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Functional magnetic resonance imaging (fMRI) is one of the most important methods for in vivo investigation of
cognitive processes in the human brain. Within the last two decades, an explosion of research has emerged using fMRI,
revealing the underpinnings of everything from motor and sensory processes to the foundations of social cognition.
While these results have revealed the potential of neuroimaging, important questions regarding the reliability of
these results remain unanswered. In this paper, we take a close look at what is currently known about the reliability of
fMRI findings. First, we examine the many factors that influence the quality of acquired fMRI data. We also conduct
a review of the existing literature to determine if some measure of agreement has emerged regarding the reliability of
fMRI. Finally, we provide commentary on ways to improve fMRI reliability and what questions remain unanswered.
Reliability is the foundation on which scientific investigation is based. How reliable are the results from fMRI?
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Introduction

Reliability is the cornerstone of any scientific en-
terprise. Issues of research validity and significance
are relatively meaningless if the results of our ex-
periments are not trustworthy. It is the case that
reliability can vary greatly depending on the tools
being used and what is being measured. Therefore,
it is imperative that any scientific endeavor be aware
of the reliability of its measurements.

Surprisingly, most functional magnetic reso-
nance imaging (fMRI) researchers have only a vague
idea of how reliable their results are. Reliability is not
a typical topic of conversation between most inves-
tigators and only a small fraction of papers inves-
tigating fMRI reliability have been published. This
became an important issue in 2009 as a paper by
Vul and colleagues1 set the stage for debate. Their
paper, originally entitled “Voodoo Correlations in
Social Neuroscience,” was focused on a statistical
problem known as the “nonindependence error.”
Critical to their argument was the reliability of func-
tional imaging results. Vul and colleagues argued
that test–retest variability of fMRI results placed an
“upper bound” on the strength of possible correla-
tions between fMRI data and behavioral measures:

r(ObservedA,ObservedB) = r(A,B)

∗sqrt(reliabilityA ∗ reliabilityB)

This calculation reflects that the strength of a cor-
relation between two measures is a product of the
measured relationship and the reliability of the mea-
surements.1,2 Vul and colleagues specified that be-
havioral measures of personality and emotion have a
reliability of around 0.8 and that fMRI results have
a reliability of around 0.7. Not everyone agreed.
Across several written exchanges multiple research
groups debated what the “actual reliability” of fMRI
was. Jabbi and colleagues3 stated that the reliability
of fMRI could be as high as 0.98. Lieberman and
colleagues split the difference and argued that fMRI
reliability was likely around 0.90.4 While much ink
was spilled debating the reliability of fMRI results,
very little consensus was reached regarding an ap-
propriate approximation of its value.

The difficulty of detecting signal (what we are
trying to measure) from among a sea of noise (ev-
erything else we do not care about) is a constant
struggle for all scientists. It influences what effects
can be examined and is directly tied to the reliabil-
ity of research results. What follows in this paper is
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a multifaceted examination of fMRI reliability. We
examine why reliability is a critical metric of fMRI
data, discuss what factors influence the quality of the
blood oxygen level dependent (BOLD) signal, and
investigate the existing reliability literature to deter-
mine if some measure of agreement has emerged
across studies. Fundamentally, there is one critical
question that this paper seeks to address: if you re-
peat your fMRI experiment, what is the likelihood
you will get the same result?

Pragmatics of reliability

Why worry about reliability at all? As long as investi-
gators are following accepted statistical practices and
being conservative in the generation of their results,
why should the field be bothered with how repro-
ducible the results might be? There are, at least, four
primary reasons why test–retest reliability should be
a concern for all fMRI researchers.

Scientific truth
Although it is a simple statement that can be taken
straight out of an undergraduate research methods
course, an important point must be made about re-
liability in research studies: it is the foundation on
which scientific knowledge is based. Without reli-
able, reproducible results no study can effectively
contribute to scientific knowledge. After all, if a
researcher obtains a different set of results today
than they did yesterday, what has really been discov-
ered? To ensure the long-term success of functional
neuroimaging it is critical to investigate the many
sources of variability that impact reliability. It is a
strong statement, but if results do not generalize
from one set of subjects to another or from one
scanner to another then the findings are of little
value scientifically.

Clinical and diagnostic applications
The longitudinal assessment of changes in regional
brain activity is becoming increasingly important
for the diagnosis and treatment of clinical disor-
ders. One potential use of fMRI is for the localiza-
tion of specific cognitive functions before surgery. A
good example is the localization of language func-
tion prior to tissue resection for epilepsy treatment.5

This is truly a case where an investigator does not
want a slightly different result each time they con-
duct the scan. If fMRI is to be used for surgical

planning or clinical diagnostics then any issues of
reliability must be quantified and addressed.

Evidentiary applications
The results from functional imaging are increasingly
being submitted as evidence into the United States
legal system. For example, results from a commer-
cial company called No Lie MRI (San Diego, CA,
USA; http://www.noliemri.com/) were introduced
into a juvenile sex abuse case in San Diego dur-
ing the spring of 2009. The defense was attempting
to introduce the fMRI results as scientific justifica-
tion of their client’s claim of innocence. A concerted
effort from imaging scientists, including in-person
testimony from Marc Raichle, eventually forced the
defense to withdraw the request. Although the fMRI
results never made it into this case, it is clear that
fMRI evidence will be increasingly common in the
courtroom. What are the larger implications if the
reliability of this evidence is not as trustworthy as
we assume?

Scientific collaboration
A final pragmatic dimension of fMRI reliability is
the ability to share data between researchers. This
is already a difficult challenge, as each scanner has
its own unique sources of error that become part
of the data.6 Early evidence has indicated that the
results from a standard cognitive task can be quite
similar across scanners.7,8 Still, concordance of re-
sults remains an issue that must be addressed for
large-scale, collaborative intercenter investigations.
The ultimate level of reliability is the reproducibil-
ity of results from any equivalent scanner around
the world and the ability to integrate this data into
larger investigations.

What factors influence fMRI reliability?

The ability of fMRI to detect meaningful signals is
limited by a number of factors that add error to
each measurement. Some of these factors include
thermal noise, system noise in the scanner, phys-
iological noise from the subject, non-task-related
cognitive processes, and changes in cognitive strat-
egy over time.9,10 The concept of reliability is, at its
core, a representation of the ability to routinely de-
tect relevant signals from this background of mean-
ingless noise. If a voxel timeseries contains a large
amount of signal then the primary sources of vari-
ability are actual changes in blood flow related to
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neural activity within the brain. Conversely, in a
voxel containing a large amount of noise the mea-
surements are dominated by error and would not
contain meaningful information. By increasing the
amount of signal, or decreasing the amount of noise,
a researcher can effectively increase the quality and
reliability of acquired data.

The quality of data in magnetic resonance imag-
ing is typically measured using the signal-to-noise
ratio (SNR) of the acquired images. The goal is to
maximize this ratio. Two kinds of SNRs are im-
portant for functional MRI. The first is the image
SNR. It is related to the quality of data acquired in
a single fMRI volume. Image SNR is typically com-
puted as the mean signal value of all voxels divided
by the standard deviation of all voxels in a single
image:

SNRimage = �image/�image

Increasing the image SNR will improve the quality
of data at a single point in time. However, most im-
portant for functional neuroimaging is the amount
of signal present in the data across time. This makes
the temporal SNR (tSNR) perhaps the most impor-
tant metric of data for functional MRI. It represents
the SNR of the timeseries at each voxel:

SNRtemporal = �timeseries/�timeseries

The tSNR is not the same across all voxels in the
brain. Some regions will have higher or lower tSNR
depending on location and constitution. For exam-
ple, there are documented differences in tSNR be-
tween gray matter and white matter.11 The typical
tSNR of fMRI can also vary depending on the same
factors that influence image SNR.

Another metric of data quality is the contrast-
to-noise ratio (CNR). This refers to the ability to
maximize differences between signal intensity in dif-
ferent areas in an image (image CNR) or to max-
imize differences between different points in time
(temporal CNR). With regard to functional neu-
roimaging, the temporal CNR represents the max-
imum relative difference in signal intensity that is
represented within a single voxel. In a voxel with
low CNR there would be very little difference be-
tween two conditions of interest. Conversely, in a
voxel with high CNR there would be relatively large
differences between two conditions of interest. The

image CNR is not critical to fMRI, but having a high
temporal CNR is very important for detecting task
effects.

It is generally accepted that fMRI is a rather noisy
measurement with a characteristically low tSNR, re-
quiring extensive signal averaging to achieve effec-
tive signal detection.12 The following sections pro-
vide greater detail on the influence of specific factors
on the SNR/tSNR of functional MRI data. We break
these factors down by the influence of differences in
image acquisition, the image analysis pipeline, and
the contribution of the subjects themselves.

SNR influences of MRI acquisition

The typical high-field MRI scanner is a precision
superconducting device constructed to very exact
manufacturing tolerances. Still, the images it pro-
duces can be somewhat variable depending on a
number of hardware and software variables. With
regard to hardware, one well-known influence on
the SNR of MRI is the strength of the primary B0
magnetic field.13,14 Doubling this field, such as mov-
ing from 1.5 to 3.0 Tesla field strength, can theo-
retically double the SNR of the data. The B0 field
strength is especially important for fMRI, which re-
lies on magnetic susceptibility effects to create the
BOLD signal.15 Hoenig and colleagues showed that,
relative to a 1.5 Tesla magnet, a 3.0 Tesla fMRI acqui-
sition had 60–80% more significant voxels.16 They
also demonstrated that the CNR of the results was
1.3 times higher than those obtained at 1.5 Tesla.
The strength and slew rate of the gradient magnets
can have a similar impact on SNR. Advances in head
coil design are also notable, as parallel acquisition
head coils have increased radiofrequency reception
sensitivity.

It is important to note that there are negative
aspects of higher field strength as well. Artifacts
due to physiological effects and susceptibility are
all increasingly pronounced at higher fields. The in-
creased contribution of physiological noise reduces
the expected gains in SNR at high field.9 The in-
creasing contribution of susceptibility artifacts can
virtually wipe out areas of orbital prefrontal cor-
tex and inferior temporal cortex.17 Also, in terms of
tSNR there are diminishing returns with each step
up in B0 field strength. At typical fMRI spatial reso-
lution values tSNR approaches an asymptotic limit
between 3 and 7 Tesla.9,18
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Looking beyond the scanner hardware, the pa-
rameters of the fMRI acquisition can also have a
significant impact on the SNR/CNR of the final im-
ages. For example, small changes in the voxel size
of a sequence can dramatically alter the final SNR.
Moving from 1.5 to 3.0 mm3 voxels can potentially
increase the acquisition SNR by a factor of 8, but at
a cost of spatial resolution. Some other acquisition
variables that will influence the acquired SNR/CNR
are: repetition time (TR), echo time (TE), band-
width, slice gap, and k-space trajectory. For exam-
ple, Moser and colleagues found that optimizing the
flip angle of their acquisition could approximately
double the SNR of their data in a visual stimulation
task.19 Further, the effect of each parameter varies
according to the field strength of the magnet.18 The
optimal parameter set for a 3 Tesla system may not
be optimal with a 7 Tesla system.

The ugly truth is that any number of factors in
the control room or magnet suite can increase noise
in the images. A famous example from one imaging
center was when the broken filament from a light
bulb in a distant corner of the magnet suite started
causing visible sinusoidal striations in the acquired
EPI images. This is an extreme example, but it makes
the point that the scanner is a precision device that is
designed to operate in a narrow set of well-defined
circumstances. Any deviation from those circum-
stances will increase noise, thereby reducing SNR
and reliability.

SNR considerations of analysis methods

The methods used to analyze fMRI data will af-
fect the reliability of the final results. In particular,
those steps taken to reduce known sources of er-
ror are critical to increasing the final SNR/CNR of
preprocessed images. For example, spatial realign-
ment of the EPI data can have a dramatic effect on
lowering movement-related variance and has be-
come a standard part of fMRI preprocessing.20,21

Recent algorithms can also help remove remaining
signal variability due to magnetic susceptibility in-
duced by movement.22 Temporal filtering of the EPI
timeseries can reduce undesired sources of noise by
frequency. The use of a high-pass filter is a common
method to remove low-frequency noise, such as sig-
nal drift due to the scanner.23 Spatial smoothing of
the data can also improve the SNR/CNR of an im-

age. There is some measure of random noise added
to the true signal of each voxel during acquisition.
Smoothing across voxels can help to average out er-
ror across the area of the smoothing filter.24 It can
also help account for local differences in anatomy
across subjects. Smoothing is most often done using
a Gaussian kernel of approximately 6–12 mm3 full
width at half maximum.

There has been some degree of standardization
regarding preprocessing and statistical approaches
in fMRI. For instance, Mumford and Nichols found
that approximately 92% of group fMRI results were
computed using an ordinary least squares estima-
tion of the general linear model.25 Comparison
studies with carefully standardized processing pro-
cedures have shown that the output of standard soft-
ware packages can be very similar.26,27 However, in
actual practice, the diversity of tools and approaches
in fMRI increases the variability between sets of
results. The functional imaging analysis contest in
2005 demonstrated that prominent differences ex-
isted between fMRI results generated by different
groups using the same original data set. On review-
ing the results, the organizers concluded that brain
regions exhibiting robust signal changes could be
quite similar across analysis techniques, but the de-
tection of areas with lower signal was highly vari-
able.28 It remains the case that decisions made by
the researcher regarding how to analyze the data
will impact what results are found.

Strother and colleagues have done a great deal
of research into the influence of image process-
ing pipelines using a predictive modeling frame-
work.29–31 They found that small changes in the
processing pipeline of fMRI images have a dramatic
impact on the final statistics derived from that data.
Some steps, such as slice timing correction, were
found to have little influence on the results from
experiments with a block design. This is logical,
given the relative insensitivity of block designs to
small temporal shifts. However, the steps of motion
correction, high-pass filtering, and spatial smooth-
ing were found to significantly improve the analy-
sis. They reported that the optimization of prepro-
cessing pipelines improved both intrasubject and
between-subject reproducibility of results.31 Identi-
fying an optimal set of processing steps and param-
eters can dramatically improve the sensitivity of an
analysis.
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SNR influences of participants

The MRI system and fMRI analysis methods have
received a great deal of attention with regard to SNR.
However, one area that may have the greatest contri-
bution to fMRI reliability is how stable/unstable the
patterns of activity within a single subject can be.
After all, a test–retest methodology involving hu-
man beings is akin to hitting a moving target. Any
discussion of test–retest reliability in fMRI has to
take into consideration the fact that the cognitive
state of a subject is variable over time.

There are two important ways that a subject can
influence reliability within a test–retest experimen-
tal design. The first involves within-subject changes
that take place over the course of a single session.
For instance, differences in attention and arousal can
significantly modulate subsequent responses to sen-
sory stimulation.32–34 Variability can also be caused
by evolving changes in cognitive strategy used dur-
ing tasks such as episodic retrieval.35,36 If a sub-
ject spontaneously shifts to a new decision criterion
midway during a session then the resulting data may
reflect the results of two different cognitive pro-
cesses. Finally, learning will take place with contin-
ued task experience, shifting the pattern of activity
as brain regions are engaged and disengaged during
task-relevant processing.37–39 For studies investigat-
ing learning this is a desired effect, but for others
this is an undesired source of noise.

The second influence on reliability is related to
physiological and cognitive changes that may take
place within a subject between the test and retest ses-
sions. Within 24 h an infinite variety of reliability-
reducing events can take place. All of the above fac-
tors may show changes over the days, weeks, months,
or years between scans. These changes may be even
more dramatic depending on the amount of time
between scanning sessions.

Estimates of fMRI reliability

A diverse array of methods has been created for
measuring the reliability of fMRI. What differs be-
tween them is the specific facet of reliability they
are intended to quantify. Some methods are only
concerned with significant voxels. Other methods
address similarity in the magnitude of estimated ac-
tivity across all voxels. The choice of how to calculate
reliability often comes down to which aspect of the
results are desired to remain stable over time.

Measuring stability of super-threshold extent
Do you want the voxels that are significant dur-
ing the test scan to still be significant during
the retest scan? This would indicate that super-
threshold voxels are to remain above the thresh-
old during subsequent sessions. The most preva-
lent method to quantify this reliability is the cluster
overlap method. The cluster overlap method is a
measure revealing what set of voxels are considered
to be super-threshold during both test and retest
sessions.

Two approaches have been used to calculate clus-
ter overlap. The first, and by far most prevalent, is a
measure of similarity known as the Dice coefficient.
It was first used to calculate fMRI cluster overlap by
Rombouts and colleagues and has become a stan-
dard measure of result similarity.40 It is typically
calculated by the following equation:

Roverlap = 2(Voverlap)/(V1 + V2)

Results from the Dice equation can be interpreted
as the number of voxels that will overlap divided by
the average number of significant voxels across ses-
sions. Another approach to calculating similarity is
the Jaccard index. The Jaccard index has the advan-
tage of being readily interpretable as the percent of
voxels that are shared, but is infrequently used in the
investigation of reliability. It is typically calculated
by the following equation:

Roverlap = Voverlap/(V1 + V2 − Voverlap)

Results from the Jaccard equation can be interpreted
as the number of overlapping voxels divided by the
total number of unique voxels in all sessions. For
both the Dice and Jaccard methods, a value of 1.0
would indicate that all super-threshold voxels iden-
tified during the test scan were also active in the
retest scan, and vice-versa. A value of 0.0 would
indicate that no voxels in either scan were shared
between the test and retest sessions. See Figure 1,
for a graphical representation of overlapping results
from two runs in an example data set.

The main limitation of all cluster overlap methods
is that they are highly dependent on the statistical
threshold used to define what is “active.” Duncan
and colleagues demonstrated that the reported reli-
ability of the cluster overlap method decreases as the
significance threshold is increased.41 Similar results
were reported by Rombouts and colleagues, who
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Figure 1. Visualization of cluster overlap using two runs
of data from a two-back working memory task. The re-
gions in red represent significant clusters from the first
run and regions in blue represent significant clusters from
the second run. The crosshatched region represents the
overlapping voxels that were significant in both runs. Im-
portant to note is that not all significant voxels remained
significant across the two runs. One cluster in the cerebel-
lum did not replicate at all. Data is from Bennett et al.49

found nonlinear changes in cluster overlap reliabil-
ity across multiple levels of significance.42

These overlap statistics seek to represent the pro-
portion of voxels that remain significant across rep-
etitions relative to the proportion that are significant
in only a subset of the results. Another, similar ap-
proach would be to conduct a formal conjunction
analysis between the repetitions. The goal of this
approach would be to uniquely identify those vox-
els that are significant in all sessions. One example
of this approach would be the “Minimum Statistic
compared to the Conjunction Null” (MS/CN) of
Nichols and colleagues43 Using this approach a re-
searcher could threshold the results, allowing for the
investigation of reliability with a statistical criterion.

A method similar to cluster overlap, called voxel
counting, was reported in early papers. The use of
voxel counting simply evaluated the total number
of activated voxels in the test and retest images. This
has proven to be a suboptimal approach for the ex-
amination of reliability, as it is done without regard
to the spatial location of significant voxels.44 An en-
tirely different set of results could be observed in
each image yet they could contain the same number

of significant voxels. As a consequence this method
is no longer used.

Measuring stability of activity in significant
clusters
Do you want the estimated magnitude of activity in
each cluster to be stable between the test scan and
the retest scan? This is a more stringent criteria than
simple extent reliability, as it is necessary to replicate
the exact degree of activation and not simply what
survives thresholding. The most standard method
to quantify this reliability is through an intraclass
correlation (ICC) of the time1–time2 cluster values.
The ICC is different from the traditional Pearson
product–moment correlation as it is specialized for
data of one type, or class. Although there are many
versions of the ICC, it is typically taken to be a
ratio of the variance of interest divided by the total
variance.45,46 The ICC can be computed as follows:

ICC = �2
between/(�2

between + �2
within)

One of the best reviews of the ICC was completed
by Shrout and Fleiss,46 who detailed six types of ICC
calculation and when each is appropriate to use. One
advantage of the ICC is that it can be interpreted
similarly to the Pearson correlation. A value of 1.0
would indicate near-perfect agreement between the
values of the test and retest sessions, as there would
be no influence of within-subject variability. A value
of 0.0 would indicate that there was no agreement
between the values of the test and retest sessions,
because within-subject variability would dominate
the equation.

Studies examining reliability using ICCs are often
computed based on summary values from regions of
interest (ROIs). Caceras and colleagues47 compared
four methods commonly used to compute ROI reli-
ability using ICCs. The median (ICC) is the median
of the ICC values from within an ROI. ICCmed is
the median ICC of the contrast values. ICCmax is the
calculation of ICC values at the peak-activated voxel
within an activated cluster. ICCv is defined the in-
travoxel reliability, a measure of the total variability
that can be explained by the intravoxel variance.

There are several notable weaknesses to the
use of ICC in calculating reliability. First, the
generalization of ICC results is limited because
calculation is specific to the data set under
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Figure 2. Histogram showing the frequency of voxelwise ICC values during a two-back working memory task. The
histogram was computed from a data set of 16 subjects using 100 bins between ICC values of 1.0 and −1.0. The
distribution of values is negatively skewed, with a mean ICC value of ICC = 0.44 and the most frequently occurring
value of ICC = 0.57. Data is from Bennett et al.49

investigation. An experiment with high intersubject
variability could have different ICC values relative
to an experiment with low intersubject variability,
even if the stability of values over time is the same.
As discussed later in this chapter, this can be partic-
ularly problematic when comparing the reliability
of clinical disorders to that of normal controls. Sec-
ond, because of the variety of ICC subtypes there
can often be confusion regarding which one to use.
Using an incorrect subtype can result in quite dif-
ferent reliability estimates.48

Measuring voxelwise reliability of the whole
brain
Do you want to know the reliability of results on
a whole-brain, voxelwise basis? Completing a vox-
elwise calculation would indicate that the level of
activity in all voxels should remain consistent be-
tween the test and retest scans. This is the strictest
criterion for reliability. It yields a global measure
of concordance that indicates how effectively activ-
ity across the whole brain is represented in each
test–retest pairing. Very few studies have examined
reliability using this approach, but it may be one of
the most valuable metrics of fMRI reliability. This is
one of the few methods that gives weight to the idea
that the estimated activity should remain consistent

between test and retest, even if the level of activity is
close to zero.

Figure 2 is an example histogram plot from our
own data that shows the frequency of ICC values for
all voxels across the whole brain during a two-back
working memory task.49 The mean and mode of the
distribution is plotted. It is quickly apparent that
there is a wide range of ICC reliability values across
the whole brain, with some voxels having almost
no reliability and others approaching near perfect
reliability.

Other reliability methods
Numerous other methods have also been used to
measure the reliability of estimated activity. Some
of these include maximum likelihood (ML), coef-
ficient of variation (CV), and variance decomposi-
tion. Although these methods are in the minority by
frequency of use, this does not diminish their util-
ity in examining reliability. This is especially true
with regard to identifying the sources of test–retest
variability that can influence the stability of results.

One particularly promising approach for the
quantification of reliability is predictive model-
ing. Predictive modeling measures the ability of a
training set of data to predict the structure of a
testing set of data. One of the best established
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modeling techniques within functional neuroimag-
ing is the nonparametric prediction, activation, in-
fluence, and reproducibility sampling (NPAIRS) ap-
proach by Strother and colleagues29,30 Within the
NPAIRS modeling framework separate metrics of
prediction and reproducibility are generated.50 The
first, prediction accuracy, evaluates classification in
the temporal domain, predicting which condition
of the experiment each scan belongs to. The sec-
ond metric, reproducibility, evaluates the model in
the spatial domain, comparing patterns of regional
brain activity over time. Although this approach is
far more complicated than the relatively simple clus-
ter overlap or ICC metrics, predictive modeling does
not suffer from many of the drawbacks that these
methods have. NPAIRS, and other predictive mod-
eling approaches, enable a much more thorough
examination of fMRI reliability.

Some studies have investigated fMRI reliability
using the Pearson product–moment (r) correla-
tion. Intuitively, this is a logical method to use,
as it measures the relationship between two vari-
ables. However, it is generally held that the Pear-
son product–moment correlation is not an ideal
measure of test–retest reliability. Safrit identified
three reasons why the product–moment correlation
should not be used to calculate reliability.51 First, the
Pearson product–moment correlation is setup to de-
termine the relationship between two variables, not
the stability of a single variable. Second, it is diffi-
cult to measure reliability with the Pearson product–
moment correlation beyond a single test–retest pair.
It becomes increasingly awkward to quantify relia-
bility with two or more retest sessions. One can try
to average over multiple pairwise Pearson product–
moment correlations between the multiple sessions,
but it is far easier to take the ANOVA approach
of the ICC and examine it from the standpoint of
between- and within-subject variability. Third, the
Pearson product–moment correlation cannot de-
tect systematic error. This would be the case when
the retest values deviate by a similar degree, such
as adding a constant value to all of the original
test values. The Pearson product–moment corre-
lation would remain the same, while an appropriate
ICC would indicate that the test–retest agreement is
not exact. Although the use of ICC measures has
its own set of issues, it is generally a more ap-
propriate tool for the investigation of test–retest
reliability.

Review of existing reliability estimates

Since the advent of fMRI some results have been
common and quite easily replicated. For example,
activity in primary visual cortex during visual stim-
ulation has been thoroughly studied. Other fMRI
results have been somewhat difficult to replicate.
What does the existing literature have to say regard-
ing the reliability of fMRI results?

There have been a number of individual studies
investigating the test–retest reliability of fMRI re-
sults, but few articles have reviewed the entire body
of literature to find trends across studies. To ob-
tain a more effective estimate of fMRI reliability,
we conducted a survey of the existing literature on
fMRI reliability. To find papers for this investigation,
we searched for “test–retest fMRI” using the NCBI
PubMed database (www.pubmed.gov). This search
yielded a total of 183 papers, 37 of which used fMRI
as a method of investigation, used a general linear
model to compute their results, and provided test–
retest measures of reliability. To broaden the scope
of the search, we then went through the reference
section of the 37 papers found using PubMed to
look for additional works not identified in the ini-
tial search. There were 26 additional papers added
to the investigation through this secondary search
method. The total number of papers retrieved was
63. Each paper was examined with regard to the type
of cognitive task, kind of fMRI design, number of
subjects, and basis of reliability calculation.

We have separated out the results into three
groups: those that used the voxel overlap method,
those that used ICC, and papers that used other cal-
culation methods. The results of this investigation
can be seen in Tables 1–3. In the examination of clus-
ter overlap values in the literature, we attempted to
only include values that were observed at a similar
significance threshold across all of the papers. The
value we chose as the standard was P(uncorrected)
< 0.001. Deviations from this standard approach
are noted in the tables.

Conclusions from the reliability review

What follows are some general points that can be
taken away from the reliability survey. Some of the
conclusions that follow are quantitative results from
the review and some are qualitative descriptions
of trends that were observed as we conducted the
review.
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Table 1. Results of examined papers using intraclass correlation as a reliability metric

No. Approximate

First of T–R Min Mean Max

author Year Task Design Type Basis Contrast Subs interval ICC ICC ICC

Caceres47 2009a Auditory target

detection

Block Sig. voxels Contrast values Task vs. rest 10 3 months – 0.35 –

Caceres47 2009a N-back working

memory

Block Sig. voxels Contrast values Task vs.

control

10 3 months – 0.49 –

Freyer94 2009b Probabilistic

reversal

learning

Event All voxels Contrast values Task vs.

control

10 16 weeks – – –

Gountouna95 2009 Finger tapping Block ROI Contrast values Task vs. rest 14 Unknown 0.23 0.53 0.72

Bosnell71 2008 Hand tapping Block ROI Percent signal

change

Task vs. rest 22 <1 day – 0.82 –

Friedman8 2008a ,c Finger tapping Block ROI Percent signal

change

Task vs. rest 5 1 day 0.47 0.74 0.85

Schunck96 2008 Anticipatory

anxiety

Block ROI Percent signal

change

Task vs. rest 14 10 days −0.06 0.34 0.66

Kong97 2007 Finger tapping Block ROI Percent signal

change

Task vs. rest 8 1 week 0.00 0.37 0.76

Kong97 2007 Acupuncture Block ROI Percent signal

change

Task vs. rest 8 1 week 0.00 0.16 0.54

Raemaekers58 2007 Prosaccade/

antisaccade

Event All voxels t-Statistic values Task vs. rest 12 1 week −0.08 – 0.79

Aron52 2006 Probabilistic

classification

learning

Event ROI Contrast values Task vs. rest 8 59 weeks 0.76 0.88 0.99

Johnstone98 2005 Amygdala-facial

affect localizer

Block Amygdala

ROI

Contrast values Task vs. rest 15 8 weeks 0.02 0.38 0.63

Wei99 2004 Auditory

two-back

Block ROI Activation index Task vs. rest 8 9 weeks 0.14 0.43 0.71

Specht100 2003b Visual attention Event Sig. voxels Percent signal

change

Task vs. rest 5 8 weeks – – –

Manoach66 2001 Sternberg item

recognition

Event ROI Percent signal

change

Task vs.

control

7 14 weeks 0.23 0.52 0.81

Mean value 0.17 0.50 0.75

aMedian value given.
bData presented as graphs or figures, unable to quantify values.
cData acquired from multiple scanners.

A diverse collection of methods have been
used to assess fMRI reliability
The first finding mirrors the earlier discussion
on reliability calculation. A very diverse collec-
tion of methods has been used to investigate fMRI
reliability. This list includes: ICC, cluster over-
lap, voxel counts, receiver operating characteris-
tic (ROC) curves, ML, conjunction analysis, Co-
hen’s kappa index, CV, Kendall’s W , laterality index
(LI), variance component decomposition, Pearson
correlation, predictive modeling, and still others.
Although this diversity of methods has created con-
verging evidence of fMRI reliability, it has also lim-

ited the ability to compare and contrast the results
of existing reliability studies.

ICC and cluster overlap methods
Although there have been a number of methods
used to investigate reliability, the two that stand out
by frequency of use are cluster overlap and ICC. One
advantage of these methods is that they are easy to
calculate. The equations are simple to understand,
easy to implement, and fast to process. A second
advantage of these methods is their easy interpreta-
tion by other scientists. Even members of the gen-
eral public can understand the concept behind the
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Table 2. Results of examined papers using cluster overlap as a reliability metric

Dice overlap
No. Approximate

First of T–R Min Avg. Max

author Year Task Design Calculation Basis Contrast Threshold Subs interval overlap overlap overlap

Duncan41 2009a One-back

object/word

localizer

Block Dice ROI Task vs. rest P(uncorr)

< 0.001

45 <1 h 0.380 0.435 0.490

Gountouna95 2009 Finger tapping Block Dice Sig.

voxels

Task vs. rest P(corr)

< 0.05

14 Not given 0.410 0.455 0.500

Meindl101 2009 Default mode Free Dice ICA Component P(uncorr)

< 0.05

18 1 week 0.080 0.390 0.760

Feredoes102 2007b ,e Button press Event Custom Sig.

voxels

Task vs. rest P(corr)

< 0.05

6 1 week – 0.245 –

Feredoes102 2007b ,e Delayed

recognition

Event Custom Sig.

voxels

Task vs.

control

P(corr)

< 0.05

6 1 week 0.000 0.210 0.413

Raemaekers58 2007 Prosaccade/

Antisaccade

Event Dice Sig.

voxels

Task vs. rest P(corr)

< 0.005

12 1 week 0.760 0.785 0.810

Rau59 2007 Naming/noun

generation

Block Dice Sig.

voxels

Task vs. rest P(corr)

< 0.05

13 9 days 0.000 0.350 0.820

Harrington103 2006ac Multiple

language

Event Dice ROI Task vs. rest P(corr)

< 0.05

10 4 weeks – – –

Harrington104 2006bc Multiple

encoding

Block Dice ROI Task vs. rest P(corr)

< 0.05

9 10 weeks – – –

Havel105 2006 Motor

movement

Block Dice Sig.

voxels

Task vs. rest P(uncorr)

< 0.001

15 6 days 0.000 0.230 0.710

Wagner106 2005 Verbal encoding Block Dice Sig.

voxels

Task vs.

control

Individualized 20 33 weeks – 0.362 –

Wagner106 2005 Verbal

recognition

Block Dice Sig.

voxels

Task vs.

control

Individualized 20 33 weeks – 0.420 –

Yoo107 2005c Finger tapping Block Dice ROI Task vs. rest P(uncorr)

< 0.005

8 8 weeks – – –

Specht100 2003 Visual attention Event Dice Voxelwise Task vs. rest P(uncorr)

< 0.01

5 2 weeks 0.420 0.583 0.692

Swallow108 2003b Visual FEF and

MT localizers

Block Jaccard ROI Task vs. rest z(uncorr)

> 4.5

11 Not given 0.416 0.463 0.507

Maldjian57 2002b Word generation Block Jaccard Sig.

voxels

Task vs. rest P(uncorr)

< 0.005

8 1 week 0.748 0.856 0.993

Maldjian57 2002b Forward–

backward

listening

Block Jaccard Sig.

voxels

Task vs. rest P(uncorr)

< 0.005

8 1 week 0.410 0.662 0.817

Rutten109 2002b ,d Combined

language tasks

Block Custom Sig.

voxels

Task vs. rest z(uncorr)

> 4.5

9 5 months – 0.420 –

Miki110 2001 Visual

checkerboard

Block Dice Sig.

voxels

Task vs. rest z(uncorr)

> 4.5

4 <1 h 0.560 0.610 0.660

Machielsen111 2000 Visual encoding Block Dice Sig.

voxels

Task vs.

control

P(corr)

< 0.05

10 14 days – 0.507 –

Machielsen111 2000 Visual encoding Block Dice ROI Task vs.

control

P(corr)

< 0.05

10 14 days 0.211 0.374 0.514

Miki112 2000 Visual light

stimulation

Block Dice Sig.

voxels

Task vs. rest z(uncorr)

> 4.5

7 5 days 0.020 0.480 0.770

Tegeler113 1999 Finger tapping Block Dice Sig.

voxels

Task vs. rest Top 2% of

voxels

6 <1 h – 0.410 –

Rombouts42 1998 Visual light

stimulation

Block Dice Sig.

voxels

Task vs. rest P(corr)

< 0.05

10 2 weeks 0.460 0.640 0.760

Rombouts40 1997 Visual light

stimulation

Block Dice Sig.

voxels

Task vs. rest r(uncorr)

> 0.50

14 2 weeks 0.150 0.310 0.500

Continued.
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Table 2. Continued

Dice overlap
No. Approximate

First of T–R Min Avg. Max

author Year Task Design Calculation Basis Contrast Threshold Subs interval overlap overlap overlap

Ramsey114 1996b Finger tapping Block Jaccard Sig.

voxels

Task vs.

rest

P(corr) < 0.05 7 11 weeks – 0.333 –

Yetkin115 1996b Finger tapping Block Jaccard Sig.

voxels

Task vs.

rest

r(uncorr) > 0.60 4 <1 h – 0.742 –

Yetkin115 1996b Somatosensory

touch

Block Jaccard Sig.

voxels

Task vs.

rest

r(uncorr) > 0.60 4 <1 h – 0.621 –

Mean value 0.314 0.476 0.670

aOverlap values estimated from figure.
bResults recalculated to represent Dice statistic.
cData presented as graphs or figures, unable to quantify values.
dOverlap only calculated for a single region.
eCalculated using total voxels in first session only, not average.

overlapping of clusters and most everyone is familiar
with correlation values. Although these techniques
certainly have limitations and caveats, they seem to
be the emerging standard for the analysis of fMRI
reliability.

Previous studies of reliability
What sample size is necessary to conduct effective
reliability research? Most of the studies that were
reviewed used less than 10 subjects to calculate their
reliability measures, with 11 subjects being the over-
all average across the investigation. Should reliability
studies have more subjects? Because a large amount
of the error variance is coming from subject-specific
factors it may be wise to use larger sample sizes when
assessing study reliability, as a single anomalous sub-
ject could sway study reliability in either direction.
Another notable factor is that a large percentage of
studies using fMRI are completed with a restricted
range of subjects. Most samples will typically be re-
cruited from a pool of university undergraduates.
These samples may have a different reliability than
a sample pulled at random from the larger popu-
lation. Because of sample restriction the results of
most test–retest investigations may not reflect the
true reliability of other populations such as children,
the elderly, and individuals with clinical disorders.

Reliability varies by test–retest interval
Generally, increased amounts of time between the
initial test scan and the subsequent retest scan will
lower reliability. Still, even back-to-back scans are
not perfectly reliable. The average Jaccard overlap

of studies where the test and retest scans took place
within the same hour was 33%. Many studies with
intervals lasting 3 months or more had a lower over-
lap percentage. This is a somewhat loose guideline
though. Notably, the results reported by Aron and
colleagues had one of the longest test–retest intervals
but also possessed the highest average ICC score.52

Reliability varies by cognitive task and
experimental design
Motor and sensory tasks seem to have greater reli-
ability than tasks involving higher cognition. Cac-
eras and colleagues found that the reliability of an
N-back task was higher than that of an auditory tar-
get detection task.47 Differences in the design of an
fMRI experiment also seem to affect the reliability of
results. Specifically, block designs appear to have a
slight advantage over event-related designs in terms
of reliability. This may be a function of the greater
statistical power inherent in a block design and its
increased SNR.

Significance is related to reliability, but it is not
a strong correlation
Several studies have illustrated that super-threshold
voxels are not necessarily more reliable than sub-
threshold voxels. Caceras and colleagues examined
the joint probability distribution of significance and
reliability.47 They found that there were some highly
activated ROIs with low reliability and some sub-
threshold regions that had high reliability. These
ICC results fit in well with the data from cluster over-
lap studies. The average cluster overlap was 29%.
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Table 3. Results of examined papers using other forms of reliability calculation

First No. of Approximate

author Year Task Design Method Type Subs T–R interval

Liou116 2009 Multiple tasks Event Cohen’s kappa

index

Voxelwise 12 <1 h

Magon117 2009 Breath holding Block Coefficient of

variation

ROI 11 3 weeks

Maitra118 2009 Finger tapping Block Maximum

likelihood

Voxelwise 1 5 days

Miller55 2009 Multiple memory

tasks

Block/event Pearson correlation Voxelwise 14 12 weeks

Shehzad119 2009 Resting state Free Connectivity ICC ROI 26 1 h/5 months

Shehzad119 2009 Resting state Free Kendall’s W ROI 26 1 h/5 months

Zhang31 2009 Static force Block NPAIRS Components 16 <1 h

Zandbelt120 2008 Go/NoGo Block Signal change SD ROI 10 1 week

Chen121 2007 Language imaging Block Reliability

maps/ROC

Voxelwise 12 Variable

Leontiev122 2007 Retinotopic

mapping

Block Coefficient of

variation

ROI 10 1 day

Yoo123 2007 Motor imagery Block Signal change SD ROI 10 <1 h

Jansen124 2006 Multiple tasks Block Laterality index ROI 10 2 h

Mayer125 2006 Covert word

generation

Event Active voxel count ROI 8 <1 h

Peelen126 2005 Visual

categorization

Block Sign test ROI 6 3 weeks

Smith127 2005 Visual, motor,

cognitive

Block Variance

components

ROI 1 1 day

Wagner106 2005 Verbal memory Block Pearson correlation All voxels 20 33 weeks

Liu128 2004 Handgrip task Block General linear

model

Voxelwise 8 1 month

Stark129 2004 Emotional pictures Block Kappa index Sig. voxels 24 1 week

Strother30 2004 Static force Block NPAIRS Components 16 <1 h

Phan130 2003 Aversive images Block General Linear

model

ROI 8 <1 h

Kiehl131 2003 Auditory oddball Event Conjunction

analysis

Voxelwise 10 6 weeks

Neumann132 2003 Stroop Task Event BOLD dynamics ROI 4 1 week

Maitra133 2002 Finger tapping Block Maximum

likelihood

All voxels 1 ∼1 week

Miller36 2002 Episodic retrieval Block Pearson correlation All voxels 6 6 months

Loubinoux134 2001 Sensorimotor Block Coefficient of

variation

Sig. voxels 21 Variable

Salli135 2001 Wrist flexing Block Reliability maps Voxelwise 1 <1 h

White136 2001 Finger tapping Block ROI discrimination ROI 6 3 weeks

McGonigle137 2000 Visual, motor,

cognitive

Block General linear

model

Voxelwise 1 1 day

Waldvogel138 2000 Tapping/

checkerboard

Block Signal change

stability

All voxels 6 1 week

Cohen44 1999a Visual and motor Block Voxel counting Sig. voxels 6 <1 h

Tegeler113 1999 Finger tapping Block Pearson correlation All voxels 6 <1 h

Moser19 1996 Visual stimulation Block Signal change SD Single slice 18 <1 h

aCohen et al. conducted the experiment to argue against voxel counting.
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This means that, across studies, the average number
of significant voxels that will replicate is roughly one
third. This evidence speaks against the assumption
that significant voxels will be far more reliable in an
investigation of test–retest reliability.

An optimal threshold of reliability has not been
established
There is no consensus value regarding what con-
stitutes an acceptable level of reliability in fMRI.
Is an ICC value of 0.50 enough? Should studies
be required to achieve an ICC of 0.70? All of the
studies in the review simply reported what the reli-
ability values were. Few studies proposed any kind
of criteria to be considered a “reliable” result. Ci-
cchetti and Sparrow did propose some qualitative
descriptions of data based on the ICC-derived reli-
ability of results.53 They proposed that results with
an ICC above 0.75 be considered “excellent,” results
between 0.59 and 0.75 be considered “good,” results
between 0.40 and 0.58 be considered “fair,” and re-
sults lower than 0.40 be considered “poor.” More
specifically to neuroimaging, Eaton and colleagues
used a threshold of ICC >0.4 as the mask value for
their study, whereas Aron and colleagues 52 used an
ICC cutoff of ICC >0.5 as the mask value.54

Interindividual variability is consistently
greater than intraindividual variability
Many studies reported both within- and between-
subject reliability values in their results. In every
case, the within-subject reliability far exceeded the
between-subjects reliability. Miller and colleagues
explicitly examined variability across subjects and
concluded that there are large-scale, stable differ-
ences between individuals on almost any cogni-
tive task.35,36 More recently, Miller and colleagues
directly contrasted within- and between-subject
variability.55 They concluded that between-subject
variability was far higher than any within-
subject variability. They further demonstrated that
the results from one subject completing two differ-
ent cognitive tasks are typically more similar than
the data from two subjects doing the same task.
These results are mirrored by those of Costafreda
and colleagues, who found that well over half (57%)
of the variability in their fMRI data was due to
between-subject variation.56 It seems to be the case
that within-subject measurements over time may

vary, but they vary far less than differences in the
overall pattern of activity between individuals.

There is little agreement regarding the true
reliability of fMRI results
Although we mention this as a final conclusion from
the literature review, it is perhaps the most impor-
tant point. Some studies have estimated the relia-
bility of fMRI data to be quite high, or even close
to perfect for some tasks and brain regions.52,57,58

Other studies have been less enthusiastic, showing
fMRI reliability to be relatively low.41,59 Across the
survey of fMRI test–retest reliability we found that
the average ICC value was 0.50 and the average clus-
ter overlap value was 29% of voxels (Dice overlap
= 0.45, Jaccard overlap = 0.29). This represents an
average across many different cognitive tasks, fMRI
experimental designs, test–retest time periods, and
other variables. While these numbers may not be
representative of any one experiment, they do pro-
vide an effective overview of fMRI reliability.

Other issues and comparisons

Test–retest reliability in clinical disorders
There have been few examinations of test–retest reli-
ability in clinical disorders relative to the number of
studies with normal controls. A contributing factor
to this problem may be that the scientific under-
standing of brain disorders using neuroimaging is
still in its infancy. It may be premature to examine
clinical reliability if there is only a vague understand-
ing of anatomical and functional abnormalities in
the brain. Still, some investigators have taken sig-
nificant steps forward in the clinical realm. These
few investigations suggest that reliability in clini-
cal disorders is typically lower than the reliability of
data from normal controls. Some highlights of these
results are listed later, categorized by disorder.

Epilepsy
Functional imaging has enormous potential to aid
in the clinical diagnosis of epileptiform disorders.
Focusing on fMRI, research by Di Bonaventura and
colleagues found that the spatial extent of activ-
ity associated with fixation off sensitivity was sta-
ble over time in epileptic patients.60 Of greater
research interest for epilepsy has been the reli-
ability of combined EEG/fMRI imaging. Symms
and colleagues reported that they could reliably
localize interictal epileptiform discharges using
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EEG-triggered fMRI.61 Waites and colleagues also
reported the reliable detection of discharges with
combined EEG/fMRI at levels significantly above
chance.62 Functional imaging also has the poten-
tial to assist in the localization of cognitive func-
tion prior to resection for epilepsy treatment. One
possibility would be to use noninvasive fMRI mea-
sures to replace cerebral sodium amobarbital anes-
thetization (Wada test). Fernandez and colleagues
reported good reliability of lateralization indices
(whole-brain test–retest, r = 0.82) and cluster over-
lap measures (Dice overlap = 0.43, Jaccard overlap
= 0.27).5

Stroke
Many aspects of stroke recovery can impact the re-
sults of functional imaging data. The lesion loca-
tion, size, and time elapsed since the stroke event
each have the potential to alter function within
the brain. These factors can also lead to increased
between-subject variability relative to groups of nor-
mal controls. This is especially true when areas prox-
imal to the lesion location contribute to specific
aspects of information processing, such as speech
production. Kimberley and colleagues found that
stroke patients had generally higher ICC values rel-
ative to normal controls.63 This mirrors the find-
ings of Eaton and colleagues, who showed that the
average reliability of aphasia patients was approx-
imately equal to that of normal controls as mea-
sured by ICC.54 These results may be indicative of
equivalent fMRI reliability in stroke victims, or it
may be an artifact of the ICC calculation. Kim-
berly and colleagues state that increased between-
subject variability of stroke patients can lead to
inflated ICC estimates.63 They argue that fMRI reli-
ability in stroke patients likely falls within the mod-
erate range of values (0.4 < ICC < 0.6).

Schizophrenia
Schizophrenia is a multidimensional mental dis-
order characterized by a wide array of cognitive
and perceptual dysfunctions.64,65 Although there
have been a number of studies on the reliability
of anatomical measures in schizophrenia there have
been few that have focused on function. Manoach
and colleagues demonstrated that the fMRI results
from schizophrenic patients on a working mem-
ory task were less reliable overall than that of nor-
mal controls.66 The reliability of significant ROIs

in the schizophrenic group ranged from ICC val-
ues of −0.20 to 0.57. However, the opposite effect
was found by Whalley and colleagues in a group of
subjects at high genetic risk for schizophrenia (no
psychotic symptoms).67 The ICC values for these
subjects were equally reliable relative to normal con-
trols on a sentence completion task. More research
is certainly needed to find consensus on reliability
in schizophrenia.

Aging
The anatomical and functional changes that take
place during aging can increase the variability of
fMRI results at all levels.68 Clement and colleagues
reported that cluster overlap percentages and the
cluster-wise ICC values were not significantly dif-
ferent between normal elderly controls and patients
with mild cognitive impairment (MCI).69 On an
episodic retrieval task, healthy controls had ICC val-
ues averaging 0.69 whereas patients diagnosed with
MCI had values averaging 0.70. However, they also
reported that all values for the older samples were
lower than those reported for younger adults on
similar tasks. Marshall and colleagues found that al-
though the qualitative reproducibility of results was
high, the reliability of activation magnitude during
aging was quite low.70

It is clear that the use of ICCs in clinical re-
search must be approached carefully. As mentioned
by Bosnell and colleagues and Kimberly and col-
leagues, extreme levels of between-subject variabil-
ity will artificially inflate the resulting ICC reliability
estimate.63,71 Increased between-subject variability
is a characteristic found in many clinical popula-
tions. Therefore, it may be the case that comparing
two populations with different levels of between-
subject variability may be impossible when using an
ICC measure.

Reliability across scanners/multicenter
studies

One area of increasing research interest is the abil-
ity to combine the data from multiple scanners into
larger, integrative data sets.72 There are two areas
of reliability that are important for such studies.
The first is subject-level reliability, or how stable
the activity of one person will be scan-to-scan. The
second is group-level reliability, or how stable the
group fMRI results will be from one set of subjects
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to another or from one scanner to another. Given the
importance of multicenter collaboration it is criti-
cal to evaluate how results will differ when the data
comes from a heterogeneous group of MRI scan-
ners as opposed to a single machine. Generally, the
concordance of fMRI results from center to center
is quite good, but not perfect.

Casey and colleagues was one of the first groups
to examine the reliability of results across scan-
ners.7 Between three imaging centers they found a
“strong similarity” in the location and distribution
of significant voxel clusters. More recently, Fried-
man and colleagues found that intercenter reliabil-
ity was somewhat worse than test–retest reliability
across several centers with an identical hardware
configuration.8 The median ICC of their intercenter
results was ICC = 0.22. Costafreda and colleagues
also examined the reproducibility of results from
identical fMRI setups.56 Using a variance compo-
nents analysis, they determined that the MR system
accounted for roughly 8% of the variation in the
BOLD signal. This compares favorably relative to
the level of between-subject variability (57%).

The reliability of results from one scanner to
another seems to be approximately equal to or
slightly less than the values of test–retest reliabil-
ity with the same MRI hardware. Special calibra-
tion and quality control steps can be taken to en-
sure maximum concordance across scanners. For
instance, before conducting anatomical MRI scans
in the Alzheimer’s disease neuroimaging initiative
(ADNI, http://www.loni.ucla.edu/ADNI/) a special
MR phantom is typically scanned. This allows for
correction of magnet-specific field inhomogeneity
and maximizes the ability to compare data from
separate scanners. Similar calibration measures are
being discussed for functional MRI.73–75 It may be
the case that as calibration becomes standardized it
will lead to increased intercenter reliability.

Other statistical issues in fMRI

It is important to note that a number of important
fMRI statistical issues have gone unmentioned in
this paper. First, there is the problem of conduct-
ing thousands of statistical comparisons without an
appropriate threshold adjustment. Correction for
multiple comparisons is a necessary step in fMRI
analysis that is often skipped or ignored.76 Another
statistical issue in fMRI is temporal autocorrelation

in the acquired timeseries. This refers to the fact
that any single timepoint of data is not necessarily
independent of the acquisitions that came before
and after.77,78 Autocorrelation correction is widely
available, but is not implemented by most investi-
gators. Finally, throughout the last year the “non-
independence error” has been discussed at length.
Briefly, this refers to selecting a set of voxels to create
an ROI and then using the same measure to eval-
uate some statistical aspect of that region. Ideally,
an independent data set should be used after the
ROI has been initially defined. It is important to
address these issues because they are still debated
within the field and often ignored in fMRI analy-
sis. Their correction can have a dramatic impact on
how reproducible the results will be from study to
study.

Conclusions

How can a researcher improve fMRI
reliability?
The generation of highly reliable results requires that
sources of error be minimized across a wide array
of factors. An issue within any single factor can sig-
nificantly reduce reliability. Problems with the scan-
ner, a poorly designed task, or an improper analysis
method could each be extremely detrimental. Con-
versely, elimination of all such issues is necessary
for high reliability. A well-maintained scanner, well-
designed tasks, and effective analysis techniques are
all prerequisites for reliable results.

There are a number of practical ways that fMRI
researchers can improve the reliability of their
results. For example, Friedman and Glover re-
ported that simply increasing the number of fMRI
runs improved the reliability of their results from
ICC = 0.26 to ICC = 0.58.73 That is quite a large
jump for an additional 10 or 15 min of scanning.
Some general areas where reliability can be im-
proved are given later.

Increase the SNR and CNR of the acquisition
One area of attention is to improve the SNR and
CNR ratios of the data collection. An easy way to
do this would be to simply acquire more data. It
is a zero-sum game, as increasing the number of
TRs that are acquired will help improve the SNR
but will also increase the task length. Subject fa-
tigue, scanner time limitations, and the diminishing
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returns with each duration increase will all play a
role in limiting the amount of time that can be ded-
icated to any one task. Still, a researcher considering
a single 6-min EPI scan for their task might add ad-
ditional data collection to improve the SNR of the
results. With regard to the magnet, every imaging
center should verify acquisition quality before scan-
ning. Many sites conduct quality assurance scans
at the beginning of each day to ensure stable op-
eration. This has proven to be an effective method
of detecting issues with the MR system before they
cause trouble for investigators. It is a hassle to can-
cel a scanning session when there are subtle artifacts
present, but this is a better option than acquiring
noisy data that does not make a meaningful con-
tribution to the investigation. As a final thought,
research groups can always start fundraising to pur-
chase a new magnet with improved specifications. If
data acquisition is being done on a 1.5 Tesla magnet
with a quadrature head coil enormous gains in SNR
can be made by moving to 3.0 Tesla or higher and
using a parallel-acquisition head coil.79,80

Minimize individual differences in cognitive
state, both across subjects and over time
Because magnet time is expensive and precious the
critical component of effective task instruction can
often be overlooked. Researchers would rather be ac-
quiring data as opposed to spending additional time
giving detailed instructions to a subject. However,
this is a very easy way to improve the quality of the
final data set. If it takes 10 trials for the participant
to really “get” the task then those trials have been
wasted, adding unnecessary noise to the final re-
sults. Task training in a separate laboratory session
in conjunction with time in a mock MRI scanner
can go a long way toward homogenizing the scanner
experience for subjects. It may not always be possi-
ble to fully implement these steps, but they should
not be avoided simply to reduce the time spent per
subject.

For multisession studies, steps can be taken to
help stabilize intrasubject changes over time. Scan-
ning test and retest session at the same time of day
can help due to circadian changes in hormone level
and cognitive performance.81–83 A further step to
consider is minimizing the time between sessions
to help stabilize the results. Much more can change
over the course of a month than over the course of
a week.

Maximize the experiment’s statistical power
Power represents the ability of an experiment to re-
ject the null hypothesis when the null hypothesis
is indeed false.84 For fMRI this ability is often dis-
cussed in terms of the number of subjects that will
be scanned and the design of the task that will be
administered, including how many volumes of data
will be acquired from each subject. More subjects
and more volumes almost always contribute to in-
creasing power, but there are occasions when one
may improve power more than the other. For ex-
ample, Mumford and Nichols demonstrated that,
when scanner time was limited, different combina-
tions of subjects and trials could be used to achieve
high levels of power.85 For their hypothetical task
it would take only five 15 sec blocks to achieve
80% power if there were 23 subjects, but it would
take 25 blocks if there were only 18 subjects. These
kinds of power estimations are quite useful in de-
termining the best use of available scanner time.
Tools such as fmripower (http://fmripower.org) can
use data from existing experiments to yield new in-
formation on how many subjects and scans a new
experiment will require to reach a desired power
level.85–87

The structure of the stimulus presentation has
a strong influence on an experiment’s statistical
power. The dynamic interplay between stimulus
presentation and interstimulus jitter are important,
as is knowing what contrasts will be completed once
the data has been acquired. Each of these parame-
ters can influence the power and efficiency of the
experiment, impacting the reliability of the results.
Block designs tend to have greater power relative to
event-related designs. One can also increase power
by increasing block length, but care should be ex-
ercised not to make blocks so long that they ap-
proach the low frequencies associated with scanner
drift. There are several good software tools avail-
able that will help researchers create an optimal
design for fMRI experiments. OptSeq is a pro-
gram that helps to maximize the efficiency of an
event-related fMRI design.88 OptimizeDesign is a
set of Matlab scripts that utilize a genetic search
algorithm to maximize specific aspects of the de-
sign.89 Using this tool, researchers can separately
weight statistical power, HRF estimation efficiency,
stimulus counterbalancing, and maintenance of
stimulus frequency. These programs, and others
like them, are valuable tools for ensuring that the
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ability to detect meaningful signals is effectively
maximized.

It is important to state that the reliability of a
study in no way implies that an experiment has ac-
curately assessed a specific cognitive process. The
validity of a study can be quite orthogonal to its
reliability—it is possible to have very reliable results
from a task that mean little with regard to the cog-
nitive process under investigation. No increase in
SNR or optimization of event timing can hope to
improve an experiment that is testing for the wrong
thing. This makes task selection of paramount im-
portance in the planning of an experiment. It also
places a burden on the researcher in terms of effec-
tive interpretation of fMRI results once the analysis
is done.

Where does neuroimaging go next?

In many ways cognitive neuroscience is still at the
beginning of fMRI as a research tool. Looking back
on the last two decades it is clear that functional
MRI has made enormous gains in both statistical
methodology and popularity. However, there is still
much work to do. With specific regard to reliability,
there are some specific next steps that must be taken
for the continued improvement of this method.

Better characterization of the factors that
influence reliability
Additional research is necessary to effectively under-
stand what factors influence the reliability of fMRI
results. The field has a good grasp of the acquisition
and analysis factors that influence SNR. Still, there
is relatively little knowledge regarding how stable
individuals are over time and what influences that
stability. Large-scale studies specifically investigat-
ing reliability and reproducibility should therefore
be conducted across several cognitive domains. The
end goal of this research would be to better charac-
terize the reliability of fMRI across multiple dimen-
sions of influence within a homogeneous set of data.
Such a study would also create greater awareness of
fMRI reliability in the field as a whole. The direct
comparison of reliability analysis methods, includ-
ing predictive modeling, should also be completed.

Meta/mega analysis
The increased pooling of data from across mul-
tiple studies can give a more generalized view of

important cognitive processes. One method, meta-
analysis, refers to pooling the statistical results of
numerous studies to identify those results that are
concordant and discordant with others. For ex-
ample, one could obtain the MNI coordinates of
significant clusters from several studies having to
do with response inhibition and plot them in the
same stereotaxic space to determine their concor-
dance. One popular method of performing such
an analysis is the creation of an activation likeli-
hood estimate (ALE).90,91 This method allows for
the statistical thresholding of meta-analysis results,
making it a powerful tool to examine the findings
of many studies at once. Another method, mega-
analysis, refers to reprocessing the raw data from
numerous studies in a new statistical analysis with
much greater power. Using this approach any sys-
tematic error introduced by any one study will con-
tribute far less to the final statistical result.92 Mega-
analyses are far more difficult to implement because
the raw imaging data from multiple studies must
be obtained and reprocessed. Still, the increase in
detection power and the greater generalizability of
the results are strong reasons to engage in such an
approach.

One roadblock to collaborative multicenter stud-
ies is the lack of data provenance in functional
neuroimaging. Provenance refers to complete de-
tail regarding the origin of a data set and the his-
tory of operations that have been preformed on the
data. Having a complete history of the data enables
analysis by other researchers and provides informa-
tion that is critical for replication studies.93 Moving
forward there will be an additional focus on prove-
nance to enable increased understanding of indi-
vidual studies and facilitate integration into larger
analyses.

New emphasis on replication
The nonindependence debate of 2009 was less about
effect sizes and more about reproducibility. The im-
plicit argument made about studies that were “non-
independent” was that if researchers ran a noninde-
pendent study over again the resulting correlation
would be far lower with a new, independent data
set. There should be a greater emphasis on the
replicability of studies in the future. This can
be frustrating because it is expensive and time
consuming to acquire and process a replication
study. However, moving forward this may become
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increasingly novel to validate important results and
conclusions.

General conclusions

One thing is abundantly clear: fMRI is an effective
research tool that has opened broad new horizons of
investigation to scientists around the world. How-
ever, the results from fMRI research may be some-
what less reliable than many researchers implicitly
believe. Although it may be frustrating to know that
fMRI results are not perfectly replicable, it is benefi-
cial to take a longer-term view regarding the scien-
tific impact of these studies. In neuroimaging, as in
other scientific fields, errors will be made and some
results will not replicate. Still, over time some mea-
sure of truth will accrue. This paper is not intended
to be an accusation against fMRI as a method. Quite
the contrary, it is meant to increase the understand-
ing of how much each fMRI result can contribute
to scientific knowledge. If only 30% of the signifi-
cant voxels in a cluster will replicate then that value
represents an important piece of contextual infor-
mation to be aware of. Likewise, if the magnitude
of a voxel is only reliable at a level of ICC = 0.50
then that value represents important information
when examining scatter plots comparing estimates
of activity against a behavioral measure.

There are a variety of methods that can be used
to evaluate reliability, and each can provide infor-
mation on unique aspects of the results. Our find-
ings speak strongly to the question of why there
is no agreed-upon average value for fMRI reliabil-
ity. There are so many factors spread out across so
many levels of influence that it is almost impossible
to summarize the reliability of fMRI with a sin-
gle value. Although our average ICC value of 0.50
and our average overlap value of 30% are effective
summaries of fMRI as a whole, these values may be
higher or lower on a study-to-study basis. The best
characterization of fMRI reliability would be to give
a window within which fMRI results are typically re-
liable. Breaking up the range of 0.0–1.0 into thirds,
it is appropriate to say that most fMRI results are
reliable in the ICC = 0.33–0.66 range.

To conclude, functional neuroimaging with fMRI
is no longer in its infancy. Instead, it has reached a
point of adolescence, where knowledge and meth-
ods have made enormous progress but there is still
much development left to be done. Our growing

pains from this point forward are going to be a
more complete understanding of its strengths, weak-
nesses, and limitations. A working knowledge of
fMRI reliability is key to this understanding. The
reliability of fMRI may not be high relative to other
scientific measures, but it is presently the best tool
available for in vivo investigation of brain function.
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