ITI Cognitive Engineering

Module 1: repairing/augmenting the brain

PSL* 2014-2015

Overview

General question: how does the brain learn?

- repairing the brain
 - sensory and motor interfaces (I,II)
 - neurocognitive interventions (I,II)
- augmenting the brain
 - neuroeducation (I,II)
- modeling brain plasticity (I,II,III)
 - biophysics, spikes, supervised, unsupervised, & reinforcement learning
- ethics

Sensory and motor interfaces (I)

(Alain de Cheveigné)

- Brain-computer interfaces, Thorsten Zander, TU-Berlin
 - \circ the need
 - technology (overview)
 - potential and limitations
 - usability, plasticity, and learning
 - challenges and perspectives

Sensory and motor interfaces (II)

(Alain de Cheveigné)

- Cochlear and brainstem implants, **David McAlpine and Jessica Monaghan**, UCL Ear Institute
 - the cochlear implant: a success story
 - basics of normal and impaired auditory anatomy, physiology and function
 - implant technology, industrial and clinical aspects
 - hearing with an implant
 - success and failure
 - challenges and perspectives: brainstem and midbrain implants, electro-acoustic stimulation, binaural stimulation, optical stimulation, optogenetics, regeneration, pharmaceutics, learning and plasticity

Neurocognitive interventions (I)

(Anne Catherine Bachoud Levi/Charlotte Jacquemot, 26 septembre, 9am-1pm)

- repairing cognitive functions
 - functional models of cognition
 - localizing a deficit
 - cognitive training
- grafts and genetic therapies
 - 0
- biblio

0

Neurocognitive interventions (II) (Jean Lorenceau/ACBL, 3 octobre, 9am-1pm)

- Part I: Eye mouvements and applications
 - control of eye movements
 - pupil dilation
 - applications
- Part II: Practical neuroethics
 - benefit/risk balance
 - informed consents in cognitive impairment
 - placebo and control groups
- biblio
 - 0

Neuroeducation (I)

(Elena Pasquinelli/Daniel Andler)

Pedagogy and social learning

- Topics
 - How we (and other animals) learn from others
 - Teaching others

• Contents

- Social learning mechanisms
- Natural pedagogy
- Selective trust
- Cultural transmission and the making of human nature
- The evolved apprentice
- Biblio (* = un peu difficile)
 - (*) Csibra, G., & Gergely, G. (2005). Social learning and social cognition: The case for pedagogy. in Johnson M.H. & Munakata Y. (eds.) *Processes of Change in Brain and Cognitive Development.* Oxford University Press, 2005.

Harris, Paul L. (2012). Trusting What You're Told, Cambridge, MA : Harvard University Press

Tomasello, M. (2013). Why we cooperate: introduction (pp. 1–10).

Neuroeducation (II)

(Elena Pasquinelli/Daniel Andler)

Is technology making us stupid?

- Topics
 - The concept of evidence-based in educational technologies
 - Myths: brain gym, digital natives, multitasking, the stultifying effects of ICT, etc.
 - Collective intelligence, distributed cognition
 - Really useful technology

• Contents

- From teaching machines to technology-inspired education
- Serious games and motivation
- The extended mind

• Biblio

- Bavelier, D. et al. (2010). Children, wired: for better and for worse, *Neuron* **67**: 692-701.
- Carr, N. (2008). Is Google making us stupid?, *The Atlantic.*
- Hutchins, E. (1995), How a Cockpit Remembers Its Speeds, *Cognitive Science* **19**: 265-288.

Modeling brain plasticity (I)

(Srdjan Ostojic)

- General introduction (Ostojic)
 - basic models of neurons and synapses
 - different types of plasticity and learning
 - brain-inspired algorithms
- Biophysical models of plasticity (Graupner)
 - experimental evidence for synaptic plasticity
 - biophysical processes underlying induction and maintenance of plasticity
 - modeling biophysical processes
 - studying pharmaceutical interventions using biophysical plasticity models

Modeling brain plasticity (II)

(Srdjan Ostojic)

- Spike-based models of plasticity (Gerstner)
 - spike-time dependent plasticity
- Machine learning and applications (Dreyfus)
 - Getting inspiration from the brain: basic concepts of machine learning
 - Applications (computer-aided medical diagnostic and therapy, intelligent prosthesis, computer-aided drug design, BCI...)

Modeling brain plasticity (III)

(Srdjan Ostojic)

• Supervised learning (Nadal)

- Perceptrons: Rosenblatt's perceptron, the perceptron algorithm, learning capacity, hebbian learning, the Willshaw model, learning from examples
- Beyond the simple perceptron: support vector machines, deep learning, applications to classification

• Reinforcement learning (Khamassi)

- Classical conditionning
- predictions error and dopaminergic activity
- applications to robotics
- Bibliography

Dayan, P (2005). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems

Ethics

(Elena Pasquinelli/Daniel Andler)

Neuroethics and education

- Topics
 - The two general problems of neuroethics
 - The special problem of cognitive enhancers
 - The specious attraction of neuroimaging images
- Contents
 - Does our brain relieve us of responsability?
 - Is it OK to change our brains permanently or temporarily to perform better intellectually?
 - What's the difference with education as an cultural cognitive enhancer?
 - What do images from fMRI actually tell us?
- Biblio
 - Farah, M., Neuroethics: the practical and the philosophical, *Trends in Cognitive Sciences* **9** (1) January 2005: 34-40
 - Greely, H. *et. al.* Towards responsible use of cognitive- enhancing drugs by the healthy, *Nature* **456** 11 December 2008: 702-705
 - Weisberg, D.S. *et al.*, The seductive allure of neuroscience explanations, *J. of Cognitive Neuroscience* 20 (3), 2008: 470-477