ITI Cognitive Engineering

Module 1: repairing/augmenting the brain
Overview

General question: how does the brain learn?

- repairing the brain
 - sensory and motor interfaces (I,II)
 - neurocognitive interventions (I,II)
- augmenting the brain
 - neuroeducation (I,II)
- modeling brain plasticity (I,II,III)
 - biophysics, spikes, supervised, unsupervised, & reinforcement learning
- ethics
Sensory and motor interfaces (I)
(Alain de Cheveigné)

- Brain-computer interfaces, Thorsten Zander, TU-Berlin
 - the need
 - technology (overview)
 - potential and limitations
 - usability, plasticity, and learning
 - challenges and perspectives
Sensory and motor interfaces (II)
(Alain de Cheveigné)

- Cochlear and brainstem implants, David McAlpine and Jessica Monaghan, UCL Ear Institute
 - the cochlear implant: a success story
 - basics of normal and impaired auditory anatomy, physiology and function
 - implant technology, industrial and clinical aspects
 - hearing with an implant
 - success and failure
 - challenges and perspectives: brainstem and midbrain implants, electro-acoustic stimulation, binaural stimulation, optical stimulation, optogenetics, regeneration, pharmaceutics, learning and plasticity
Neurocognitive interventions (I)

(Anne Catherine Bachoud Levi/Charlotte Jacquemot, 26 septembre, 9am-1pm)

- repairing cognitive functions
 - functional models of cognition
 - localizing a deficit
 - cognitive training
- grafts and genetic therapies
- biblio
Neurocognitive interventions (II)
(Jean Lorenceau/ACBL, 3 octobre, 9am-1pm)

- Part I: Eye movements and applications
 - control of eye movements
 - pupil dilation
 - applications

- Part II: Practical neuroethics
 - benefit/risk balance
 - informed consents in cognitive impairment
 - placebo and control groups

- biblio
 -
Pedagogy and social learning

● Topics
 ○ How we (and other animals) learn from others
 ○ Teaching others

● Contents
 ○ Social learning mechanisms
 ○ Natural pedagogy
 ○ Selective trust
 ○ Cultural transmission and the making of human nature
 ○ The evolved apprentice

● Biblio (* = un peu difficile)

Is technology making us stupid?

● Topics
 ○ The concept of evidence-based in educational technologies
 ○ Myths: brain gym, digital natives, multitasking, the stultifying effects of ICT, etc.
 ○ Collective intelligence, distributed cognition
 ○ Really useful technology

● Contents
 ○ From teaching machines to technology-inspired education
 ○ Serious games and motivation
 ○ The extended mind

● Biblio
Modeling brain plasticity (I)
(Srdjan Ostojic)

- **General introduction** (Ostojic)
 - basic models of neurons and synapses
 - different types of plasticity and learning
 - brain-inspired algorithms

- **Biophysical models of plasticity** (Graupner)
 - experimental evidence for synaptic plasticity
 - biophysical processes underlying induction and maintenance of plasticity
 - modeling biophysical processes
 - studying pharmaceutical interventions using biophysical plasticity models
Modeling brain plasticity (II)
(Srdjan Ostojic)

● Spike-based models of plasticity (Gerstner)
 ○ spike-time dependent plasticity

● Machine learning and applications (Dreyfus)
 ○ Getting inspiration from the brain: basic concepts of machine learning
 ○ Applications (computer-aided medical diagnostic and therapy, intelligent prosthesis, computer-aided drug design, BCI...)
Supervised learning (Nadal)
- Perceptrons: Rosenblatt’s perceptron, the perceptron algorithm, learning capacity, hebbian learning, the Willshaw model, learning from examples
- Beyond the simple perceptron: support vector machines, deep learning, applications to classification

Reinforcement learning (Khamassi)
- Classical conditionning
- predictions error and dopaminergic activity
- applications to robotics

Bibliography
Neuroethics and education

• Topics
 ○ The two general problems of neuroethics
 ○ The special problem of cognitive enhancers
 ○ The specious attraction of neuroimaging images

• Contents
 ○ Does our brain relieve us of responsibility?
 ○ Is it OK to change our brains permanently or temporarily to perform better intellectually?
 ○ What's the difference with education as an cultural cognitive enhancer?
 ○ What do images from fMRI actually tell us?

• Biblio
 ○ Weisberg, D.S. *et al.*, The seductive allure of neuroscience explanations,