental representations and structure sensitive operations.
(Although our purpose here is merely expository, it turns out that describing
exactly what Connectionists are committed to requires substantial reconstruc-
tion of their remarks and practices. Since there is a great variety of points of
view within the Connectionist community, we are prepared to find that some
Connectionists in good standing may not fully endorse the program when it
is laid out in what we take to be its bare essentials.) Following this general
expository (or reconstructive) discussion, Section 3 provides a series of argu-
ments favoring the Classical story. Then the remainder of the paper considers
some of the reasons why Connectionism appears attractive to many people
and offers further general comments on the relation between the Classical
and the Connectionist enterprise.

2.1. Complex mental representations

To begin with, consider a case of the most trivial sort; two machines, one
Classical in spirit and one Connectionist.!” Here is how the Connectionist
machine might reason. There is a network of labelled nodes as in Figure 2.
Paths between ihe nodes indicate the routes along which activation can spread
(that is, they indicate the consequences that exciting one of the nodes has fo
determining the level of excitation of others). Drawing an inference from
A&B to A thus corresponds to an excitation of node 2 being caused by an
excitation of node 1 (alternatively, if iiie system is in a state  which node 1
is excited, it eventually settles into a state in which node 2 is excited; see
footnote 7).

Now consider a Classical machine. This machine has a tape on which it
writes expressions. Among the expressions that can appear on this tape are:

*This illustration has not any particular Connectionist model in mind, though the caricature prescnted is.
in fact, a simplificd version of the Ballard (1987) Conncctionist theorem proving system (which actually uscs
a more restricted proof procedure based on the wnification of Horn clauses). To simpiify the exposiiion, we
assume a ‘localist’ approach, in which cach semantically interpreted node corresponds to a single Connectionist
unit; but nothing relevant to this discussion is changed if these nodes actually consist of patterns over a cluster
of units,
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Figure 2. A possible Connectionist network for drawing inferences from A&B to A
or to B.

‘A’, ‘B’, ‘A&B’, ‘C’, ‘D’, ‘C&D’, ‘A&C&D’ ... etc. The machine’s causal
constitution is as follows: whenever a token of the form P&Q appears on the
tape, the machine writes a token of the form P. An inference from A&B to
A thus corresponds te a tokening of type ‘A&B’ on the tape causing a token-
ing of type ‘A’.

So then, what does the architectural differesnce between the machines con-
sist in? In the Classical machine, the objects to which the content A&B is
ascribed (viz., tokens of the expression ‘A&B’) literally cont»in, a2< proper
parts, objects to which the content A is ascribed (viz., tokens of the expres-
sion ‘A’.) Moreover, the semantics (e.g., the satisfaction conditions) of the
expression ‘A&B’ is determined in a uniform way by the semantics of its
constituents.!! By contrast, in the Connectionist machine none of this is true;
the object to which the content A&B is ascribed (viz., node 1) is causally
connected to the object to which the content A is ascribed (viz., node 2); but
there is no structural (e.g., no part/whole) relation that holds between them.
In short, it is characteristic of Classical systems, but not of Connectionist
systems, to exploit arrays of symbols some of which are atomic (e.g., expres-
sions like ‘4°} Mut indefinitely many of which have other symbois as syntactic
and semantic parts (e.g., expressions like ‘A&B’).

It is easy to overlook this difference between Classical and Connectionist
architectures when reading the Connectionist polemical literature or examin-
ing a Connectionist model. There are at least four ways in which one might
be lead to do so: (i) by failing to understand the difference between what
arrays of symbols do in Classical machines and what node labels do in Con-

""This makes the “compositionality™ of data structuscs a defining property of Classical architecture. But,
of course, it leaves open the question of the degree to which natural languages (like English) are also compo-

sitional,
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nectionist machines; (2) by confusing the question whether the nodes in Con-
nectionist networks have constituen: sirecture with the question whether they
are neurologically distributed; (3) by failing tc distinguish between a represen-
tation having semantic and syntactic constituents and a concept being en-
coded in terms of microfeatures, and (4) by assuming that since representa-
tions of Connectionist networks have a graph structure, it foliows that the
nodes in the networks have a corresponding constituent structure. We shall
now need rather a long digression to clear up these misunderstandings.

2.1.1. The role of labels in Connectionist theories

In the course of setting out a Connectionist model, intentional content will
be assigned to machine states, and the expressions of some language or other
will, of course, be used to express this assignment; for example, nodes may
be labelled to indicate their representational content. Such labels often have
a combinatorial syntax and semantics; in this respect, they can look a Iot like
Classical mental representations. The point to emphasize, however, is that it
doesn’t follow (and it isn’t true) that the nodes to which these labels are
assigned have a combinatorial syntax and semantics. ‘A&B’, for exampie,
can be tokened on the tape of the Classical machine and can also appear as
a label in a Connectionist machine as it does in diagram 2 above. And, of
course, the expression ‘A&B’ is syntactically and semantically complex: it has
a token of ‘A’ as one of its syntactic constituents, and the semantics of the
expression ‘A&B’ is a function of the semantics of the expression ‘A’. But it
isn’t part of the intended reading of the diagram that node 1 itself has con-
stituents; the node—unlike its label—has no semantically interpreted parts.

It is, in short, important to understand the difference between Connec-
tionist labels and the symbols over which Classical computations are defined.
The difference is this: Strictly speaking, ihe labels play #o role ur all in Soter-
mining the operation of a Connectionist machine; in particular, the operation
of the machine is unaffected by the syntactic and semantic relations that hold
among the expressions that are used as labels. To put this another way. the
node labels in a Connectionist machine are not part of the causal structure
of the machine. Thus, the machine depicted in Figure 2 will continue to make
the same state transitions regardless of what labels we assign to the nodes.
Whereas, by contrast, the state transitions of Classical machines are causally
determined by the structure—including the constituent struciure—of the symbol
arrays that the machines transform: change the symbols and the system be-
haves quite differently. (In fact, since the behavior of a Classical_mach_ine is
sensitive to the syntax of the represeniations it compuies on, éven niercnang-
ing synonymous—semantically equivalent—representations affects the course
of computation). So, although the Connectionist’s labels and the Classicist’s
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data structures both constltute languages, only the latter language constitutes
a medium of computation. !

2.1.2 Connectionis: networks and graph structures

The second reason that the lack of syntactic and semantic structure in
Connectionist representations has iargely been i lgnorea may be that Connec-
tionist networks look like general graphs; and it is, of course, perfectly pos-
sible to use graphs to describe the internal structure of a complex symbol.
That’s precisely what linguists do when they use ‘trees’ to exhibit the con-
stituent structure of sentences. Correspondingly, one could imagine a graph
notation that expresses the internal structure of mental representations by
using arcs and labelled nodes. So, for example, you might express the syntax
of the mental representation that corresponds to the thought that John loves
the girl like this:

John — loves — the girl

Under the intended interpretation, ¢i:is would be the structural description
of a mental representation whose content is that John loves the girl, and
whose constituents are: a mental representation that refers to John, a mental
representation that refers to the girl, and a mental representation that expres-
ses the two-place relation represented by ‘— loves —’.

But although graphs can sustain an interpretation as specnfymg the iogical
syntax of a complex mental repiesentation, this interpretation is inappro-
priate for graphs of Connectionist networks. Connectionist graphs are not
structural descriptions of mental representations; they’re specifications of
causal relations. All that a Connectionist can mean by a graph of the form
X — Y is: states of node X causally affect states of node Y. In particular, the
graph can’t mean X is a constituent of Y or X is grammatically related to Y
etc., since these sorts of relations are, in general, not defined for the kinds
of mental representations that Connectionists recognize.

Another way to put this is that the links in Connectionist diagrams are not
generalized pointers that can be made to take on different functionai signifi-

"’Labels aren't part of the causal structure of a Conacctionist machine, but they may play an essential role
in its causal history insofar as designers wire their machines to respect the semantical relations that the labels
express. For exampleg in Ballards (1987) Connectionist model of theorem proving, there is a mechanical
procedure for wiring a network which will carry out proofs by unification. This procedure is a function from
a set of node labels to a wircd-up machine. There is thus an interesting and revealmg respect in which node
labels are relevant to the operations that get performed when the function is executed. But, of course, the
maching oa which the labls have the cifect is not (e machine whose states they are labels of; and the effect
of the labels occurs at the time that the theorem-proving machine is constructed, not at the time its reasoning
process is carried out. This sort of case of labels *having cffects’ is thus quite different from the way that
symbol tokens (c.g., tokened data structures) can affect the causal processes of a Classical machine.
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cance by an iidependent interpreter, but are confined to meaning something
like “sends activation to”. The intended interpretation of the links as causal
connections is intrinsic to the theory. If you ignore this point, you are likely
to take Connectionism to offer a rauch richer notion of mental representation
than it actually does.

2.1.3. Distributed representations

The third mistake that can lead to a failure to notice that the mental
representations in Connectionist models lack combinatorial syntactic and
semantic structure is the fact that many Connectionists view representations
as being neurologically distributed; and, presumably, whatever is distributed
must have parts. It doesn’t follow, however, that whatever is distributed must
have constituents; being neurologically distributed is very different from hav-
ing semantic or syntactic constituent structure.

You have constituent structure when (and only when) the parts of seman-
tically evaluable entities are themselves semantically evaluable. Constituency
relations thus hold among objects all of which are at the representational
level; they are, in that sense, within level relations.”® By contrast, neural
distributedness—the sort of relation that is assumed to hold between ‘nodes’
and the ‘units’ by which they are realized—is a between level relation: The
ncdes, but not the units, count as representations. To claim that a node is
nevraiily distributed is presumably to claim that its states of activation corre-
spond to patterns of neural activity—to aggregates of neural ‘units’—rather
than to activations of single neurons. The important point is that nodes that
are distributed in this sense can perfectly weii be syntactically and semanti-
cally atomic: Complex spatially-distributed implementation in no way implies
constituent structure.

There is, however, a different sense in which the representational states
in a network might be distributed, and this sort of distribution also raises
questions relevant to the constituency issue.

2.1.4. Representations as ‘distributed’ over microfeatures

Many Connectionists hold that the mental representations that correspond
to commonsense concepts (CHAIR, JOHN, CUP, etc.) are ‘distribuicd’ over
galaxies of lower level units which themselves have representational content.
To use common Connectionist terminology (see Smolensky, 1988), the higher
or “conceptual ievel” units correspond to vectors in a “sub-conceptual” space

BAny relation specified as holding among representational states is, by definition, within the ‘cognitive
level'. It goes without saying that relations that are ‘within-level’ by this criterion can count as ‘between-level’
when we use criteria of finer grain. There is, for example, nothing to prevent hicrarchies of levels of represen-
tational states.
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of microfeatures. The model here is someiting like the relation between a
defined expression and its defining feature analysis: thus, the concept
BACHELCR might be thought to correspond to a vector in a space of fea-
tures that includes ADULT, HUMAN, MALE, and MARRIED:; i.e., as an
assignment of the value + to the first two features and — to the last. Notice
that distribution over microfeatures (unlike distribution over neural units) is
a relation among representations, hence a relation at the cognitive levei.
Since microfeatures are frequently assumed to be derived automatically
(i.e., via learning procedures) frcm the statistical properiies of samples of
stimuli, we can think of them as expressing the sorts of properties that are
revealed by multivariate analysis of sets of stimuli (<.g., Py muitiGimensionai
scaling of similarity judgments). In particular, they need not correspond to
English words; they can be finer-grained than, or otherwise atypical of, the
terms for which a non-specialist needs to have a word. Other than that,
however, they are perfectly ordinary semantic features, much like those that
lexicographers have traditionally used to represent the meanings of words.
On the most frequent Connectionist accounts, theories articulated in terms
of microfeature vectors are supposed to show how concepts are actually en-
coded, hence the feature vectors are intended to replace “less precise” specifi-
cations of macrolevel concepts. For example, where a Classical theorist might
recognize a psychological state of entertaining the concept CUP, a Connec-
tionist may acknowledge only a roughly analogous state of tokening the cor-
responding feature vector. (One reason that the analogy is only rough is that
which feature vector ‘corresponds’ to a given concept may be viewed as
heavily context dependent.) The generalizations that ‘concept level’ theories
frame are thus taken to be only approximately true, the exact truth being
stateable only in the vocabulary of the microfeatures. Smolensky, for example
(p. 11), is explicit in endorsing this picture: “Precise, formal descriptions of
the intuitive processor are generally tractable not at the conceptual level, but
only at the subconceptual level.”!* This treatment of the relation between

“Smolensky (1988, p. 14) remarks that “unlike symbolic tokens, these vectors lie in a topological space,
in which some are close together and others are far apart.” However, this seems to radically conflate claims
about the Connectionist model and claims about its implementation (a conflation that is not unusual in the
Connectionist literature as we’ll see in Section 4). If the space at issue is physical, then Smolensky is committed
to extremely strong claims about adjacency relations in the brain; claims which there is, in fact, no reason at
all to believe. But if, as seems more plausible, the space at issue is semantical then what Smolensky says isn't
true. Practically any cognitive thicory will imply distance measures between mental representations. in Classical
theories, for example, the distance between two representations is plausibly related to the number of compu-
tational steps it takes to derive one representation from the other. In Coniiectionist theories, it is plausibly
related to the number of intervening nodes (or to the degree of overlap between vectors, depending on the
version of Connectionism one has in mind). The interesting claim is not that an architecture offers a distance
measure but that it offers tke right distance measure-—one that is empirically certifiable.



Connectionism and cognitive architecture 21

commonsense concepts and microfeatures is exactly analogous to the stan-
dard Connectionist treatment of rules; in both cases, macrolevel theory is
said to provide a vocabulary adequate for formulating generalizations that
rougily approximate the facis about behavioral regularities. But the con-
structs of the macrotheory do not correspond to the causal mechanisms that
generate these regularities. If you want a theory of these mechanisms, you
need to replace talk about rules and concePts with talk about nodes, connec-
tions. microfeatures, vectors and the like.”

Now, it is among the major misfortunes of the Connectionist literature that
the issue about whether commonsense concepts shouid be represented by
sets of microfeatures has gotten thoroughly mixed up with the issue about
combinatorial structure in mental representations. The crux of the mixup is
the fact that sets of microfeatures can overlap, so that, for example, if a
microfeature corresponding to ‘+ has-a-handle’ is part of the array of nodes
over which the commonsense concept CUP is distributed, then you might
think of the thecry as representing ‘+ has-a-handie’ as a constituent of the
concent CUP; from which you might conclude that Connectionists have a
noiion of constituency after all, contrary to the claim that Connectionism is
not a language-of-thought architecture (see Smolensky, 1988).

A moment’s consideration will make it clear, however, that even on the
assumption that concepts are distributed over microfeatures, ‘+ has-a-handie’
is not a constituent of CUP in anything like the sense that ‘Mary’ (the word)
is a constituent of (thc sentence) ‘John loves Mary’. In the former case,
“constituency” is being (mis)used to refer o a semantic relation between
predicates; roughly, the idea is that macrolevel predicates like CUP are de-
fined by sets of microfeatures like ‘has-a-handle’, so that it’s some sort of
semantic truth that CUP applies to a subset of what ‘has-a-handle’ applies
to. Notice that while the extensions of these predicates are in a set/subset
relation, the predicates themselves are not in any sort of part-to-whole rela-
tion. The expression ‘has-a-handle’ isn’t part of the expression CUP any more

“The primary use that Connectionists make of microfeatures is in their accounts of generalizatior and
abstraction (see, for example, Hinton, McClelland, & Rumelhart, 1986). Roughly, you get generalization by
using overlap of microfeatures to define a similarity space, and you get abstraction by making the vectors .that
correspond to types be subvectors of the ones that correspond to their tokens. Similar proposals ha.we quite a
long history in traditional Empiricist analysis; and have been roundly criticized over the centuries. (For a
discussion of abstractionism see Geach, 1957; that similarity is a primitive relation—hence not reducible to
partial identity of feature sets—was, of course, a main tenet of Gestalt psychology, as \yell as more recent
approaches based on “prototypes”). The treatment of microfeatures in the Connectionist literature would
appear to be very close to early proposals by Katz and Fodor (1963) and Katz and Postal (1964), where both
the idea of a featurc ana.ysis of concepts and the idea that relations of semantical containment among concepts
should be identificd with sct-theoretic relations among feature arrays are explicitly endorsed.
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than the English phrase ‘is an unmarried man’ is part of the English phrase
‘is a bachelor’.

Real constituency does have to do with parts and wholes; the symbol
‘Mary’ is literally a part of the symbol ‘John loves Mary’. It is because their
symbols enter into real-constituency relations that natural languages have
both atomic symbols and complex ones. By contrast, the definition relation
can hold in a language where all the symbols are syntactically atomic; e.g.,
a language which contains both ‘cup’ and ‘has-a-handle’ as atomic predicates.
This point is worth stressing. The question whether a representational system
has real-constituency is independent of the question of microfeature analysis;
it arises both for systems in which you have CUP as semantically primitive,
and for systems in which the semantic primitives are things like ‘+ has-a-
handle’ and CUP and the like are defined in terms of these primitives. It
really is very important not to confuse the semantic distinction between primi-
tive expressions and defined expressions with the syntactic distinction be-
tween atomic symbols and complex symbols.

So far as we know, there are no worked out attempts in the Connectionist
literature to deal with the syntactic and semantical issues raised by relations
of real-constituency. There is, however, a proposal that comes up from iime
to time: viz., that what are traditionally treated as complex symbols should
actually be viewed as just sets of units, with the role relations that tradition-
ally get coded by constituent structure represented by units belonging to
these sets. So, for example, the mental representation corresponding to the
belief that Jonn loves Mary might be the feature vector {+John-subject;
+loves; +Mary-object}. Here ‘John-subject’ ‘Mary-object’ and the like are
the labels of units; that is, they are atomic (i.e., micrc-) features, whose
status is analogous to ‘has-a-handle’. In particular, they have no internal
syntactic analysis, and there is no structural relation (except the orthographic
one) between the feature ‘Mary-object’ that occurs in the set {John-subject;
loves; Mary-object } and the feature ‘Mary-subject’ that occurs in the set
{Mary-subject; loves; John-object}. (See, for example, the discussion in Hin-
ton, 1987 of “role-specific descriptors that represent the conjunction of an
identity and a role [by the use of which] we can implement part-whole hisrar-
chies using set intersection as the composition rule.” See also, McClelland,
Rumelhart & Hinton, 1986, p. 82-85, where what appears to be ihe same
treatment is proposed in somewhat different terms.)

Since, as we remarked, these sorts of ideas aren’t elaborated in the Con-
nectionist literature, detailed discussion is probably not warranted heve. But
it’s worth a word to make clear what sort of trouble you would get into if
you were to take them seriously.

As we understand it, the proposal really has two parts: On the one hand,
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it’s suggested that although Connectionist representations cannot exhibit real-
constituency, neveriheless the Classical distinction between complex symbols
and their constituents can be replaced by the distinction between feature sets

and their subsets; and, on the other hand, it’s suggested that role relations
can be captured by features. We’ll consider these ideas in turn.

(1) Instead of having complex symbols like “John loves Mary” in the rep-
resentational system, you have feature sets like {+John-subject; +loves;
+Mary-object} . Since this set has {+Johii-subject} , { +loves; + Mary-ob-
Jject} and so forth as sub-sets, it may be supposed that the force of the
constituency relation has been captured by employing the subset rela-

tion.

However, it’s clear that this idea won’t work since not all subsets of fea-
tures correspond tc genuine constituents. For example, among the subsets of
{+John-subject; +loves; +Mary-object} are the seis {+John-subject;
+Mary-object}) and the set {+John-subject; + loves} which do not, of
course, correspond to constituents of the complex symbol “John loves Mary”.

(2) Instead of defining roles in terms of relations among constituents, as
one does in Classical architecture, introduce them as microfeatures.

Consider a system in which the mental representation that is entertained
when cne believes that John loves Mary is the feature set {+John-subject;
+loves; +Mary-object}. What representation corresponds to the belief that
John loves Mary and Bill hates Sally? Suppose, pursuant to the present prop-
osal, that it’s the set {+John-subject; +loves; +Mary-object; + Bill-subject;
+hates; +Sally-object}. We now have the problem of distinguishing that be-
lief from the belief that John loves Sally and Bill hates Mary; and from the
belief that John hates Mary and Bill loves Sally; and from the belief that John
hates Mary and Sally and Bill loves Mary; etc., since these other beliefs will
all correspord to precisely the same set of features. The problem is, of course,
that nothing in the representation of Mary as + Mary-object specifies whether
it’s the loving or the hating that she is the object of; similarly, mutatis mutan-
dis, for the representation of Joiin as +John-subject.

What has gone wrong isn’t disastrous (yet). All that’s required is to enrich
the system of representations by recognizing features that correspond not to
(for example) just being a subject, but rather to being the subject of a loving
of Mary (the property that John has when john loves Mary) and being the
subject of a hating of Sally (the property that Bill has when Bill hates Sally).
So, the representation of John that’s entertained when one believes that John
loves Mary and Bill hates Sally might be something like +John-subject-hates-
Mary-object.
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The disadvantage of this proposal is that it requires rather a lot of micro-
features.!® How many? Well, 2 number of the order of magnitude of the
sentences of a natural language (whereas one might have hoped to get by with
a vocabulary of basic expressions that is not vastly larger than the lexicon of
a natural language; after all, natural languages do). We leave it to the reader
to estimate the number of microfeatures you would need, assuming that there
is a distinct belief ccrresponding to every grammatical sentence of English of
up to, say, fifieen words of length, and assuming that there is an average of,
say, five roles associated with each belief. (Hint: George Miller once esti-
mated that the number of weil-formed Z5-word seniences of English is of the
order of magnitude of the number of seconds in the history of the universe.)

The alternative to this grotesque explosion of atomic symbols would be to
have a combinatorial syntax and semantics for the features. But, of course,
this is just to give up the game since the syntactic and semantic relations that
hoid among the parts of the complex feature +((John subject) loves (Mary
object)) are the very same ones that Classically hold among the constituents
of the complex symbol “John loves Mary”; these include the role relations
which Connectionists had proposed to reconstruct using just sets of atomic
features. It is, of course, no acciden: that the Connectionist proposal for
dealing with role relations runs into these sorts of problems. Subject, object
and the rest are Classically defined with respect to the geometry of constituent
structure trees. And Connectionist representations den’t have constituents.

The idea that we should capture role relations by allowing features like
John-subject thus turns cut {0 be bankrupt; and there doesn’t scem to be any
other way to get the force of structured symbols in a Connectionist architec-
ture. Or, if there is, nobody has given any indication of how to do it. This
becomes clear once the crucial issue about structure in mental representations
is disentangled from the relatively secondary (and orthogonal) issue about
whether the representation of commonsense concepts is ‘distributed’ (i.e.,
from questions like whether it’s CUP or ‘has-a-handle’ or both that is seman-
tically primitive in the language of thought).

It’s worth adding that these problems about expressing the role relations
are actually just a symptom of a more pervasive difficulty: A consegqucnce of

X : h X v\.il.ioi-\.l\l\v - v.-
restricting the vehicles of mental representation to sets of atomic symbols is
a notation that fails quite generally to express the way that concepts group

'“Another disadvantage is that, strictly speaking it doesn’t work; although it allows us to distinguish the
belief that John loves Mary and Bill hates Sally from the belief that John loves Sally and Bill hates Mary, we
don’t yet have a way to distinguish believing that (John loves Mary because Biil hates Sally) from believing

that (Bill hates Sally because John loves Mary). Presumably nobody would want to have microfeatures corres-
ponding to these.
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activation of a smale node labelled JOHN LOVES MARY) Notice that it
cannot plausibly be assumed that all the nodes that happen to be active at a
given time will correspond to concepts that are constituents of the same
proposition; least of all if the architecture is “masswely parallel” so that many

things are allowed to go on—many concepts are aliowed to be entertained—
simultaneously in a given mind. Imagine, then, the following situation: at
time t. 2 man is looking at thp skv (o the nadec correenanding tn SKY and
vEEsaw w9 U SoEless S -vvl‘lllg oY SBEIT Ul‘: \uv GARW AENFUBD vv.;voyvu\uué W W24 B SRREWS

sponding to JOHN OVES and FIDO are actlve) and the node FIDO is
connected to the node DOG (which is in iurn connected to the node ANI-
MAL) in such fashion that DOG and ANIMAL are active too. We can, if
you iike, throw it in that the man has got an itch, so ITCH is also on.
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Ory of mentai l"CDl'C&C[I[a{IOI'l this man’s mind
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A\ I[.}. And the guestion is: which subvecto s of
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this vector corresnond 10 thoughts that the man is thinking? Specifically, what
is it about the man’s representatlonal state that determines thz: the simulta-
neous activation of the nodes, {JOHN, LOVES FIDO} constitutes his think-
ing that John loves Fido, but the simultaneous activation of FIDO, ANIMAL
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and BLUE does not constitute his tmnkmg that Fido is a biue animal? It
seems that we made it too easy for ourselves when we identified the thought
that Taks: lavac Rbary with tha wvantasr L IN TNAVES LAMADVI. af
LEACL JULHEE BUVHD uu:u_y VVEREE QLidE%W VRO LUVE \ TJINIEALINy § BuNT ¥ B\ TAVALREN B fo <&
best that works only on the assumption that JOHN, LOVES and MA.R.Y are

the only nodes actlve when someong¢ has that thought. And that’s an assump-
tion to which no theory of mental representation is entitled.

It’s important to see that this problem arises precisely because the theory
is trying to use sets of atomic representatlons to do a job that vou .""“" need

complex representations for. Thus, the question we’re wanting to answer is:
Given the toial set of nodes active at a time, what distinguishes the sab'v'ectors
thnt rnsracrnnd 4 nearnacitinme fram tha ennhwvantare that Ann’t? hic t‘lllpgfif\n
LEIAL GUIES® LIS QU lePUDlllUIIB BARIEAR QARG JUU VL WIUJEIO LEECEE REUVER ¢ A RRR \‘\&4«&-‘\]:!
has a str aig*'.i:f rward a...,W-r if, contrary to the present propo sal, complex

belong to the same proposmon, they are not merely snmultaneously active,
but also in construction with each other. By contrast, representations that
express concepts that don’t belong to the same proposition may be snmulta-
neously active; but, they are ipso facto not in construction with each ot n
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in short, you need two degrees of freedom to specify the thoughts that an
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intentional system is entertaining at a time: cne parameier (active vs inactive)
h ] e @lo nl mesrecam e nen ot s ew 20a o -y
S [+

LR TSR RS, | - 4o P a quota ag sz e .
picks out the nodes that express concepts that the system has in mind; th
other (ér construction vs not) cetermines how the concepts that the system

has in mind are distributed in the proposmons that it entertains. For symbols
to be “in construction” in this sense is just for them to be constituents of a
complex symbol. Representations that are in construction form parts of a
geometrical whole, where the geometrical relations are themselves semantically
significant. Thus the representation that corresponds to the thought that John
loves Fido is not a set of concepts but something like a iree of concepts, and
it’s the geometrical relations in this tree that mark (for example) the difference
between the thought that John loves Fido and the thought that Fido loves
John,

We've occasionally heard it suggested that you could solve the present
problem consonant with the restriction against complex represcntations if
you allow networks like this:

SUBJECT-OF
FIDO/\BITES

The intended interpretation is that the thought that Fido bites corresponds
to the simultaneous activation of these nodes; that is, to the vector {+FIDO,
+ SUBJECT OF, + BITES}—with similar though longer vectors for more
complex role relations.

But, on second thought, this proposal merely begs the question that it set
out to solve. For, if there’s a probiem aboui what justifies assigning the
proposition John loves Fido as the content of the set {JOHN, LOVES,
FIDO)}, there is surely the same problem about what justifies assigning the
proposition Fido is the subject of bites to the set {FIDO, SUBJECT-OF,
BITES} If this is not immediately clear, consider the case where the simul-

taneously active nodes are {FIDO, SUBJECT-OF, BITES, JOHN}. Is the
propositional content that Fido bites or that John does""

"It’s especially important at this point not to make the mistake of confusing diagrams of Connectionist
networks with constituent structure diagrams (see section 2.1.2 above). Connecting SUBJECT-OF with FIDO
and BITES does not mean that when all three are active FIDO is the subject of BITES. A network diagram
is ot a specification of the internal structure of a complex mental representation. Rather, it's a specification
of a pattern of causal dependencies among the states of activation of nodes. Connectivity in a network
determines which sets of simultancously aciivc odcs aic possibic; but it has a0 semantizal significance.

The difference between the paths between nodes that netwerk diagrams exhibit and the paths between
nodes that constituent siructure diagrams exhibii is precisciy that the iatter but not the former spccify paramet-
crs of mental representations. (In particular, they specify part/whole relations among the constitucnts of
complex symbols.) Whereas network theories define semantic interpretations over sets of (causally intercon-
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Strikingly enough, the point that we’ve been making in the past several
paragraphs is very close to one that Kant made against the Associationists of
his day. in “Transcendental Deduction (B)” of The First Critique, Kant re-
marks that:

... if I investigate ... the relation of the given modes of knowledge in any judge-
ment, and distinguish it, as belonging to the understanding, from the relation
accurding 16 laws of the reproductive imagination [e.g., according to the princi-
ples of association], wiiich nas only s. vjeciive validity, I find that 2 judgement
is nothing but the manner in which given modes of knowledge are brought to
the objective unity of apperception. This is what is intended by the copula “is”.
It is employed to distinguish the objective unity of given representations from
the subjective .... Only in this way does there arise from the relation a judge-
ment, that is a relation which is objectively valid, and so can be adequately
distinguished from a relation of the same representations that would have only
subjective validity—as when they are connected according to laws of association.
In the latter case, all that I could say would be ‘If I support a body, I feel an
impression of weight’; I could not say, ‘It, the body, is heavy’. Thus to say ‘The
body is heavy’ is not merely to state that the two representations have always
been conjoined in my perception, ... what we are asserting is that they are
combined in the object ... (CPR, p. 159; emphasis Kant’s)

A modern paraphrase might be: A theory of mental representation musi
distinguish the case when two concepts (e.g., THIS BODY, HEAVY) are
merely simultaneously enterigined from tic case where, to put it roughly, the
property that one of the concepts expresses is predicated of the thing that the
other concept denotes (as in the thought: THIS BODY IS HEAVY). The
relevant distinction is that while both concepts are “active” in both cases, in
the latter case but not in the former the active concepts are in construction.
Kant thinks that “this is what is intended by the ccpula ‘is’ ”. But of course
there are other notational devices that can serve to specify that concepts are
in construction; notably the bracketing structure of constituency trees.

There are, to reiterate, two questions that you need to answer to specify
the content of a mental state: “Which concepts are ‘active’ ” and “Which of
the active concepts are in construction with which others?” Identifying mental
states with sets of active nodes provides resources to answer the first of these
questions but not the second. That’s why the version of network theory that
acknowledges sets of atomic representations but no complex representations
fails, in indefinitely many cases, to distinguish mental states that are in fact
distinct. i

nccted) representations of concepts, theories that acknowledge complex symbols define semantic interpreta-
tions over sets of represcntations of concepts together with specifications of the constituency relations that hold
among these representations.
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But we are not claiming that you can’t reconcile a Connectionist architec-
ture with an adequate theory of mental representation {specifically with a
combinatorial syntax and semantics for mental representations). On the con-
trary, of course you can: All that’s required is that you use your network to
implement a Turing machine, and specify a combinatorial structure for its
computational language. What it appears that you car’t do, however, is have
both a combinatorial representational system and a Connectionist architec-
ture at the cognitive level.

So much, then, for our long digression. We have now reviewed one of the
major respects in which Connectionist and Classical theories differ; viz., their
accounts of mental representations. We turn to the second major difference,
which concerns their accounts of mental processes.

2.2. Structure sensitive operations

Classicists and Connectionists both offer accounts of mental processes, but
their theories differ sharply. In particular, the Classical theory relies heavily
on the notion of the lngicc‘syntactic form of mental representations to define
the ranges and domains of mental opcrations. ™his noiion is, however, unavail-
able to orthodox Connectionists since it presupposes that there are nonatomic
mental representations.

The Classical treatment of mental processes rests on two ideas, each of
which corresponds to an aspect of the Classical theory of computation. To-
gether they explain why the Classical view postulates at least three distinct
levels of organization in computational systems: not just a physical level and
a semantic (or “knowledge™) level, but a syntactic level as well.

The first idea is that it is possible to construct languages in which certain
features of the syntactic structurss of formulas correspond systematically to
certain of their semantic features. Intuitively, the idea is that in such lan-
guages ihe syntax of a formula encodes its meaning; most especially, those
aspects of its meaning that determine its role in inference. All the artificial
languages that are used for logic have this property and English has it more
or less. Classicists belicve that it is a crucial property of the Language of
Thought.

A simple example of how a language can use syntactic structure to encode
inferential roles and relations among meanings may help to illustrate this
point. Thus, consider the relation between the following two sentences:

(1) John went to the store and Mary went to the store.
(2) Mary went to the store.

On the one hand, from the semantic point of view, (1) entails (2) (so, of
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course, inferences from (1) to (2) are truth preserving). On the other hand,
from the syntactic point of view, (2) is a constituent of (1). These two facts
can be brought into phase by exploiting the principle that sentences with the
syntactic structure ‘(Si and S2)s’ entail tiieir sentential constituents. Notice
that this principle connects the syntax of these sentences with their inferential
roles. Notice too that the trick relies on facts about the grammar of English;
it wouldn’t work in a language where the formuia that expresses the conjunc-
tive conlgent John went to the store and Mary went to the store is syntactically
atomic.

Here is another example. We can reconstruct such truth preserving infer-
ences as if Rover bites then something bites on the assumption that (a) the
sentence ‘Rover bites’ is of the syntactic type Fa, (b) the sentence ‘something
bites’ is of the syntactic type 3x (Fx) and (c) every formula of the first type
entails a corresponding formula of the second type (where the notion ‘corres-
ponding formula’ is cashed syntactically; roughly the two formulas must differ
only in that the one has an existentially bound variable at the syntactic posi-
tion that is occupied by a constant in the siher.) Once again the point to
notice is the blending of syntactical and semantical notions: The rule of exis-
tential generalization applies to formulas in virtue of their syntactic form. But
the salient property that’s preserved under appiications of the rule is seman-
tical: What’s claimed for the transformation that the rule performs is that it
is truth preserving.'

There are, as it turns out, examples that are quite a lot more complicated
than these. The whole of the branch of logic knowi as proof theory is devoted
to exploring them.” It would not be unrcasonable to describe Classical Cog-

18And it doesn't work uniformly for English conjunction. Compare: John and Mary are friends — *John
are friends; or The flag is red, white and blue — The flag is blue. Such cases show either that English is not
the language of thought, or that, if it is, the relation between syntax and semartics is a good deal subtler for
the language of thought than it is for the standard logical languages.

¥t needn’t, however, be strict truth-preservation that makes the syntactic approach relevant to cognition.
Other semantic properties might be preserved under syntactic transformation in the course of mental pro-
cessing—e.g., warrant, plausibility. heuristic value, or simply semantic non-arbitrariness. The point of Classical
modeling isn't to characterize human thought as supremely logical; rather, it’s to show how a family of types
of semantically coherent (or knowledge-dependent) reasoning are mechanically possible. Valid inference is
the paradigm only in that it is the best understood member of this family: the one for which syntactical
analogues for semantical relations have been most systematically elaborated.

¥t is not uncommon for Connectionists to make disparaging remarks about the relevance of logic to
psychology, even thought they accept the idea that inference is involved in reasoning. Sometimes the sugges-
tion scems to be that it’s all right if Connecticnism can't reconstruct the theory of inference that formal
deductive logic provides since it has something cven better on offer. For example, in their report to the U.S.
National Science Foundation, McClelland, Feldman, Adelson, Bower & McDermott (1986) state that *...
connectionist models realize an evidential logic in contrast to the symbolic logic of conventional computing (p.
6; our cmphasis)” and that “cvidcntial logics arc becoming increasingly important in cognitive science and
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nitive Science as an extended attempt to apply the methods of proof theory
to the modeling of thought (and similarly, of whatever other mental processes
are plausibly viewed as involving inferences; preeminently learning and per-
ception). Classical theory construction rests on the hope that syntactic
analogues can be constructed for nondemonstrative inferences (or informal,
commonsense reasoning) in something like the way that proof theory has
provided syntactic analogues for validity.

The second main idea underlying the Classical treatment of mental proces-
ses is that it is possible to devise machines whose function is the transforma-
tion of symbols, and whose operations are sensitive to the syntactical struc-
ture of the symbols that they operate upon. This is the Classical conception
of a computer: it’s what the various architectures that derive from Turing and
Von Neumann machines all have in common.

Perhaps it’s obvious how the two ‘main ideas’ fit together. If, in principle,
syntactic relations can be made to parallel semantic relations, and if, in prin-
ciple, you can have a mechanism whose operations on formulas are sensitive
to their syntax, then it may be possible to construct a syntactically driven
machine whose state transitions satisfy semantical criteria of coherence. Such
a machine would be just what’s required for a mechanical model of the
semanticai coherence of thought; correspondingly, the idea that the brain is
such a machine is the foundational hypothesis of Classical cognitive science.

So much for the Classical story about mental processes. The Connectionist
story must, of course, be quite different: Since Connectionists eschew pos-
tulating mental representations with combinatorial syntactic/semantic struc-
ture, they are precluded from postulating mental processes that operate on
mental representations in a way that is sensitive to their structure. The sorts
of operations that Connectionist models do have are of two sorts, depending
on whether the process under examination is learning or reasoning.

2.2.1. Learning

If a Connectionist model is intended to learn, there will be processes that
determine the weights of the connections among its units as a function of the
character of its training. Typically in a Connectionist machine (such as a
‘Boltzman Machine’) the weights among connections are adjusted until the
system’s behavior comes to model the statistical properties of its inputs. In

have a natural map to connectionist modeling.” (p. 7). It is, however, hard to understand the implied contrast
since, or: the one hand, evidential logic must surely be a fairly conservative extension of “the symbolic logic
of conventional computing” (i.e., most of the theorems of the latter have to come out true in the former) and,
on the other, there is not the slightest reason to doubt that an evidential logic would ‘run’ on a Classical

machine. Prima facie, the problem about evidential logic isn’t that we've got one that we don’t know how to
implement; it’s that we haven't got one.
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the limit, the stochastic relations among machine states recapitulates the
stochastic relations among the environmental events that they represent.

This should bring to mind the old Associationist principle that the strength
of association between ‘Ideas’ is a function of the frequency with which they
are paired ‘in experience’ and the Learning Theoretic principle that the
strength of a stimuius-response connection is a function of the frequency with
which the response is rewarded in the presence of the stimulus. But though
Connectionists, like other Associationists, are committed to learning proces-
ses that modei statistical properties of inputs and outputs, the simple
mechanisms based on co-occurrence statistics that were the hallmarks of oid-
fashioned Associationism have been augmented in Connectionist models by
a number of technical devices. (Hence the ‘new’ in ‘New Connectionism’.)
For example, some of the earlier limitations of associative mechanisms are
overcome by allowing the network to contain ‘hidden’ units (or aggregates)
that are not directly connected to the environment and whose purpose is, in
effect, to detect statistical patterns in the activity of the ‘visible’ units includ-
ing, perhaps, patterns that are more abstract or more ‘global’ than the ones
that could be detected by old-fashioned perceptrons.”!

In short, sophisticated versions of the associative principles for weight-
setting are on offer in the Connectionist literature. The point of present
concern, however, is what all versions of these principles have in common
with one another and with older kinds of Associationism: viz., these processes
are all frequency-sensitive. To reiurn to the example discussed above: if &
Con—-=ctionist learning machine converges on a state where it is prepared to
infer A from A&B (i.e., to a state in which when the ‘A&B’ node is excited
it tends to settle into a state in which the ‘A’ node is excited) the ccnvergence
will typically be caused by statistical properties of the machine’s training
experience: e.g., by correlution between firing of the ‘A&B’ ricde and firing
of the ‘A’ node, or by correlations of the firing of both with some feedback
signal. Like traditional Associationism, Connectionism treats learning as ba-
sically a sort of statistical modeling.

2.2.2. Reasoning

Association operates to alter the structure of a network diachronically as
a function of its training. Connectionist models also contain a variety of types
of ‘relaxation’ processes which determine the synchronic behavior of a net-
work; specifically, they determine what output the device provides for a
given pattern of inputs. In this respect, one can think of a Connectionist

AICompare the “little s’s™ and “little r’s™ of nco-Hullean “mediational™ Associationists like Charles Osgood.
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model as a species of analog machine constructed to realize a certain function.
The inputs to the function are (i) a specification of the connectedness of the
machine (of which nodes are connected to which); (ii) a specification of the
weights along the connections; (iii) a specification of the values of a variety
of idiosyncratic parameters of the nodes {e.g., intrinsic thresholds; time since
last firing, etc.) (iv) a specification of a pattern of excitation cver the input
nodes. The output of the function is a specification of a pattern of excitation
over the output nodes; intuitively, the machine chooses the output pattern
that is most highly associated to its input.

Much of the mathematical sophisticaiion of Connectionist theorizing has
hlghly associated’ output correspondmg toan arbltrary mput but once agam
the details needn’t concern us. What is important, for our purposes, is
ancther property that Connectionist theories share with other forms of As-
sociationism. In traditional Associationism, the probability that one Idea will
elicit another is sensitive to the strength of the association between them
(including ‘mediating’ associations, if any). And the strength of this associa-
tion is in turn sensitive to the extent to which the Ideas have previously been
correlated. Associative strength was not, however, presumed to be sensitive
to features of the content or the structure of representations per se. Similarly,
in Connectionist models, the selection of an output corresponding to a given
input is a function of properties of the paths ihat connect them {including the
weights, the states of intermediate units, etc.). And the weights, in turn, are
a function of the statistical pro operties of events in the environment (or of
relations between patterns of events in the environment and implicit ‘predic-
tions” made by the network, etc.). But the syntactic/semantic structure of the
representation of an input is not presumed to be a factor in determining the
selection of a corresponding output since, as we have seen, syntactic/semantic
structure is not defined for the sorts of representations that Connectionist
models acknowledge.

To summarize: Classical and Connectionist theories disagree about the
nacure of mental representation; for the former, but not for the latter, mental
representations characteristically exhibit a combinatorial constituent struc-
ture and a combinatorial semantics. Classical and Connectionist theories also
disagree about the nature of mental processes; for the former, but not for
the latter, mental processes are characteristically sensitive to the combinator-
ial structure of the representations on which they operate.

We take it that these two issues define the present dispute about the nature
of cognitive architecture. We now
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3. The need for symbol systems: Productivity, systematicity, compositionality
and inferential coherence

Classical psychological theories appeal to the constituent structure of mental
representations to explain three closely related features of cognition: its pro-
ductivity, its compositionality and its inferential coherence. The traditional
argument has been that these features of cognition are, on the one hand,
pervasive and, on the other hand, explicable only on the assumption that
mental representations have internal structure. This argument—familiar in
more or less explicit versions for the last thirty years or so— is still intact, so
far as we can tell. It appears to offer something close to a demonstration that
an empirically adequate cognitive theory must recognize not just causal rela-
tions among representational states but also relations of syntact.c and seman-
tic constituency; hence that the mind cannot be, in its general structure, a
Connectionist network.

3.1. Productivity of thought

There is a classical productivity argument for the existence of combinatorial
structure in any rich representational system (including natural languages and
the language of thought). The representational capacities of such a system
are, by assumption, unbounded under appropriate idealization; in particular,
there are indefinitely many propositions which the system can encode.” How-
ever, this unbounded expressive power must presumably be ackieved by finite
means. The way to do this is to treat the system of representations as consis-
ting of expressions belonging to a generated set. More precisely, the corre-
spondence between a represeniation and the proposition it expresses is, in
arbitrarily many cases, built up recursively out of correspondences between
parts of the expression and parts of the proposition. But, of course, this
strategy can operate only when an unbounded number of the expressions are
non-atomic. So linguistic (and mental) representations must constitute sym-
bol systems (in the sense of footnote 8). So the mind cannot be a PDP.
Very often, when people reject this sort of reasoning, it is because they
d:ubt that human cognitive capacities are correctly viewed as productive. In

2This way of putting the productivity argument is most closely identified with Chomsky (c.g., Chemsky,
1965; 1968). However, one does not have to rest the argument upon a basic assumption of infiniie generative
capacity. Infinite generative capacity can be viewed, instcad, as a consequence or a corollary of 'the_ones
formulated so as to capture the greatest number of generalizations with the fewcst independent pnncnpl;:s.
This more neutral approach is, in fact, very much in the spirit of what we shall proposc below. We are putting
it in the present form for expository and historical reasons.



34 J.A. Fodor and Z.W. Pylyshyn

the long run there can be no a priori arguments for (or against) idealizing to
productive capacities; whether you accept the idealization depends on wheth-
er you believe that the inference from finite performance to finite capacity is
justified, or whether you think that finite performance is typically a result of
the interaction of an unbounded competence with resource constraints. Clas-
sicists have traditionally offered a mixture of methodological and empirical
considerations in favor of the latter view.

From a methodological perspective, the least that can be saic for assuming
productivity is that it precludes solutions that rest on inappropriate tricks
(such as storing all the pairs that definc a function); tricks that would be
unreasonable in practical terms even for soiving finite tasks that place suffi-
ciently large demands on memory. The idealization to unbounded productive
capacity forces the theorist to separate the finite specification of a method
for solving a computational problem from such factors as the resources that
the system (or person) brings to bear on the problem at any given moment.

The empirical arguments for productivity have been made most frequently
in connection with linguistic competence. They are familiar from the work of
Chomsky (1968) who has claimed (convincingly, in our view) that the knowl-
edge underlying linguistic competence is generative—i.e., that it allows us in
principle to generate (/understand) an unbounded number of sentences. It
goes without saying that no one does, or could, in fact utter or understand
tokens of morc than a finiie number of sentence types; this is a trivial conse-
quence of the fact that nobody can utter or understand more than a finite
number of sentence tokens. But there are a number of considerations which
suggest that, despite de facto constraints on performance, ones knowledge of
ones language supports an unbounded productive capacity in much the same
way that ones knowledge of addition supports an unbounded number of
sums. Among these considerations are, for example, the fact that a speaker/
hearer’s performance can often be improved by relaxing time constraints,
increasing motivation, or supplying pencil and paper. It seems very natural
to treat such manipulations as affecting the transient state of the speaker’s
memory and attention rather than what he knows about—or how iie repre-
sents—his language. But this treatment is available only on the assumption
that the character of the subject’s performance is determined by interactions
bctween thc available knowledge base and the available computational re-
SOUICES.

Classical theories are able to accommodate these sorts of considerations
because they assume architectures in which there is a functional distinction
between memory and program. In a system such as a Turing machine, wherc
the length of the tape is not fixed in advance, changes in the amount of
available memory can be affected without changing the computational structure
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of the machine; viz., by making more tape available. By contrast, in a finite
state automaton or a Connectionist machine, adding to the memory (e.g., by
adding units to a network) alters the connectivity relations among nodes and
thus does affect the machine’s computational structure. Connectionist cogni-
tive architectures cannot, by their very nature, support an expandable mem-
ory, so they cannot support productive cognitive capacities. The long and
short is that if productivity arguments are sound, then they show that the
architecture of ihe mind can’t be Connectionist. Connectionists have, by and
large, acknowledged this; so they are forced to reject productivity arguments.

The test of a good scientific idealization is simply and solely whether it
produces successful science in the long term. It seems to us that the produc-
tivity idealization has more than earned its keep, especially in linguistics and
in theories of reasoning. Connectionists, however, have not been persuaded.
For example, Rumelhart and McClelland (1986a, p. 119) say that they “...
do not agree that [productive] capabilities are of the essence of human com-
putation. As anyone who has ever attempted to process sentences like ‘The
man the boy the girl hit kissed moved’ can attest, our ability to process even
moderate degrees of center-embedded structure is grossly impaired relative
to an ATN [Augmented Transiticn Network] parser .... What is needed,
then, is not a mechanism for flaw'~ss and effortless processing of embedded
constructions ... The challenge is to explain hocw those processes that others
have chosen to explain in terms of recursive mechanisms can be better
explained by the kinds of processes natural for PDP networks.”

These remarks suggest ithat Rumelhart and McClelland think that the fact
that center-embedding sentences are hard is somehow an embarrassment for
theories that view linguistic capacities as productive. But of course it’s not
since, according to such theories, performance is an effect of interactions
between a productive competence and restricted resources. There are, in
fact, quite piausibie Classical accounts of why center-embeddings ought to
impose especially heavy demands on resources, and there is a reasonable
amount of experimental support for these models (see, for example, Wanner
& Maratsos, 1978).

In any event, it should be obvious that the difficulty of parsing center-em-
beddings can’t be a consequence of their recursiveness per se since there are
many recursive structures that are strikingly easy to understand. Consider:
‘this is the dog that chased the cat that ate the rat yhat lived in the house that
Jack built.” The Classicist’s case for productive capacities in parsing rests on
the transparency of sentences like these.?® In short, the fact that center-em-

BMcClelland and Kawamoto (1986) discuss this sort of recursion briefly. Their suggestioq seems {0 be that
parsing such sentences doesn't really require recovering their recursive structure: “... the job of the parser
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bedded sentences are hard perhaps shows that there are some recursive struc-
tures that we can’t parse. But what Rumelhart and McClelland need if they
are to deny the productivity of linguistic capacities is the much stronger claim
that there are no recursive structures that we can parse; and this stronger
claim would appear to be simply false.

Rumelhart and McClelland’s discussion of recursion (pp. 119-120)
nevertheless repays close attention. They are apparently prepared to concede
that PDPs can model recursive capacities only indirectly—viz., by implement-
ing Classical architectures like ATNs; so that if human cognition exhibited
recursive capacities, that would suffice to show that minds have Classical
rather than Connectionist architecture at the psychological level. “We have
not dwelt on PDP impiementations of Turing machines and recursive pro-
cessing engines because we do not agree with those who would argue that such
capacities are of the essence of human computation” (p. 119, our emphasis).
Their argument that recursive capacities aren’t “of the essence of human
computation” is, however, just the unconvincing stuff about center-embed-
ding quoted above.

So the Rumelhart and McClelland view is apparently that if you take it to
be independently obvious that some cognitive capacities are productive, then
you should take the existence of such capacities to argue for Classical cogni-
tive architecture and hence for treating Connectionism as at best an im-
plementation theory. We think that this is quite a plausible understanding of
the bearing that the issues about productivity and recursion have on the
issues about cognitive architecture; in Section 4 we will return to the sugges-
tion that Connectionist models can plausibly be consirued as models of the
implementation of a Classical architecture.

In the meantime, however, we propose to view the status of productivity
arguments for Classical archiiectures as moot; we’re about to present a differ-
ent sort of argument for the claim that mental representations need an articu-
lated internal structure. It is closely related to the productivity argument, but
it doesn’t require the idealization to unbounded competence. Its assumptions

>

[with respect to right-recursive sentences] is to spit out phrases in a way that captures their local context. Such
a fepresentaiion may prove sufficient to allow us 10 reconstruct the correci bindings of noun phrases o verbs
and prepositional phrases to nearby nouns and verbs™ {p. 324; empbhasis ours). It is, however, by no means
the case that all of the semantically relevant grammatical relations in readily intelligible embedded sentences
are local in surface structure. Consider: ‘Where did the man who owns the cat that chased the rat that
frightened the girl say that he was going to move to (X)?" or ‘Whar did the girl that the children loved to listen
to promise your friends that she would read (X) to them?’ Notice that. in such examples, a binding clement
(italicized) can be arbitrarily displaced from the position whose interpretation it controls (marked *X’) without
making the sentence particularly difficult to understand. Notice too that the ‘semantics’ doesn't determine the
binding relations in cither example.



Connectionism and cognitive architecture 37

should thus be acceptable even :o theorists who—like Connectionists—hold
that the finitistic character of cognitive capacities is intrinsic to their architec-
ture.

3.2. Systematicity of cognitive representation

The form of the argument is this: Whether or not cognitive capacities are
reaily productive, it seems indubitable that they are what we shail call ‘sys-
tematic’. And we’ll see that the systematicity of cognition provides as good
a reason for postulating combinatorial structure in mental representation as
the productivity of cognition does: You get, in effect, the same conclusion,
but from a weaker premise.

The easiest way to understand what the systematicity of cognitive capacities
amounts to is to focus on the systematicity of language comprehension and
production. In fact, the systematicity argument for combinatorial structure in
thought exactly recapitulates the traditional Structuralist argument for con-
stituent structure in sentences. But we pause to remark upon a point that
we’ll re-emphasize later; linguistic capacity is a paradigm of systematic cogni-
tion, but it’s wildly unlikely that it’s the only example. On the contrary,
there’s every reason to believe that systematicity is a thoroughly pervasive
feature of human and infrahuman mentation.

What we mean when we say that linguistic capacities are systemaicc is that
the ability to produce/understand some sentences is intrinsically connected to
the ability to produce/understand certain others. You can see the force of
this if you compare learning languages the way we really do learn them with
learning a language by memorizing an enormous piirase book. The point isn’t
that phrase books are finite and can therefore exhaustively specify only nen-
productive languages; that’s true, but we’ve agreed not to rely on productivity
arguments for our present purposes. Our point is rather that you can learn
any part of a p&ra.: book without learning the rest. Hence, on the phrase
book model, it would be perfectly possible to learn that uttering the form of
words ‘Granny’s cat is on Uncle Arthur’s mat’ is the way to say (in English)
that Granny’s cat is on Uncle Arthur’s mat, and yet have no idea at all how
to say that it’s raining (or, for that matter, how te say that Uncle Arthur’s
cat is on Granny’s mat). Perhaps it’s self-evident that the phrase book story
must be wrong about language acquisition because a speaker’s knowledge of
his native language is never like that. You don’t, for example, find native
speakers who know how to say in English that John loves the girl but don’t
know how to say in English that thc girl loves John.

Notice, in passing, that systematicity is a property of the masiery of the
syntax of a language, not of its lexicon. The phrase book model really does
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fit what it’s like to learn the vocabulary of English since when you learn
English vocabulary you acquire a lot of basicaily independent capacities. So
you might perfectly well learn that using the expression ‘cat’ is the way to
refer to cats and yet have no idea that using the expression ‘deciduous conifer’
is the way to refer to deciduous conifers. Systematicity, like productivity, is
the sort of property of cognitive capacities that you're likely to miss if you
concentrate on the psychology of lecarning and searching iists.

There is, as we remarked, a straightforward (and quite traditional) argu-
ment from the systematicity of language capacity to the conclusion that sen-
tences must have syatactic and semantic structure: If you assume that sen-
tences are constructed out of words and phrases, and that many different
sequences of words can be phrases of the same type, the very fact that one
formula is a sentence of the language will often imply that other formulas
must be too: in effect, systematicity follows from the postulation of con-
stituent structure.

Suppose, for example, that it’s a fact about English that formulas with the
constituent anaiysis ‘NP Vt NP’ are well formed; and suppose that ‘John’ and
‘the girl’ are NPs and ‘loves’ is a Vt. It foliows from these assumptions that
‘John loves the girl,” ‘John loves John,” ‘the girl loves the girl,” and ‘the girl
loves John’ must all be sentences. It follows too that anybody who has mas-
tered the grammar of English must have linguistic capacities that are systemat-
ic in respect of these sentences; he can’t but assume that all of them are
sentences if he assumes that any of them are. Compare the situation on the
view that the sentences of English are ali atomic. There is then no structural
analogy between ‘John loves the girl’ and ‘the girl loves John’ and hence no
reason why understanding one sentence should imply understanding the
other; no more than understanding ‘rabbit’ implies understanding ‘tree’.?

On tlic view that the sentences are atomic, the systematicity of linguistic
capacities is a mystery; on the view that they have constituent structure, the
systematicity of linguistic capacities is what you would predict. So we should
prefer the latter view to the former.

Notice that you can make this argument for constituent structure in sen-
tences without idealizing to astroniomical computational capacities. There are
productivity arguments for constituent structure, but they’re concerned with
our ability—in principle—to understand sentences that are arbitrarily Jong.
Systematicity, by contrast, appeals to premises that are much nearer home;

%Sce Pinker (1984, Chapter 4) for evidence that children never go through a stage in which they distinguish
between the internal structures of NPs depending on whether they are in subject or object position; i.c., the
dialects that children speak arc always systematic with respect to the syntactic struciures that can appear in
these positions.
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capacities are productive “in principle” is one that a Connectionist might
refuse to grant. But that they are systematic in fact no one can plausibly deny.

We can now, finally, come to the point: the argument from the systematic-
.m of I,nmncm- mnamtaeq to constituent structure in sentences is amte clear.
But ikought is systematic too, so there is a precisely parallel argument from
the systematicity of thought to syntaciic and semantic structure in mental
representations.

What does it mean to say that thought is systematic? Well, just as you
don’t find people who can understand the sentence ‘John loves the girl’ but
not ihie sentence ‘the girl loves John,’ so too you don’t find people who can
think the thought that John loves the girl but can’t think the thought that the
girl loves John. Indeed, in the case of verbal organisms the systematicity of
thought follows from the systematicity of language if you assume—as most
psychologists do—that understanding a sentence involves entertaining the
thought that it expresses; on that assumption, nobody could understand both
the sentences about John and the girl unless he were able to think both the
thoughts about John and the girl.

But now if the ability to think that John loves the girl is intrinsically con-
nected to the ability to think that the girl loves John, that fact will somehow
have to be explained. For a Represeniaticralisc (which, as we havc seen,
Connectionists are), the explanation is obvious: Entertaining thoughts re-
quires being in representational states (i.e., it requires tokening mental rep-
resentations). And, just as the systematicity of language shows that there
must be structural relations between the sentence ‘John loves the girl’ and
the sentence ‘the girl loves John,’ so the systematicity of thought shows that
there must be siructural relations between the mental representation that
corresponds to the thought that John loves the girl and the mental represen-
tation that corresponds to the thought that the girl loves John;” namely, the
two mental representations, like the two sentences, m:ust be made of the same
parts. But if this explanation is right (and there don’t seem tG be any others
on offer), then mental representations have internal structure and there is a

*It may be worth emphasizing that the structural complexity of a mental representation is not the same
thing as, and does not follow from, the structural complexity of its propositional content (i.c., of what we'r:
calling “the thought that onc has™). Thus, Connectionists and Classicists can agree to agree that the thought
that P&Q is complex (and has the thought that P among its pa-ts) while agreeing to disagree about whcther
mental representations have internal syntactic structure.



40  J.A. Fodor and Z.V/. Pylyshyn

language of thought. So the architecture of the mind is not a Connectionist
network.?

To summarize the discussion so far: Producuvity arguments infer the inter-
nal structure of mental representations from the presumed fact that nobody
has a finite intellectual competence. By contrast, systematicity arguments
infer the internal structure of mental representations from the patent faci that

. . g 1 1o
ncbody has s punctate inteliectual competence. Just as you don’t find linguis-

tic capacities that consist of the ability to understand sixty-seven unrelated
sentenccs, so too you don’t find cognitive capacities that consist of the ability
to think seventy-four unrelated thoughts. Our claim is that this isn’t, in either
case, ar accident: A linguistic theory that allowed for the possibility of
punctate languages would have gone not just wrong, but very profoundly
wrong. And similarly for a cognitive theory that allowed for the possibility
of punctate minds.

But periraps not being punctate is a property oniy of the minds of language
users; perhaps the representational capacities of infraverbal organisms do
have just the kind of gaps that Connectionist mode!s permit? A Connectionist
mighit ilici clann ihai iie can do everything “up to language™ on the assump-
tion that mental representations lack combinatorial syntactic and semantic
structure. Everything up to language may not be everything, but it’s a lot.
(On the other hand, a lot may be a lot, but it isn’t everything. Infraverbal
cogiiitive archiiccture musin’t be so represenied as to make the eventual
acquisition of language in phylogeny and in ontogeny require a miracle.)

It is not, however, plausible that only the minds of verbal organisms are
systematic. Think what it would mean for this to be the case. It would have
to be quite usual to find, for example, animals capable of representing the
state of affairs aRb, but incapable of representing the state of affairs bRa.
Such animals would be, as it were, aRb sighted but bRa blind since, presum-
ably, the representational capacities of its mind affect not just what an or-

*These considerations throw further light on a proposal we discussed in Section 2. Suppose that the mental
representation corresponding to the thought that John loves the girl is the feature vector {+John-subject;
+loves; +the-girl-object} where ‘John-subject’ and ‘the-girl-object’ are atomic features; as such, they bear no
more siructural relation to ‘John-object’ and “the-girl-subject” than they do to one another or to, say, ‘has-a-
handle’. Since this theory recognizes no structural relation between ‘John-subject’ and ‘John-object’, it offcrs
fno reason why a representationai sysicim that provides the means to express one of these concepts should also
provide the means to express the other. This treatment of role relations thus makes a mystery of the (pre-
sumed) fact that anybody who can entertain the thought that John loves the girl can also entertain the thought
that the girl loves John (and, mutatis mutandis, that any natural language that can express the proposition
that John loves the girl can also express the proposition that the girl loves John). This consequence of the
proposal that role rclations be handled Yy “role specific descriptors that represent the conjunction of an
identity and a role™ (Hinton, 1987) offers a particularly clcar example of how failure to postulate internal
structure in representations leads to failure to capture the systematicity of representational systems.
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ganism can think, but also what it can perceive. In consequence, such animals
would be able to learn to respond selectively to aRb situations but quite
unable to learn to respond selectively to bRa situations. (So that, though you
could teach the creature to choose the picture with the square larger than the
triangle, you couldn’t for the life of you teach it to choose the picture with
the triangle larger than the square.)

It is, to be sure, an empirical question whether the cognitive capacities of
infraverbal organisms are often structured that way, but we’re prepared to
bet that they are not. Ethological cases are the exceptions that prove the rule.
There are examples where salient environmental configurations act as ‘gestal-
ten’; and in such cases it’s reasonable to doubt that the mental representation
of the stimulus is complex. But the point is precisely that these cases are
exceptional; they’re exactly the ones where you expect that there will be some
special story to tell about the ecological significance of the stimulus: that it’s
the shape of a predaior, or the song of a conspecific ... etc. Conversely, when
there is no such story to tell you expect structuraily similar stimuli to elicit
correspondingly similar cognitive capacities. That, surely, is the least that a
respectable principle of stimulus generalization has got to require.

That infraverbal cognition is pretty generally systematic seems, in short,
to be about as secure as any empirical premise in this area can be. And, as
we've just seen, it’s a premise from which the inadequacy of Connectionist
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wardly, in any event, as it would from the assumption that such capacities
are generally productive.

3.3. Compositionality of representations

Compositionality is closely related to systematicity; perhaps they’re best viewed
as aspects of a single phenomenon. We will therefore foliow much the same
course here as in the preceding discussion: first we introduce the concept by
recaliing the standard arguments for the compositionality of natural lan-
guages. We then suggest that parallel arguments secure the compositionality
of mental representations. Since compositionality requires combinatorial syn-
tactic and semantic struciure, the compositionality of thought is evidence that
the mind is not 2 Connectionist network.

We said that the systematicity of linguistic competence consists in the fact
that “the ability to produce/understand some of the sentences is intrinsically
connected to the ability to produce/understand certain of the others™. We
now add that which seniences are systematically related is not arbitrary from
a semantic point of view. For example, being able to understand ‘John loves
the girl’ goes along with being able to understand ‘the girl loves John’, and
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there are coricspondingly close semantic relations between these sentences:
in order for the first to be true, John must bear to the girl the very same
relation that the truth of the second requires the girl to bear to John. By
contrast, there is no intrinsic connection between understanding eiiner oi the
John/girl sentesices and understanding semantically unret .ced formulas like
‘quarks are made of giuons’ or ‘the cat is on the mat’ or ‘2 + 2 = 4’; it looks
as though semantical relatedness and systematicity keep quite close company.

You might suppose that this covariance is covered by the same explanation
that accounts for systematicity per se; roughly, that sentences that are sys-
tematically related are composed from the same syntactic constituents. But,
in fact, you need a further assumption, which we’ll call the ‘principle of
compositionality’: insofar as a language is systematic, a lexical item must
make approximately the same semantic contribution to each expression in
which it occurs. It is, for example, only insofar as ‘the’ ‘girl’, ‘loves’ and
‘John’ make the same semantic contribution to ‘John loves the girl’ that they
make to ‘the girl loves John’ that understanding the one sentence implies
understanding the other. Similarity of constituent structure accounts for the
semantic relatedness between systematically related sentences only to the
extent that the semantical properties of the shared constituents are context-in-
dependent. N

Here it’s idioms that prove the rule: being able to understand ‘the’, ‘man’,
‘kicked’ and ‘bucket’ isn’t much help with understanding ‘the man kicked the
bucket’, since ‘kicked’ and ‘bucket’ don’t bear their standard meanings in this
context. And, just as you'd expect, ‘the man kicked the bucket’ is ot sys-
tematic even with respect to syntactically closely related sentences like ‘the
man kicked over the bucket’ (for that matter, it’s not systematic with respect
to the ‘the man kicked the bucket’ read literally).

It’s uncertain exactly how compositional natural languages actually are
(just as it’s uncertain exactly how systematic they are). We suspect that the
amount of context induced variation of lexical meaning is often overestimated
because other sorts of context sensitivity are misconstrued as violations of
compositionality. For example, the difference between ‘feed the chicken’ and
‘chicken to eat’ must involve an animal/food ambiguity in ‘chicken’ rather
than a violation of compositionality since if the context ‘feed the ..." could
induce (rather than select) the meaning animal, you would expect ‘feed the
veal’, ‘feed the pork’ and the like.?” Similarly, the difference between ‘good
book’, ‘good rest’ and ‘good fight’ is probably not meaning shift but syn-
categorematicity. ‘Good NP’ means something like NP that answers to the

T"We arc indcbted to Steve Pinker for this point.

-



Connectionism and cognitive architecture 43

relevant interest in NPs: a good book is one that answers to our interest in
books (viz., it’s good to read); a good rest is one that answers to our interest
in rests (viz., it leaves one refreshed); a good fight is one that answers to our
interest in fights (viz., it’s fun to watch or to be in, or it clears the air); and
so on. It’s because the meaning of ‘good’ is syncategorematic and has a
variable in it for relevant interests, that you can know that a good flurg is a
flurg that answers to the relevant interest in flurgs without knowing what
flurgs are or what the relevant interest in flurgs is (see Ziff, 1960).

In any event, the main argument stands: systematicity depends on compo-
sitionality, so to the extent that a natural language is systematic it must be
compositional too. This illustrates another respect in which systematicity ar-
guments can do the work for which productivity arguments have previously
been employed. The traditional argument for compositionality is that it is
required to explain how a finitely representable language can contain infi-
nitely many nonsynonymous expressions.

Considerations about systematicity offer one argument for compositional-
ity; considerations about entailment offer another. Consider predicates like
‘... is a brown cow’. This expression bears a straightforward semantical rela-
tion to the predicates ... is a cow’ and “... is brown’; viz., that the first
predicate is true of a thing if and only if both of the others are. That is, °...
is a brown cow’ severally entails ... is brown’ and ‘... is a cow’ and is entailed
by their conjunction. Moreover—and this is important—this semantical pat-
tern is not peculiar to the cases cited. On the contrary, it holds for a very
large range of predicates (see ‘... is a red square,’ ‘... is a funny old German
soldier,” “... is a child prodigy;’ and so forth).

How are we to account for these sorts of regularities? The answer seems
clear enough; ... is a brown cow’ entails ‘... is brown’ because (a) the second
expression is a constituent of the first; (b) the syntactical form ‘(adjective
noun),’ has (in many cases) the semantic force of a conjunction, and (c)
‘brown’ retains its semantical value under simplification of conjunction.
Notice that you need (c) to rule out the possibility that ‘brown’ means brown
when in it modifies a noun but (as it might be) dead when it’s a predicate
adjective; in which case ‘... is a brown cow’ wouldn’t entail ‘... is brown’ after
all. Notice too that (c) is just an application of the principle of composition.

So, here’s the argument so far: you need to assume some degree of com-
positionality of English sentences to account for the fact that systematicaily
related sentences are always semantically related; and to account for certain
regular parallelisms between the syntactical structure of sentences and their
entailments. So, beyond any serious doubt, the sentences of English must be
compositional to some serious extent. But the principle of compositionality
governs the semantic relations between words and the expressions of which
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they are constituents. So compositionality implies that (some) expressions
have constituents. So compositionality argues for (specifically, presupposes)

syntactic/semantic structure in sentences.

Now what about the compaositionality of mental representations? There is,
as you'd expect, a bridging argument based on the usual psycholinguistic
premise that one uses language to express ones thoughts: Sentences are used
to exnress thonghts; so if the ability to use some sentences is connected with
the ability to use certain other, semantically related sentences, then the ability
to think some thoughts must be correspondingly connected with the ability
to think certain other, semantically related thoughts. But you can only think
the thoughts that your mental representations can express. So, if the ability
to think certain thoughts is interconnected, then the corresponding represen-
tational capacities must be interconnected too; specifically, the ability to be
in some representational states must imply the ability to be in certain other,
semantically related representational states.

But then the question arises: how could the mind be so arranged that the
ability to be in one representational state is connected with the ability to be
in others that are semantically nearby? What account of mental represen-
tation would have this consequence? The answer is just what you’d expect
from the discussion of the linguistic material. Mental representations must
have internal structure, just the way that sentences do. In particular, it must
be that the mental representation that corresponds to the thought that John
loves the girl contains, as its parts, the same constituents as the mental rep-
resentation that corresponds to the thought that the girl loves John. That
would explain why these thoughts are systematically related; and, to the extent
that the semantic value of these parts is contexi-independent, that would explain
why these systematically related thoughts are also semantically related. So, by
this chain of argument, evidence for the compositionality of sentences is
evidence for the compositionality of the representational states of speaker/
hearers.

Finally, what about the compositionality of infraverbal thought? The argu-
ment isn’t much different from the one that we've just run through. We
assume that animal thought is largely systematic: the organism that can per-
ceive (hence learn) that aRb can generally perceive (/learn) that bRa. But,
systematically related thoughts (just like systematically related sentences) are
generally semantically related too. It’s no surprise that being abie to learn
that the triangle is above the square implies being able to learn that the
square is above the triangle; whereas it would be very surprising if being able
to learn the square/triangle facts implied being able to learn that quarks are
made of gluons or that Washington was the first President of America.

So, then, what explains the correlation between systematic relations and
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semantic relations in infraverbal thought? Clearly, Connectionisi models
don’t address this question; the fact that a network contains a node labelled
X has, so far as the constraints imposed by Connectionist architecture are
concerned, ne implications at all for the labels of the other nodes in the
network; in particular, it doesn’t imply that there will be nodes that represent
thoughts that are semantically close to X. This is just the semantical side of
the fact that network architectures permit arbitrarily punctate mental lives.

But if, on the other hand, we make the usual Classicist assumptions (viz.,
that systematically related thoughts share constituents and that the semantic
values of these shared constituents are context independent) the correlation
between systematicity and semantic relatedness follows immediately. For a
Classicist, this correlation is an ‘architectural’ property of minds; it couldn’t
but hold if mental representations have the general properties that Classical
models suppose them to.

What have Connectionists to say about these matters? There is some tex-
tual evidence that they are tempted to deny the facts of compositionality
wholesale. For example, Smoiensky {1988) claims that: “Surely ... we would
get quite a different representation of ‘coffee’ if we examined the difference
between ‘can with coffee’ and ‘can without coffee’ or ‘tree with coffee’ and
‘tree without coffee’; or ‘man with coffee’ and ‘man without coffee’ ... context
insensitivity is not something we expect to be reflected in Connectionist rep-
resentations ....”.

It’s certainly true that compositionality is not generaily a feature of Con-
nectionist representations. Connectionists can’t acknowledge the facts uf
compositionality because they are committed to mental representations that
don’t have combinatorial structure. But to give up on compositionality is to
take ‘kick the bucket’ as a model for the relation between syntax and seman-
tics; and the consequence is, as we’ve seen, that you make the systematicity
of language (and of thought) a mystery. Cn the other hand, to say that ‘kick
the bucket’ is aberrant, and that the right model for the syntax/semantics
relation is (e.g.) ‘brown cow’, is to start down a trail which leads, pretty
inevitably, to acknowledging combinatorial structure in mental representa-
tion, hence to the rejection of Connectionist networks as cognitive models.

We don’t think there’s any way out of the need to acknowledge the com-
positionality of natural languages and of mental representations. However,
it’s been suggested (see Smolensky, op cit.) that while the principle of com-
positionality is false (because content isn’t contexi invariant) there is
nevertheless a “family resemblance” between the various meanings that a
symbol has in the various contexts in which it occurs. Since such proposals
generally aren’t elaborated, it’s unclear how they’re supposed to handle the
salient facts about systematicity and inference. But surely there are going to
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be serious problems. Consider, for example, such inferences as

(i) Turtles are slower than rabbits.
(ii) Rabbits are slower than Ferraris.

(iii) Turtles are slower than Ferraris.

The soundness of this inference appears to depend upon (a) the fact that
the same relation (viz., slower than) holds between turtles and rabbits on the
one hand, and rabbits and Ferraris on the other; and (b) the fact that that
relation is transitive. If, however, it’s assumed (contrary to the principle of
compositionality) that ‘slower than’ means something different in premises
(i) and (i) (and presumably in (iii) as well)—so that, strictly speaking, the
relation that holds between turtles and rabbits is not the same one that holds
between rabbits and Ferraris—then it’s hard to see why the inference should
be valid.

Talk about the relations being ‘similar’ only papers over the difficulty since
the problem is then to provide a notion of similarity that will guaranty that
if (i) and (Gi) are true, so too is (iii). And, so far at least, no such notion of
similarity has been forthcoming. Notice that it won’t do to require just that
the relations all be similar in respect of their transitivity, i.e., that they all be
transitive. On that account, the argument from ‘turtles are slower than rab-
bits’ and ‘rabbits are furrier than Ferraris’ to ‘turtles are slower than Ferraris’
would be valid since ‘furrier than’ is transitive too.

Until these sorts of issues are attended to, the proposal to replace the
compositicnal principle of context invariance with a notion of “approximate
equivalence ... across contexts” (Smolensky, 1988) doesn’t seem to be much
more than hand waving.

3.4. The systematicity of inference

In Section 2 we saw that, according to Classical theories, the syntax of mental
representations mediates between their semantic properties and their causal
role in mental processes. Take a simple case: It’s a ‘logical’ principle that
conjunctions entail their constituents (so the argument from P&Q to P and
to Q is valid). Correspondingly, it’s a psychological law that thoughts that
P&Q tend to cause thoughts that P and thoughts that O, all else being equal.
Classical theory exploiis the constituent structure of mental representations
to account for both these facts, the first by assuming that the combinatorial
semantics of mental representations is sensitive to their syntax and the second
by assuming that mental processes apply to mental representations in virtue
of their constituent structure.

A consequence of these assumptions is that Classical theories are commit-



Connectionism and cognitive architecture 47

ted to the following striking prediction: inferences that are of similar logical
type ought, pretty generally,® to elicit correspondingly similar cognitive
capacities. You shouldn’t, for example, find a kind of mental life in which
you get inferences from P&Q&R to P but you don’t get inferences from P&Q
to P. This is because, according to the Classical account, this logically
homogeneous class of inferences is carried out by a correspondingly
homogeneous class of psychoiogicai mechanisms: The premises of both infer-
ences are expressed by mental rcpresentations that satisiy ihe same syntactic
analysis (viz., §$,&S,&S:& ... S,); and the process of drawing the inference
corresponds, in both cases, to the same formal operation of detaching the
constituent th-: expresses the conclusion.

The idea that organisms should exhibit similar cognitive capacities in re-
spect of logically similar inferences is so natural that it may seem unavoidable.
But, on the contrary: there’s nothing in principle to preclude a kind of cogni-
tive model in which inferences that are quite similar from the logician’s point
of view are nevertheless computed by quite different mechanisms; or in which
some inferences of a given logical type are computed and other inferciices of
the same logical type are not. Consider, in particuiar, the Connectionist ac-
count. A Connectionist can certainly modei a mental life in which, if you can
reason from P&QJ&R to P, then you can also reason from P&Q to P. For
example, the network in (Figure 3) would do:

Figure 3. A possible Connectionist network which draws inferences from P& Q&R to
P and also draws inferences from P&Q to P.

*The hedge is meant to exclude cases where inferences of the same logical type nevertheless differ in
complexity in virtue of, for example, the length of their premises. The inference from (A.BvCyvDvE) and
(-B&-C&~D&-E) to A is of the same logical type as the inference from AvB and —-B to A. But it wouldn't
be very surprising, or very intercsting, if there were minds that could handle the second inference but not the
first.
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But notice that a Connectionist can equally model a mental life in which
you get one of these inferences and not the other. In the present case, since
there is no structural relation between the P& Q&R node and the P&Q node
(remember, all nodes are atomic; don’t be misled by the node labels) there’s
no reason why a mind that contains the first should also contain the second,
or vice versa. Analogously, there’s no reason why you shouldn’t get minds
that simplify the premise John loves Mary and Bill hates Mary but no others;
or minds that simplify premises with 1, 3, or 5 conjuncts, but don’t simplify
premises with 2, 4, or 6 conjuncts; or, for that matter, minds that simplify
only premises that were acquired on Tuesdays ... etc.

In fact, the Connectionist architecture is utterly indifferent as among these
possibilities. That’s because it recognizes no notion of syn:ax according to
which thoughts that are alike in inferential role (e.g., thoughts that are all
subject to simplification of conjunction) are expressed by mental representa-
tions of correspondingly similar syntactic form (e.g., by mental representa-
tions that are all syntactically conjunctive). So, the Connectionist architecture
tolerates gaps in cognitive capacities; it has no mechanism ic enforce the
requirement that logically homogeneous inferences should be e¢xecuted by
correspondingly homogeneous computational processes.

But, we claim, you don’t find cognitive capacities that have these sorts of
gaps. You don’t, for example, get minds that are prepared to infer John went
to the store from John and Mary and Susan and Saily went to the store and
from John and Mary went to the store but nct from John and Mary and Susan
went to the store. Given a notion of logical syntax—the very notion that the
Classical theory of mentation requires to get its account of mental processes
off the ground—it is a truism that you don’t get such minds. Lacking a notica
of logical syntax, it is a mystery that you don’t.

3.5. Summary

It is perhaps obvious by now that all the arguments that we’ve been review-
ing—the argument from systematicity, the argument from compositionality,
and the argument from influential coherence—are really much the same: If
you hold the kind of theory that acknowledges structured representations, it
must perforce acknowledge representations with similar or identical struc-
tures. In the linguistic cases, constituent analysis implies a taxonomy of sen-
tences by their syntactic form, and in the inferential cases, it implies a
taxonomy of arguments by their logical form. So, if your theory also acknowl-
edges mental processes that are structure sensitive, then it will predict that
similarly structured representations will generally play similar roles in
thought. A theory that says that the sentence ‘John loves the girl’ is made
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out of the same parts as the sentence ‘the girl loves John’, and made by
applications of the same rules of composition, will have to go out of its way
to explain a linguistic competence which embraces one sentence but not the
other. And similarly, if a theory says that the mental representation that
corresponds tc the thought that P& Q&R has the same (conjunctive) syntax
as thie mental representation that corresponds io the thought that P&Q and
that mental processes of drawing inferences subsume mental representations
in virtue of their syntax, it will have to go out of its way to exp!ain inferential
capacities which embrace the one thought but not the other. Such a compe-
tence would be, at best, an embarrassment for the theory, and at worst a
refutation.

By conirast, since the Connectionist architecture recognizes no combinat-
orial structure in mental representations, gaps in cognitive competer.ce should
proliferate arbitrarily. It’s not just that you'd expect to get them from time
to time; it’s that, on the ‘no-structure’ story, gaps are the unmarked case. It’s
the systematic competence that the theory is required to treat as an embarrass-
ment. But, as a matter of fact, inferential competences are blatantly systemat-
ic. So there must be something deeply wrong with Connectionist architec-
ture.

What'’s deeply wrong with Connectionist architecture is this: Because it
acknowledges neither syntactic nor semantic structure in mental representa-
tions, it perforce treats them not as a generated set but as a list. But lists,
qua lists, have no structure; any collection of items is a possible list. And,
correspondingly, or: Connectionist principles, any coliection of (causaily con-
nected) representational states is a possibie mind. So, as far as Connectionist
architecture is concerned, there is nothing to prevent minds that are arbitrar-
ily unsystematic. But that result is preposterous. Cognitive capacities come in
structurally related clusters; their systematicity is pervasive. All the evidence
suggests that punctate minds can’t happen. This argument seemed conclusive
against the Connectionism of Hebb, Osgood and Hull twenty or thirty years
ago. So far as we can tell, nothing of any importance has happened to change
the situation in the meantime.”

MHistorical footnote: Connectionists are Associationisis, but not every Associationist holds that mental
representations must be unstructured. Hume didn’t, for example. Hume thought that mental_representations
are rather like pictures, and pictures typically have a compositional semantics: the parts of a picture of a horse
are generally pictures of horse parts.

On the other hand, allowing a compositional semantics for mental representations doesn’t f"’ an As-
sociationist much good sc long as he is true to this spirit of his Associationism. The virtue of having mental
represcitations with structure is that it allows for structure sensitive operations to be de.fu-wd over !ht:.m;
specifically, it allows for the sort of operations that cventuate in productivity and systematicity. Asspcnatmn
is not, however, such an operation; all it can do is build an internal model of redundancics in cxperlc'.ncel)z
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ture, it is nonetheless compatible with that architecture. It is, after all, per-
fectly possibie to follow a policy of building networks th2: have aRb nodes
only if they have bRa nodes ... etc. There is therefore nothing to stop a
Connectionist from stipulating—as an independent postulate of his theory of
mind—that all biologically instantiated networks are, de facto, systematic.

But this misses a crucial point: It’s not enough just to stipulate systematic-
ity; one is also required to specify a mechanism that is able to enforce the
stipulation. To put it another way, it’s not enough for a Conncclionist to
agree that all minds are systematic; he must also explain how nature contrives
to produce only systematic minds. Presumably there would have to be some
sort of mechanism, over and above the ones that Connectionism per se posits,
the functioning of which insures the systematicity of biologically instantiated
networks; a mechanism such that, in virtue of its operation, every network
that has an aRb node also has a bRa nocc ... and so forth. There are,
however, no proposals for such a mechanism. Or, rather, there is just one:
The only mechanism that is known to be able to produce pervasive system-
aticity is Classical architecture. And, as we have seen, Classical architecture
is not compatible with Connectionism since it requires internally structured
representations.

4. The lure of Connectionism

The current popularity of the Connectionist approach among psychologists
and philosophers is puzzling in view of the sorts of problems raised above;
problems which were largely responsible for the development of a syntax-
based (proof theoretic) notion of computation and a Turing-style, symbol-
processing notion of cognitive architecture in the first place. There are, how-
ever, a number of apparently plausible arguments, repeatediy encountered

altering the probabilities of transitions among mental states. So far as the problems of productivity and
systematicity are concerned, an Associationist who acknowledges structured representations is in the position
of having the can but not the opener.

Hume, in fact, cheated: he allowed himself not just Associaticn but also “Imagination™, which he takes
to be an ‘active’ facuity that can produce new concepts out of old parts by a process of analysis and recombi-
nation. (The idea of a unicorn is pieced together out of the idea of a horse and the idea of a horn, for example.)
Qua associationist Hume had, of course, no right to active mental faculties. But allowing imagination in gave
Hume precisely what modern Connectionists don't have: an answer to the questics fiow mentz! processes can
be productive. The moral is that if you've got structured representations, the tcmptation to postulate structurc
sensitive operations and an exccutive to appiy them is practically irresistible.
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in the literature, that stress certain limitations of conventional computers as
models of brains. These may be seen as favoring the Connectionist alterna-
tive. We will sketch a number of these before discussing the general problems
which they appear to raise.

Rapidity of cognitive processes in relation to neural speeds: the “hundred
step” constraint. It has been observed (e.g., Feldman & Ballard, 1982)
that the time required to execute compuier instruc_ions is in the order
of nanoseconds, whereas neurons take tens of milliseconds to fire. Con-
sequently, in the time it takes people to carry out many of the tasks at
which they are fluent (like recognizing a word or a picture, either of
which may require considerably less than a second) a serial neurally-in-
stantiated program would only be able to carry out about 100 instruc-
tions. Yet such tasks might typically require many thousands—or even
millions—of instructions in present-day computers (if they can be done
at all). Thus, it is argued, the brain must operate quite differently from
computers. In fact, the argument goes, the brain must be organized in
a highly parallel manner (“massively parallel” is the preferred term of
art).

Difficulty of achieving large-capacity pattern recognition and content-
based retrieval in conventional architectures. Closely related to the issues
about time constraints is the fact that humans can store and make use
of an enormous amount of information—apparently without effort
(Fahlman & Hinton, 1987). One particularly dramatic skill that people
exhibit is the ability to recognize patterns from among tens or even
hundreds of thousands of alternatives (e.g., word or face recognition).
In fact, there is reason to believe that many expert skills may be based
on large, fast recognition memories (see Simon & Chase, 1973). If one
had to search through one’s memory serially, the way conventional com-
puters do, the complexity would overwhelm any machine. Thus, the
knowledge that people have must be stored and retrieved differently
from the way conventional computers do it.

Conventional computer models are committed to a different etiology for
“rule-governed” behavior and “exceptional” behavior. Classical
psychological theories, which are based on conventional computer ideas,
typically distinguish between mechanisms that cause regular and diver-
gent behavior by postulating systems of explicit unconscious rules to
explain the former, and then attributing departures from these rules to
secondary (performance) factors. Since the divergent behaviors occur
very frequently, a better strategy would be to try to account for both -
tvnes of behavior in terms of the same mechanism.
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Lack of progress in dealing with processes that are nonverbal or intuitive.
Most of our fluent cognitive skills do not consist in accessing verbal
knowledge or carrying out deliberate conscious reasoning (Fahlman &
Hinton, 1987; Smolensky, 1988). We appear tc know many things that
we would have great difficulty in describing verbally, including how to
ride a bicycle, what our close friends look like, and how to recall the
name of the President, etc. Such knowledge, it is argued, must not be
stored in linguistic form, but in some other “implicit” form. The fact
that conventional computers typically operate in a “linguistic mode”,
inasmuch as they process information by operating on syntactically struc-
tured expressions, may explain why there has been relatively little suc-
cess in modeling implicit knowledge.

Acute sensitivity of conventional architectures to damage and noise. Un-
like digital circuits, brain circuits must tolerate noise arising from spon-
taneous neural activity. Moreover, they must tolerate a moderate degree
of damage without failing completely. With a few notable exceptions, if
a part of the brain is damaged, the degradation in performance is usually
not catastrophic but varies more or less gradually with the extent of the
damage. This is especially true of memory. Damage to the temporal
cortex (usually thought to house memory traces) does not result in selec-
tive loss of particular facts and memories. This and similar facts about
vrain damaged patients suggests that human memory representations,
and perhaps many other cognitive skills as well, are distributed spatially,
rather than being neurally localized. This appears to contrast with con-
ventional computers, where hierarchical-style control keeps the crucial
decisions highly localized and where memory storage consists of an array
of location-addressable registers.

Storage ir conventional architectures is passive. Conventional computers
have a passive memory store which is accessed in what has been called
a “fetch and execute cycle”. This appears to be quite unlike human

memory. For example, according to Kosslyn and Hatfield (1984, pp.
1022, 1029):

In computers the memory is static: once an entry is put in a given location,
it just sits there until it is operated upon by the CPU .... But consider a
very simple experiment: Imagine a letter A over and over again ... then
switrh to the letter B. In a model employing a Von Neumann architecture
the ‘fatigue’ that inhibited imaging the A would be due to some quirk in
the way the CPU executes a given instruction .... Such fatigue should
generalize to all obiects imaged because the routine responsible for imag-
ing was less effective. But experiments have demonstrated that this is not
true: specific objects become more difficult to image, not all objects. This
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finding is more easilv explained by an analogy to the way invisible ink
fades of its own accord ...: with invisible ink, the represeniation itself is
doing something—there is no separate processor working over it ... .

Conventional rule-based systems depict cognition as “all-or-none”. But
cognitive skills appear to be characterized by various kinds of con-
tinuities. For example:

Continuous variation in degree of applicability of different principles, or
in the degree of relevance of different constraints, “rules”, or proce-
dures. There are frequent cases (especially in perception and memory
retrieval), in which it appears that a variety of different constraints are
brought to bear on a problem simultaneously and the outcome is a
combined effect of all the different factors (see, for exampie, the infor-
mal discussicn by McClelland, Rumelhart & Hinton, 1986, pp. 3-9).
That’s why “constraint propagation” techniques are receiving a great
deal of attention in artificial intelligence (see Mackworth, 1987).
Nondeterminism of human behavior: Cognitive processes are never
rigidly determined or precisely replicable. Rather, they appear to have
a significant random or stochastic component. Perhaps that’s because
there is randomness at a microscopic level, caused by irrelevant
biochemical or electrical activity or perhaps even by quantum mechani-
cal events. To model this activity by rigid deterministic rules can only
lead to poor predictions because it ignores the fundamentally stochastic
nature of the underlying mechanisms. Moreover, deterministic, all-or-
none models will be unable to account for the gradual aspect of learning
and skill acquisition.

Failure to display gracefui degradation. When humans are unable to do
a task perfectly, they nonetheless do something reasonable. If the par-
ticular task does not fit exactly into some known pattern, or if it is only
partly understood, a person will not give up or prodvce nonsensical
behavior. By contrast, if a Classical rule-based computer program fails
to recognize the task, or fails to match a pattern to its stored represen-
tations or rules, it usually will be unable to do anything at all. This
suggests that in order to display graceful degradation, we must be ab}e
to represcnt prototypes, match patterns, recognize problems, etc., in
various degrees.

Conventional models are dictated by curreni technical features of comput-
ers and take little or no account of the facts of neuroscience. Classical
symbol processing systems provide no indication of how the kinds of
processes that they postulate could be realized by a brain. The fact that
this gap between high-level systems and brain archiiccture is so large
might be an indication that these models are on the wrong track.
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explicitly designed for t he convemence of programmers Perhaps thls
includes even the assumption that the description of mental processes
at the cognitive level can be divorced from the description of their phys-
ical realization. At a minimum, by building our models to take account
of what is known about neural structures we may reduce the risk of
being misied by metaphors based on contemporary ccmpuier architec-
tures.

Replies: Why the usual reasons given for preferring a Connectionist
architecture are invalid

It seems to us that, as arguments against Classical cognitive architecture, all
these points suffer from one or other of the following two defects.

(1) The chjections depend on properties that are not in fact intrinsic to
Classical architectures, since there can be perfectly natural Classical
models that don’t exhibit the objectionable features. (We believe this
to be true, for example, of the arguments that Classical rules are explicit
and Classical operations are ‘all or none’.)

(2) The objections are true of Classical architectures insofar as they are
implemented on current computers, but need not be true of such archi-
tectures when differently (e.g., neurally) implemented. They are, in
other words, directed at the implementation level rather than the cogni-
tive level, as these were distinguished in our earlier discussion. (We
believe that this is true, for example, of the arguments about speed,
resistance to damage and noise, and the passivity of memory.)

In the remainder of this section we will expand on these two points and
relate them to some of the argumernts presented above. Following this analy-
sis, we will present what we believe may be the most tenable view of Connec-
tionism; namely that it is a theory of how (Classical) cognitive systems might
be implemented, either in real brains or in some ‘abstract neurology’.

Parallel computation and the issue of speed

Consider the argument that cognitive processes must involve large scale par-
allel computation. In the form that it takes in typical Connectionist discus-
sions, this issue is irrelevant to the adequacy of Classical cognitive architec-
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ture. The “hundred step constraiit”, for example, is clearly directed at the
implementation level. All it rules out is the (absurd) hypothesis that cognitive
architectures are implemented in the brain in the same way as they are im-
plemented on electronic computers.

If you ever have doubts about whether a proposal pertains to the im-
plementation ievei or the symbolic level, a useful heuristic is to ask yourself
whether what is being claimed is true of a conventional computer—such as
the DEC VAX—at its implementation level. Thus although most algorithms
that run on the VAX are serial,* at the implementation level such computers
are ‘massively parallel’; they quite literally involve simultaneous electrical
activity throughout almost the entire device. For exampie, every memory
access cycle involves pulsing every bit in a significant fraction of the sysiem’s
memory registers—since memory access is essentially a destructive read and
rewrite process, the system clock regularly pulses and activates most of the
central processing unit, and so on.

The moral is that the absolute speed of a process is a property par excel-
lence of its implementation. (By contrast, the relative speed with which a
system responds to different inputs is often diagnostic of distinct processes;
but this has always been a prime empirical basis for deciding among alterna-
tive algorithms in information processing psychology). Thus, the fact that
individual neurons require tens of miliseconds to fire can have no bearing on
the predicted speed at which an algorithm will run unless there is at least a
partial, independently motivated, theory of how the operations of the functional
architecture are implemented in neurons. Since, in the case of the brain, it is
not even certain that the firing®! of neurons is invariably the relevant im-
piementation property (at least for higher level cognitive processes like learn-
ing and memory) the 100 step “constraint” excludes nothing.

Finally, absolute constraints on the number of serial steps that a mental
process can require, or on the time that can be required to execute them,
provide weak arguments against Classical architecture because Classical ar-
chitecture in no way excludes parallel execution of multiple symbolic proces-
ses. Indeed, it seems extremely likely that many Classical symbolic processes

%Even in the case of a conventional computer, whether it should be viewed as executing a serial or a

VAX can be used to simulate (i.c., to implement) a virtual machine with a parallel architecture. In that case
the relevant algorithm wculd be a parallel one.

MThere are, in fact, a number of different mechanisms of neural interaction (e.g., the “locai interactions”
described by Rakic, 1975). Morcover, a large number of chemical processes take place at the dendrites,
covering a wide range of time scales, so even if dendritic transmission were the only relevant mechanisim, we
still wouldn't know what time scale to use as our cstimate of ncural action in general (sce, for example, Black,
1986).
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organizations; that mlght mdeed imply new rchltectures but they are all
Classical in our sense, since they all share the Classical conception of compu-
tation as symbol-processing. (For examples of serious and interesting propos-
als on organizing Classicai processors into large paraliel networks, see
Hewett’s, 1977, Actor system, Hillis’, 1985, “Connecticn Machine”, as well
as any of a number of recent commercial multi-processor machines.) The
point here is that an argument for a network of parallel computers is not in
and of itself cither an argument against a Classical architecture or an argu-
ment for a Connectionist architecture.

Resistance to noise and physical damage (and the argument for distributed
representation)

Some of the other advantages claimed for Connectionist architectures over
Ciassical ones are just as clearly aimed at the implementation level. For
example, the “resistance tc physical damage” criterion is so obviously a mat-
ter of implementation that it should hardly arise in discussions of cognitive-
level theories.

It is true that a certain kind of damage-resistance appears to be incompat-
ible with localization, and it is also true that representations in PDP’s are
distributed over groups of units (at least when “coarse coding” is used). But
distribution over units achieves damage-resnstance only if it entails that repre-
sentations are also neurally distributed.”? However, neural distribution of
representations is just as compatible with Classicai architectures as it is with
Connectionist networks. In the Classical case all you need are memory regis-
ters that distribute their contents over physical space. You can get that with
fancy storage systems like optical ones, or chemical ones, or even with regis-
ters made of Connectionist nets. Come to think of it, we already had it in
the old style “ferrite core” memories!

*Unless the ‘units’ in a Connectionist network really arc assumed to have different spatially-focused loci
in the brain, talk about distributed representation is likely to be extremely mlsleadmg In particular, if units
are merely functionally individuated, any amount of distribution or functional entities is compatible with any
amount of spatial compactness of their neural representauons But it is not ciear that units do, in fact,
correspond to any anatomically identifiable locations in the biain. In the light of the way Connectionist
mechanisms are designed, it may be appropriate to view units and links as functional/mathematical entitics
(what psychologu,ts would call “hypothetical constructs™) whose ncurological interpreiation remains cntirely
open. (This is, in fact, the view that some Conncctionists take; sce Smolensky, 1988.) The point is that
distribution over mathematicai constructs does not buy you damage resistance; only neural distribution docs!
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The physical requirements of a Classical symbol-processing system are eas-
ily misunderstood. (Confounding of physical and functional properties is
widespread in psychological theorizing in general; for a discussion of this
confusion in relation to metrical properties in models of mental imagery, see
Pylyshyn 1981.) For example, conventional architecture requires that there
be distinct symbolic expressions for each state of affairs that it can represent.
Since such expressions often have a structure consisting of concatenated
parts, the adjacency relation must be instantiated by some physical relation
when the architecture is implemented (see the discussion in footnote 9).
However, since the relation to be physically realized is functional adjacency,
there is no necessity that physical instantiations of adjacent symbols be spa-
tially adjacent. Similarly, although complex expressicas are made out of atom-
ic elements, and the distinction between atomic and complex symbols must
somehow be physically instantiated, there is no necessity that a token of an
atomic symbol be assigned a smaller region in space than a token of a complex
symbol; even a token of a complex symbol of which it is a constituent. In
Classical architectures, as in Connectionist networks, functional elements can
be physically distributed or localized to any extent whatever. In a VAX (to
use our heuristic again) pairs of symbols may certainly be functionally adja-
cent, but the symbol tokens are nonetheless spatially spread through many
locations in physical memory.

In short, the fact that a property (like the position of a symbol within an
expression) is functionally local has no implications one way or the other for
damage-resistance or noise tolerance unless the functional-neighborhood
metric corresponds to some appropriate physical dimension. When that is the
case, we may be able to predict adverse consequences that varying the phys-
ical property has on objects localized in functional space (e.g., varying the
voltage or line frequency might damage the left part of an expression). But,
of course, the situation is exactly the same for Connectionist systems: even
when they are resistant to spatially-local damage, they may not be resistant
to damage that is local along some other physical dimensions. Since spatially-
local damage is particularly frequent in real world traumas, this may have
important practical consequences. But so long as our knowledge of how cog-
nitive processes might be mapped onto biain tissue remains very nearly
nonexistent, its message for cognitive science remains moot.

“Soft” constraints, continuous magnitudes, stochastic mechanisms, and active
symbols

The notion that “soft” constraints which can vary continuously (as degree of
activation does), are incompatible with Classical rule-based symbolic systems
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functional architecture and depends on continuously varying magmtudes In-
deed, this is typically how it is done in practical “expert systems” which, for
example, use a Bayesian mechanism in their productlon-system ruie-interpret-
er. The soft or stochastic nature or rule-based processes arises from the inter-
action of deterministic rules with real-valued properties of the implementa-
IIOH or with llOlsy lllpl,IIS or IlOlS)’ information transmission.

It should also be noted that rule applications need not issue in “ali or
none” behaviors since several rules may be activated at once and can have
interactive effects on the outcome. Or, alternatively, each of the activated
rules can generate independent parallel effects, which might get sorted out
later—depending say, on which of the parallel streams reaches a goal first.
An important, though sometimes neglected point about such aggregate prop-
erties of overt behavior as continuity, “fuzziness”, randomness, etc., is that
they need not arise from underlying mechanisms that are themselves fuzzy,
continuous or random. It is not only possible in principle, but often quite
reasonable in practice, to assume that apparently variable or nondeterministic
behavior arises from the interaction of multiple deterministic sources.

A similar point can be made about the issue of “graceful degradation”.
Classical architecture does not require that when the conditions for applying
the available rules aren’t precisely met, the process should simply fail to do
anything at all. As noted above, rules could be activated in some measure
depending upon how close their conditions are to holding. Exactly what hap-
pens in these cases may depend on how the rule-system is implemented. On
the other hand, it couid be that the failure to display “graceful degradation”
really is an intrinsic limit of the current class of models or even of current
approaches to designing intelligent systems. It seems clear that the psycholog-
ical models now available are inadequate over a broad spectrum of measures,
so their problems with graceful degradation may be a special case of their
general unintelligence: They may simply not be smart enough to know what
to do when a limited stock of methods fails to apply. But this needn’t be a
principled limitation of Classical architectures: There is, to our knowledge,
no reason to believe that something like Newell’s (1969) “hierarchy of weak
methods™ or Laird, Rosenberg and Newell’s (1986) “universal subgoaling”,
is in principle incapable of dealing with the problem of graceful degradation.
(Nor, to our knowledge, has any argument yet been offered that Connec-
tionist architectures are in principle capable of dealing with it. In fact current
Connectionist models are every bit as graceless in their modes of failure as
ones based on Classical architectures. For example, contrary to some claims,
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models such as that of McClelland and Kavvamoto, 1986, fail quite unnatu-
rally when given incomplete information.)

In short, the Classical theorist can view stochastic properties of behavior
as emerging from interactions between the model and the intrinsic properties
of the physical medium in which it is realized. It is essential 0 remember
that, from the Classical point of view, overt behavior is par excellence an
interaction effect, and symbol manipulations are supposed to be only one of
the interacting causes.

These same considerations apply to Kosslyn and Hatfield’s remarks
(quoted earlier) about the commitment of Classical models to ‘passive’ versus
‘active’ representations. It is true, as Kosslyn and Hatfield say, that the rep-
resentations that Von Neumann machines manipulate ‘don’t do anything’
until a CPU operates upon them (they don’t decay, for example). But, even
on the absurd assumption that the mind has exactly the architecture of some
contemporary (Von Neumann) computer, it is obvious that its behavior, and
hence the behavior of an organism, is determined not just by the logical
machine that the mind instantiates, but also by the protoplasmic machine in
which the logic is realized. Instantiated representations are therefore bound
to be active, even according to Classical models; the questicn is whether the
kind of activity they exhibit should be accounted for by the cognitive model
or by the theory of its implementation. This question is empirical and m.ast not
be begged on behalf of the Connectionist view. (As it is, for examplz, in such
passages as “The brain itself does not manipulate symbols; the brain is the
medium in which the symbols are floating and in which they trigger each
other. There is no central manipulator, no central program. There is simpiy
a vast collection of ‘teams’—patterns of neural firings that, like teams of ants,
trigger other patterns of neural firings ... . We feel those symbols churning
within ourselves in somewhat the same way we feel our stomach churning.”
(Hofstadter, 1983, p. 279). This appears to be a serious case of Formicidae
in machina: ants in the stomach of the ghost in the machine.)

Explicitness of rules

According to McClelland, Feldman, Adelson, Bower, and McDermott (1986,
p. 6), “... Connectionist models are leading to a reconceptualization of key
psychological issues, such as the nature of the representation of knowledge
... . One traditional approach to such issues treats knowledge as a body of
rules that are consulted by processing mechanisms in the course of processing;
in Connectionist models, such knowledge is represented, often in widely dis-
tributed form, in the connections among the processing units.”

As we remarked in the Introduction, we think that the claim that most
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psychological processes are rule-implicit, and the corresponding claim that
divergent and compliant behaviors result from the same cognitive
mechanisms, are both interesting and tendentious. We regard these matters
as entirely empirical and, in many cases, open. In any case, however, one
should not confuse the rule-implicit/rule-explicit distinction with the distinc-
tion between Classical and Connectionist architecture.

This confusion is just ubiquitous in the Connectionist literature: it is uni-
versally assumed by Connectionists that Classical models are committed to
claiming that regular behaviors must arise from explicitly encoded rules. But
this is simply untrue. Not only is there ii0 reason why Classical models are
required to be rule-explicit but—as a matter of fact—arguments over which,
if any, rules are explicitly mentally represented have raged for decades within
the Classicist camp. (See, for relatively recent examples, the discussion of the
explicitness of grammatical rules in Stabler, 1985, and replies; for a
philosophical discussion, see Cummins, 1983.) The one thing that Classical
theorists do agree about is that it can’t be that il behavioral regularities are
determined by explicit rules; at least some of the causal determinants of
compliant behavior must be implicit. (The arguments for this parallel Lewis
Carroll’s observations in “What the Tortoise Said to Achilles”; see Carroll
1956.) All other questions of the explicitness of rules are viewed by Classicists
as moot; and every shade of opinion on the issue can be found in the Classicist
camp.

The basic point is this: not all the functions of a Classical computer can be
encoded in the form of an explicit program; some of them must be wired in.
In fact, the entire program can be hard-wired in cases where it does not need
to modify or otherwise examine itself. In such cases, Classical machines can
be rule implicit with respect to their programs, and the mechanism of their
state transitions is entirely subcomputational (i.e., subsymbolic).

“'An especially flagrant example of how issues about architecture get confused with issues about the
explicitness of rules in the Connectionist literature occurs in PDP, Chapter 4, where Rumelhart and McClel-
land argue that PDP models provide “... a rather plausible account of how we can come to have innate
*knowledge™. To the extent that stored knowledge is assumed to be in the form of explicit, inaccessible rules
... it is hard to see how it could ‘get into the head’ of the newborn. It seems to us implausible that the newborn
possesses claborate symbol systems and the systems for interpreting them required to put these explicit,
inaccessible rules to use in guiding behavior. On our account, we do not need to attribute such complex
machinery. If the innate knowledge is simply the prewired connections, it is encoded from the start in just the
right way to be of use by the processing mechanisms.” (p. 42). A priorizing about what it does and doesn’t
seem likely that newborns possess strikes us as a bad way to do developmental cognitive psychology. But
Rumclhart and McClelland’s argument is doubly beside the point since a Classicist who shares their prejudices
can perfectly well avail himsclf of the same solution that they endorse. Classical architecture does not require
“complex machinery™ for “interpreting” explicit rules since classical machines do not require explicit rules at
all. Classical architecture is thercfore neutral on the Empiricism/Nativism issuc (and so is Conncctionism, as
Rumelhart and McClelland clsewhere correctly remark).
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data structures. Data structure s are the ob]ects that the machme transforms,
not the rules of transformation. In the case of programs that parse natural
language, for example, Classical architecture requires the explicit representa-
tion of the structural descriptions of sentences, but is entirely neutrai on the
explicitness of grammars, contrary to what many Connectionists believe.

One of the imporiant inventions in the history of computers—the stored-
program computer—makes it possible for programs to take on the role of
data structures. But nothing in the architecture requires that they always do
so. Similarly, Turing demonsirate.: ihat there exists an abstract machine (the
so-called Universal Turing Machine) which can simulate the behavior of any
target (Turing) machine. A Universal machine is “rule-explicit” about the
machine it is simulating (in the sense that it has an explicit representation of
that machine which is sufficient to specify its behavior uniquely). Yet the
target machine can perfectly well be “rule-implicit” with respect to the rules
that govern its behavior.

So, then, you can’t attack Classical theories of cognitive architecture by
showing that a cognitive process is rule-implicit; Classical architecture permits
rule-explicit processes but does not require them. However, you can attack
Connectionist architectures by showing that a cognitive process is rule explicit
since, by definition, Connectionist architecture precludes the sorts of logico-
syntactic capacities that are required to encode rules and the sorts of execu-
tive mechanisms that are required to apply them.*

if, therefore, there shouid prove to be persuasive arguments for rule
explicit cognitive processes, that would be very embarrassing for Connec-
tionists. A natural place to look for such arguments would be in the theory
of the acquisiticn of cognitive competences. For example, much traditional
work in linguistics (see Prince & Pinker, 1988) and all recent work in
mathematical learning theory (see Osherson, Stov, & Weinstein, 1984), as-
sumes that the characteristic output of a cognitive acquisition device is a
recursive rule system (a grammar, in the linguistic case). Suppose such
theories prove to be well-founded; then that would be incompatible with the
assumption that the cognitive architecture of the capacities acquired is Con-
nectionist.

”Of course, it is possible to simulate a “rule explicit process™ in a Connectionist network by first implement-
ing a Classical architecture in the network. The slippage between networks as architectures and as implemen-
tations is ubiquitous in Connectionist writings, as we remarked above.
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On “Brain style” modeling

The relation of Connectionist models to neuroscience is open to many in-
terpretations. On the one hand, people like Ballard (1986), and Sejnowski
(1981), are explicitly attempting to build models based on properties of
neurons and neural organizations, even though the neuronal units in question
are idealized (some would say more than a little idealized: see, for example
the commentaries following the Ballard, 1986, paper). On the other hand,
Smolensky (1988) views Connectionist units as mathematical objects which
can be given an interpretation in either neural or psychological terms. Most
Connectionists find themselves somewhere in between, frequently referring
to their approach as “brain-style” theorizing.

Understanding both psychological principles and the way that they are
neurophysiologically implemented is much better (and, indeed, more empir-
ically secure) than only understanding one or the other. That is not at issue.
The question is whether there is anything to be gained by designing “brain
style” models that are uncommitted about how the models map onto brains.

Presumably the point of “brain style” modeling is that theories of cognitive
processing should be influenced by the facts of biology (especially neurosci-
ence). The biological facts that influence Connectionist models appear to
include the following: neuronal connections are important to the patterns of
brain activity; the memory “engram” does not appear to be spatially local;
to a first approximation, neurons appear to be threshold elements which sum
the activity arriving at their dendrites; many of the neurons in the cortex have
multidimension “receptive fields” that are senmsitive to a narrow range of
values of a number of parameters; the tendency for activity at a synapse to
cause a neuron to “fire” is modulated by the frequency and recency of past
firings.

Let us suppose that these and similar claims are both true and relevant to
the way the brain functions—an assumption that is by no means unproblem-
atic. The question we might then ask is: What follows from such facts that is
relevant to inferring the nature of the cognitive architecture? The unavoid-
able answer appears to be, very little. That’s not an a priori claim. The degree
of relationship between facts at different levels of organization of a system is
an empirical matter. However, there is reason to be skeptical about whether
the sorts of properties listed above are reflected in any more-or-less direct

*The PDP Research Group views its goal as being “to replace the ‘computer metaphor’ as a model of the
mind with the ‘brain metaphor’ ..."” (Rumelhart & McClelland, 1986a, Ch. 6, p. 75). But the issue is not at
all which metaphor we should adopt; metaphors (whether ‘computer’ or *brain’) tend to be a license to take
one’s claims as something less than serious hypotheses. As Pylyshyn (1984a) points out, the claim that the
mind has the architecture of a Classical computer is not a metaphor but a literal empirical hypothesis.
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way in the structure of the system that carries ot rcasoning.

Consider, for example, one of the most salient properties of neural sys-
tems: they are networks which transmit activation culminating in state
changes of some quasi-threshold elements. Surely it is not warranted to con-
clude that reasoning consists of the spread of excitation among representa-
tions, or even among semantic coniponents of representations. After aii, a
VAX is also correctly characterized as consisting of a network over which
excitation is transmitted culminating in state changes of quasi-threshold ele-
ments. Yet at the level at which it processes representations, a VAX is literally
organized as a Von Neumann architecture.

The point is that the structure of “higher levels” of a system are rarely
isomorphic, or even similar, to the structure of “lower levels” of a system.
No one expects the theory of protons to look very much like the theory of
rocks and rivers, even though, to be sure, it is protons and the like that rocks
and rivers are ‘implemented in’. Lucretius got into trouble precisely by assum-
ing that there must be a simple correspondence between the structure of
macrolevel and microlevel theories. He thought, for example, that hooks and
eyes hold the atoms together. He was wrong, as it turns out.

There are, no doubt, cases where special empirical considerations suggest
detailed structure/function correspondences or other analogies between dif-
ferent levels of a system’s organization. For example, the input to the most
peripheral stages of vision and motor control must be specified in terms of
anatomically projected patterns (of light, in one case, and of muscular activity
in the other); and independence of structure and function is perhaps less
likely in a system whose input or output must be specified somatotopically.
Thus, at these stages it is reasonable to expect an anatomically distributed
structure to be reflected by a distributed functional architecture. When, how-
ever, the cognitive process under investigation is as abstract as reasoning,
there is simply no reason to expect isomorphisms between structure and
function; as, indeed, the computer case proves.

Perhaps this is all too obvious to be worth saying. Yet it seems tnat the
commitment to “brain style” modeling leads to many of the characteristic
Connectionist claims about psychology, and that it does so via the implicit—
and unwarranted—assumption that there ought to be similarity of structure
among the different levels of organization of a computational system. This is
distressing since much of the psychology that this search for structural
analogies has produced is strikingly recidivist. Thus the idea that the brain is
a neural network motivates the revival of a largely discredited Associationist
psychology. Similarly, the idea that brain activity is anatomically distributed
leads to functionally distributed representations for concepts which in turn
leads to the postulation of microfeatures; yet the inadequacies of feature-
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based theories of concepts are well-known and, to our knowledge, micro-fea-
ture theory has done nothing to address them (see Bolinger, 1965; J.D.
Fodor, 1977). Or again, the idea that the strength of a connection between
neurons is affected by the frequency of their co-activation gets projected onto
the cognitive level. The consequence is a resurgence of statistical models of
learning that had been widely acknowledged (both in Psychology and in Al)
to be extremely limited in their applicability (e.g., Minsky & Papert, 1972,
Chomsky, 1957).

So although, in principle, knowledge of how the brain works could dircct
cognitive modeling in a beneficial manner, in fact a research strategy has to
be judged by its fruits. The main fruit of “brain style modeling” has been to
revive psychological theories whose limitations had previously been pretty
widely appreciated. It has done so largely because assumptions about the
structure of the brain have been adopted in an all-too-direct manner as
hypotheses about cognitive architecture; it’s an instructive paradox that the
current attempt to be thoroughly modern and ‘take the brain seriously’ should
lead to a psychology not readily distinguishable from the worst of Hume and
Berkeley. The moral seems to be that one should be deeply suspicious of the
heroic sort of brain modeling that purports to address ithe pioblems of cogni-
tion. We sympathize with the craving for biologically respectable theories
that many psychologists scem to feel. But, given a choice, truth is more
important than respectability.

Concluding comments: Connectionism as a theory of implementation

A recurring theme in the previous discussion is that many of the arguments
for Connectionism are best construed as claiming that cognitive architecture
is implemented in a certain kind of network (of abstract “units”). Understood
this way, these arguments are neutral on the question of what the cognitive
architecture is.* In these concluding remarks we’ll briefly consider Connec-
tionism from this point of view.

Almost every student who enters a course on computational or informa-
tion-processing models of cognition must be disabused of a very general mis-

*Rumelhart and McClelland maintain that PDP models are more than just theories of implementaticn
because (1) they add to our understanding of the problem (p. 116), (2) studying PDPs can lead to the
postulation of different macrolevel processes (p. 126). Both these points deal with the heuristic value of “brain
style” theorizing. Hence, though correct in principle, they are irrelevant to the crucial question whether
Connectionism is best understood as an attempt to model aeural implementation, or whether it really does
promise a “new theory of the mind” incompatible with Classical information-processing approaches. It is an
empirical question whether the heuristic value of this approach will turn out to be positive or negative. We
have alrcady commented on our view of the recent history of this attempt.
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understanding concerning the role of the physical computer in such models.
Students are almost always skeptical about “the computer as a model of
cognition” on such grounds as that “computers don’t forget or make mis-
takes”, “computers function by exhaustive search,” “computers are too logical
and unmotivated,” “computers can’t learn by themselves; they can only do
what they’re told,” or “computers are too fast (or too slov),” or “com juters
never get tired or bored,” and so on. If we add to this list such relatively
more sophisticated complaints as that “computers don’t exhibit graceful de-
gradation” or “computers are too sensitive to physical damage” this list will
begin to look much like the arguments put forward by Connectionists.

The answer io all these complaints has always been that the implementa-
tion, and all properties associated with the particular realization of the aigo-
rithm that the theorist happens to use in a particuiar case, is irrelevant to the
psychological theory; only the algorithm and the representations on which it
operates are intended as a psychological hypothesis. Students are taught the
notion of a “virtual machine” and shown that some virtual machines can
learn, forget, get bored, make mistakes and whatever else one likes, provid-
ing one has a theory of the origins of each of the empirical phenomena in
Gguestion.

Given this principled distinction between a model and its implementation,
a theorist who is impressed by the virtues of Connectionism has the option
of proposing PDP’s as theories of implementation. But then, far from provid-
ing a revolutionary new basis for cognitive science, these models are in
principle neutral about the nature of cognitive processes. In fact, they might
be viewed as advancing the goals of Classical information processing psychol-
ogy by attempting to explain how the brain (or perhaps scme idealized brain-
like network) might realize the types of processes that conventional cognitive
science has hypothesized.

Connectionists do sometimes explicitly take their models to be theories of
implementation. Ballard (1986) even refers to Connectionism as “the impie-
mentational approach”. Touretzky (1986) clearly views his BoltzCONS model
this way; he uses Connectionist techniques to implement conventional symbol
processing mechanisms such as pushdown stacks and other LISP facilities.”

¥Even in this case, where the model is specifically designed to implement Lisp-like features, some of the
rhetoric fails to keep the implementation-algorithm levels distinct. This leads to talk about “emergent proper-
ties” and to the claim that even when they implement Lisp-like mechanisms, Connectiorist systems “can
compute things in ways in which Turing machines and von Neumann computers can't."‘ (Touretzk_v,_ 1986).
Such a claim suggests that 'Touretzky distinguishes different “ways of computing™ not in terms of dlff_erem
algorithms, but in terms of different ways of implementing the same algorithm. While nobody has proprietary
rights to terms like “ways of computing”, this is a misleading way of putting it; it means tI!at a DEC machine
has a “different way of computing” from an IBM machine even when executing the identical program.
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Rumelhart and McClelland (1986a, p. 117), who are convinced that Connec-
tionism signals a radical departure from the conventional symbol processing
approach, nonetheless refer to “PDP implementations™ of various mecha-
nisms such as attention. Later in ihe same essay, they make their position
explicit: Unlike “reductionists,” they believe “... that new and useful concepts
emerge at different levels of organization”. Although they then defend the
claim that one should understand the higher levels “... through the study of
the interactions among lower level units”, the basic idea that there are auton-
omous levels seems implicit everywhere in the essay.

But once one admits that there really are cognitive-ievel principles distinct
from the (putative) architectural principles that Connectionism articulates,
there seems to be little left to argue about. Clearly it is pointless to ask
whether one should or shouldn’t do cognitive science by studying “the interac-
tion of lower levels” as opposed to studying processes at the cognitive level
since we surely have to do both. Some scientists study geological principles,
others study “the interaction of lower level units” like molecuies. But since
the fact that there are genuine, autonomously-stateable principles of geology
is never in dispute, people who build molecular level models do not claim to
have invented a “new theory of geology” that will dispense with all that old
fashioned “folk geological” talk about rocks, rivers and mountains!

We have, in short, no objection at all to networks as potential implemen-
tation models, nor do we suppose that any of the arguments we’ve given are
incompatible with this proposal. The trouble is, however, that if Connec-
tionists do want their models to be construed this way, then they will have
to radically alter their practice. For, it seems utterly clear that most of the
Conzeciionist models that have actually been proposed must be construed as
theories of cognition, not as theories of implementation. This fo'lows from
the fact that it is intrinsic to these theories to ascribe representational content
to the units (and/or aggregates) that they postulate. And, as we remarked at
the beginning, a theory of the relations among representational states is ipso
facto a theory at the level of cognition, not at the level of implementation.
It has been the burden of our argument taat when construed as a cognitive
theory, rather than as an implementation theory, Connectionism appears to
have fatal limitations. The problem with Connectionist models is that all the

reasons for thinking that they might be true are reasons for thinking that they
couldn’t be psychology.
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Conclusion

What, in light of all of this, are the options for the further development of
Connectionist theories? As far as we can see, there are four routes that they
could follow:

(1) Hold out for unstructured mental representations as against the Classi-
cal view that mental representations have a combinatorial syntax and seman-
tics. Productivity and systematicity arguments make this option appear not
attractive.

(2) Abandon neiwork architecture to the extent of opting for structured
mental representations but continue to insist upon an Associat.onistic account
of the natuic of menial processes. Tnis is, in effect, a retreat to Hume’s
picture of the mind (see footnote 29), and it has a problem that we don’t
believe can be solved: Although mental representations are, on the present
assumption, structured objects, association is not a structure sensitive relation.
The problem is thus how to reconstruct the semantical coherence of thought
without postulating psychological processes thiai are sensitive to the structure
of mental representations. (Equivalently, in more modern terms, it’s how to
get the causal relations among mentai representations to mirror their seman-
tical relations without assuming a proof-theoretic treatment of inference
and—more generally—a treatment of semantic coherence that is syntactically
expressed, in the spirit of proof-theory.) This is the problem on which tradi-
tional Associationism foundered, and the prospects for solving it now strike
us as not appreciably better than they were a couple of hundred years ago.
To put it a little differently: if you need structure in mental representations
anyway to account for the productivity and systematicity of minds, why not
postulate mental processes that are structure sensitive to account for the
cohierence of mental processes? Why not be a Classicist, in short.

In any event, notice that the present option gives the Classical picture a
lot of what it wants: viz., the identification of semantic states with relations
to structured arrays of symbols and the identification of mental processes
with transformations of such arrays. Notice too that, as things now stand, this
proposal is Utopian since there are no serious proposals for incorporating
syntactic structure in Connectionist architectures.

(3) Treat Connectionism as an implementation theory. We have no princi-
pled objection to this view (though there are, as Connectionists are discover-
ing, technical reasons why networks are often an awkward way to implement
Classical machines). This option would entail rewriting quite a lot of the
polemical material in the Connectionist literature, as weil as redescribing
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‘what the networks are doing as operating on symbol siruciures, rathcs than
spreading activation among semantically interpreted nodes.

Moreover, this revision of policy is sure to lose the movement a lot of fans.
As we have pointed out, many people have been attracted to the Connec-
tionist approach because of its promise to (a) do away with the symbol level
of analysis, and (b) elevate neuroscience to the position of providing evidence
that bears directly on issues of cognition. If Connectionism is considered
simply as a theory of how cognition is neurally implemented, it may constrain
cognitive models no more than theories in biophysics, biochemistry, or, for
that matter, quantum mechanics do. All of these theories are also concerned
with processes that implement cognition, and all of them are likely to pos-
tulate structures that are quite different from cognitive architecture. The point
is that ‘implements’ is transitive, and it goes all the way down.

(4) Give up on the idea that networks offer (to quote Rumelhart & McClel-
land, 1986a, p. 110) “... a reasonabie basis for modeling cognitive processes
in general”. It could still be held that networks sustain some cognitive proces-
ses. A good bet might be that they sustain such processes as can be analyzed
as the drawing of statistical inferences; as far as we can tell, what network
models really are is just amalog machines for computing such inferences.
Since we doubt that much of cognitive processing does consist of analyzing
statistical relations, this would be quite a modest estimate of the prospects

for network theory compared io what the Connectionists themselves have
been offering.

This is, for example, one way of understanding what’s going on in the
argument between Rumelhart and McClelland (1986b) and Prince and Pinker
(1988), though neither paper puts it in quite these terms. In effect, Rumelhart
and McClelland postulate a mechanism which, given a corpus of pairings that
a ‘teacher’ provides as data, computes the statistical correiation between the
phonological form of the ending of a verb and the phonological form of its
past tense inflection. (The magnitude of the correlations so computed is
analogically represented by the weights that the network exhibits at
asymptote.) Given the problem of inflecting a new verb stem ending in a
specified phonological sequence, the machine chooses the form of the past
tense that was most highly correlated with that sequence in the training set.
By contrast, Prince and Pinker argue (in effect) that more must be going on
in learning past tense morphology than merely estimating correlations since
the statistical hypothesis provides neither a close fit to the ontogenetic data
nor a plausible account of the aduit competence on which the ontogenetic
processes converge. It seems to us that Pinker and Prince have, by quite a
lot, the best of this argument.



Connectionism and cognitive architecture 69

There is an alternative to the Empiricist idea that all learning consists of
a kind of statistical inference, realized by adjusting parameters; it’s the
Rationalist idea that some learning is a kind of theory construction, effected
by framing hypotheses and evaluating them against evidence. We seem to
remember having been through this argument before. We find ourselves with
a gnawing sense of deja vu.
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Résumé

Cet article étudie les différences entre modéles connectionistes et modéles classiques de fa structure cognitive.
Ncus pensons que, bien que les deux types de modeles stipulent I'existence d’états mentaux représentationnels,
la différence essentielle est que seuls les modéles classiques requiérent P'existence d’un niveau de représenta-
tion symbofique—un “langage de la pensée™—, c’est-a-dire d'états représentationnels possédant une structure
<y taxique et sémantique. Nous exazinons ensuite différents argumenis qui militent en faveur de I'existence
de représentations mentales ayant ces propriétés. Certains de ces arguments reposent sur la “systématicité”
des représentations mentales, c'est-a-dire sur le fait que les capacités cognitives exhibent toujours certaines
symétries, de sorte que la capacité d'entretenir certaines pensées implique la capacité d'entretenir d’autres
pensées apparentées par leur contenu sémantique. Nous pensons que ces arguments montrent de maniére
convainquante que 'architecture de esprit/du cerveau n’est pas conncctioniste au niveau cognitif. Nous nous
demandons ensuite s'il est possible d'interpréter le connectionisme comme unc analyse des structures
ncuronales (ou des structures neurologiques “abstraites™) dans lesquelles est réalisée I'architecture cognitive
classique. Nous examinons plusicurs des arguments avancés habituellement en défense du connectionisme, et
en concluons que ceux-ci n'ont de sens que dans cette interprétation.



