With the extreme dimensionality of functional neuroimaging data comes extreme risk for false positives. Across the 130,000 voxels in a typical fMRI volume the probability of a false positive is almost certain. Correction for multiple comparisons should be completed with these datasets, but is often ignored by investigators. To illustrate the magnitude of the problem we carried out a real experiment that demonstrates the danger of not correcting for chance properly.

A t-contrast was used to test for regions with significant BOLD signal change during the photo condition compared to rest. The parameters for this comparison were \(t(131) > 3.15 \), \(p \text{(uncorrected)} < 0.001 \), 3 voxel extent threshold.

Several active voxels were discovered in a cluster located within the salmon’s brain cavity (Figure 1, see above). The size of this cluster was 81 mm\(^3\) with a cluster-level significance of \(p = 0.001 \). Due to the coarse resolution of the echo-planar image acquisition and the relatively small size of the salmon brain further discrimination between brain regions could not be completed. Out of a search volume of 8064 voxels a total of 16 voxels were significant.

Identical t-contrasts controlling the false discovery rate (FDR) and familywise error rate (FWER) were completed. These contrasts indicated no active voxels, even at relaxed statistical thresholds (\(p = 0.25 \)).

To examine the spatial configuration of false positives we completed a variability analysis of the fMRI timeseries. On a voxel-by-voxel basis we calculated the standard deviation of signal values across all 140 volumes.

We observed clustering of highly variable voxels into groups near areas of high voxel signal intensity. Figure 2a shows the mean EPI image for all 140 image volumes. Figure 2b shows the standard deviation values of each voxel. Figure 2c shows thresholded standard deviation values overlaid onto a high-resolution T1-weighted image.

To investigate this effect in greater detail we conducted a Pearson correlation to examine the relationship between the signal in a voxel and its variability. There was a significant positive correlation between the mean voxel value and its variability over time (\(r = 0.54, p < 0.001 \)). A scatterplot of mean voxel signal intensity against voxel standard deviation is presented to the right.