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ABSTRACT. The Bayesian approach to probability theory is presented as an alternative to the
currently used long-run relative frequency approach, which does not o�er clear, compelling criteria
for the design of statistical methods. Bayesian probability theory o�ers unique and demonstrably
optimal solutions to well-posed statistical problems, and is historically the original approach to
statistics. The reasons for earlier rejection of Bayesian methods are discussed, and it is noted
that the work of Cox, Jaynes, and others answers earlier objections, giving Bayesian inference a
�rm logical and mathematical foundation as the correct mathematical language for quantifying
uncertainty. The Bayesian approaches to parameter estimation and model comparison are outlined
and illustrated by application to a simple problem based on the gaussian distribution. As further
illustrations of the Bayesian paradigm, Bayesian solutions to two interesting astrophysical problems
are outlined: the measurement of weak signals in a strong background, and the analysis of the
neutrinos detected from supernova SN 1987A. A brief bibliography of astrophysically interesting
applications of Bayesian inference is provided.
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1. Introduction

Few astrophysicists have expertise in the use of advanced statistical methods. The reason
for this is not di�cult to �nd, for examination of the use of statistics in the astrophysical
literature reveals the lack of a clear rationale for the choice and use of advanced methods.
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Unfortunately, this problem is not intrinsic to astrophysics, but has been inherited from
statistics itself. To an outsider, statistics can have the appearance of being merely an
\industry" where statistical methods are invented without a clear design rationale, and
then evaluated by mass-producing simulated data sets and analyzing the average, long-
run behavior of the methods. As a result, there often are several methods available for
addressing a particular statistical question, each giving a somewhat di�erent answer from
the others, with no compelling criteria for choosing among them. Further, the reliance on
long-run behavior for the evaluation of statistical methods makes the connection between
textbook statistical inferences and the real life problems of scientists seem rather tenuous.
This problem can be particularly acute in astrophysics, where the notion of a statistical
ensemble is often extremely contrived and can hence seem irrelevant. The gamma-ray
astronomer does not want to know how an observation of a gamma-ray burst would compare
with thousands of other observations of that burst; the burst is a unique event which can be
observed only once, and the astronomer wants to know what con�dence should be placed
in conclusions drawn from the one data set that actually exists. Similarly, the cosmologist
is not comforted to learn that his statement about the large scale structure of the Universe
would be correct 95% of the time were he to make similar observations in each of thousands
of universes \like" our own. He wants to know how much con�dence should be placed in
his statement about our particular Universe, the only one we know exists.

Given these di�culties, it is no wonder that many scientists are dubious about results
obtained using any but the simplest statistical methods, and no wonder that some openly
assert, \If it takes statistics to show it, I don't believe it." It is no wonder, but it is
unfortunate. Among all scientists, it is perhaps most unfortunate for the astronomer, who
studies objects inaccessible to direct manipulation in a laboratory, and whose inferences
are thus fraught with uncertainty, uncertainty crying out for quanti�cation.

It is the thesis of this paper that this situation is unnecessary, that there exists a simple
mathematical language for the quanti�cation of uncertainty, that this language produces
unique answers to well-posed problems, and that its answers are demonstrably optimal by
rather simple, compelling desiderata. This language is Bayesian Probability Theory (BPT),
and far from being a new approach to statistics, it is the original approach to statistics,
predating the current long-run performance approach by a century. Ironically, it was orig-
inally developed by an astrophysicist: Laplace used such methods to analyze astronomical
observations for comparison with his famous calculations in celestial mechanics, and devel-
oped them at length in his Th�eorie Analytique des Probabilit�es (Laplace 1812). Heightening
the irony, many later developments of Laplace's theory also came from mathematicians and
physicists analyzing astronomical problems (see Feigelson 1989 for a brief review). More re-
cently, a full development of Laplace's theory, including the solutions to dozens of practical
statistical problems, was published by Sir Harold Je�reys while a professor of astronomy
at Cambridge University in the chair previously held by Eddington (Je�reys 1939).*

The Bayesian approach to probable inference is remarkably straightforward and intuitive.
In fact, it is most likely what the reader already believes probability theory is, since the

* This work remains little known among astronomers. A recent obituary of Je�reys (Runcorn

1989) fails even to mention this important work, described by the prominent statistician I. J. Good

as being \of greater importance for the philosophy of science, and obviously of greater immediate

practical importance, than nearly all the books on probability written by professional philosophers

lumped together" (Good 1980).
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intuitive understanding physicists have of the more common statistical notions (such as 1�
error bars) is often identical to the Bayesian interpretation of the notion, and far from the
rigorous \classical" or \orthodox" interpretation. But the precise quanti�cation of such
intuitive notions in Bayesian inference allows one to extend them into the realm where
subtleties often leave our intuition|and classical statistics|at a loss. In such cases, the
Bayesian solution often appears beautifully intuitive a posteriori, our intuition having been
trained and sharpened by probability theory.

The plan of this paper is as follows. First, we will have to discuss exactly what one
means by the word \probability." This may sound like a topic for philosophers, but the
whole course of probability theory is set by what one decides the conceptual playground
of the theory is, so the discussion is crucial. Next we will see that the Bayesian notion
of probability, which appears at �rst to be too vague for quantitative analysis, in fact
allows one to develop a complete mathematical language for dealing with uncertainty that
is both simpler than standard statistics and more general than it, including much of it as
a special case. Following this, we will learn how to use the theory to address two classes of
problems of particular interest to scientists: the estimation of parameters in a model, and
the assessment of competing models. The basic ideas will be illustrated by comparing the
Bayesian approach to measuring a signal in Gaussian noise with the standard long term
performance approach.

Once the general theory is set up, we will outline its application to two real astrophys-
ical problems: the measurement of a weak photon counting signal in a (possibly strong)
background, and the analysis of the neutrinos detected from the supernova SN 1987A. The
failure of orthodox methods to guide astronomers to a single, optimal solution to a problem
as simple and fundamental as the measurement of a weak signal is a powerful indication of
the poverty of such methods. The Bayesian solution to this problem is so simple that it is
reduced from a research problem (Hearn 1969; O'Mongain 1973; Cherry et al. 1980) to an
undergraduate homework problem.

This is a lot of ground to cover in the pages of a single paper, and much of it will be
covered unevenly and incompletely. Hopefully, the reader will be induced to study the cited
references where the theory is developed both more eloquently and more fully. To this end,
the concluding section not only summarizes the contents of this work, but also points the
reader to Bayesian literature covering several topics of particular interest to astrophysicists,
including Bayesian spectrum analysis and the Bayesian approach to inverse problems.

2. What is Probability?

2.1 TWO DEFINITIONS OF PROBABILITY

Traditionally, probability is identi�ed with the long-run relative frequency of occurrence of

an event, either in a sequence of repeated experiments or in an ensemble of \identically
prepared" systems. We will refer to this view of probability as the \frequentist" view; it is
also called the \classical," \orthodox," or \sampling theory" view. It is the basis for the
statistical procedures currently in use in the physical sciences.

Bayesian probability theory is founded on a much more general de�nition of probability.
In BPT, probability is regarded as a real-number-valued measure of the plausibility of a
proposition when incomplete knowledge does not allow us to establish its truth or falsehood
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with certainty. The measure is taken on a scale where 1 represents certainty of the truth
of the proposition, and 0 represents certainty of its falsehood. This de�nition has an
obvious connection with the colloquial use of the word \probability." In fact, Laplace
viewed probability theory as simply \common sense reduced to calculation" (Laplace 1812,
1951). For Bayesians, then, probability theory is a kind of \quantitative epistemology", a
numerical encoding of one's state of knowledge.

Few works on statistics for the physical sciences bother to note that there is controversy
over so fundamental a notion as the de�nition of probability. In fact, two of the most
inuential works introducing statistical methods to physical scientists neither de�ne prob-
ability nor discuss the complicated frequentist derivation and interpretation of concepts as
simple and as widely used as the 1� con�dence region (Bevington 1969; Press et al. 1986).
Other texts, noting that there is some controversy over the de�nition, adopt the frequency
de�nition, asserting that there is little practical di�erence between the approaches (Eadie
et al. 1971; Martin 1971; Mendenhall et al. 1981).

Of course, it is futile to argue over which is the \correct" de�nition of probability. The
di�erent de�nitions merely reect di�erent choices for the types of problems the theory can
address, and it seems possible that either de�nition could lead to a consistent mathematical
theory. But though this is true, it leaves open the question of which approach is more useful
or appropriate, or which approach addresses the types of problems actually encountered by
scientists in the most straightforward manner.

In fact, it will not take much deep thought for us to see that the Bayesian approach
to probability theory is both more general than the frequentist approach, and much more
closely related to how we intuitively reason in the presence of uncertainty. We will also �nd
that Bayesian solutions of many important statistical problems are signi�cantly simpler to
derive than their frequentist counterparts. But if this is true, and if, as noted earlier, the
Bayesian approach is the historically older approach, why was the frequentist de�nition
adopted, and why has it dominated statistics throughout this century? To address these
questions, our discussion of the contrast between Bayesian and frequentist reasoning will
be quasi-historical. More extensive discussions of the history of probability theory and
the Bayesian/frequentist controversy are available in R�enyi (1972, Appendices III and IV),
Jaynes (1978, 1986a), and Grandy (1987, Ch. 2).

2.2 SOME EARLY HISTORY: BERNOULLI, BAYES, AND LAPLACE

2.2.1. Frequency from Probability. Though statistical problems, particularly those related
to gambling and games of chance, have entertained the minds of thinkers since ancient times,
the �rst formal account of the calculation of probabilities is Bernoulli's Ars Conjectandi

(\The Art of Conjecture", Bernoulli 1713). Bernoulli was what we would today term a
Bayesian, holding that probability is \the degree of certainty, which is to the certainty
as the part to the whole." He clearly recognized the distinction between probability and
frequency, deriving the relationship between probability of occurrence in a single trial and
frequency of occurrence in a large number of independent trials now known as Bernoulli's
theorem, or the law of large numbers.
Bernoulli's theorem tells us that, if the probability of obtaining a particular outcome

in a single trial is known to be p, the relative frequency of occurrence of that outcome in a
large number of trials converges to p.

Also of interest to Bernoulli was the inverted version of this problem: supposing the
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probability of occurrence in a single trial is unknown, what does the observation of the out-
come n times in N repeated, independent trials tell us about the value of the probability?
Bernoulli never solved this problem, but his interest in it further emphasizes the distinc-
tion made by him and his contemporaries between probability (\degree of certainty") and
frequency.

2.2.2. Probability from Frequency: Bayes' Theorem. A solution to Bernoulli's problem was
published posthumously by the Rev. Thomas Bayes (1763). It was soon rediscovered by
Laplace, in a much more general form, and this general form is known as Bayes' Theorem
(BT). It can be derived very simply as follows.
The mathematical content of the probability theory of Bernoulli, Bayes, and Laplace was

speci�ed by taking as axioms the familiar sum rule,

p(A j C) + p(A j C) = 1; (1)

and product rule,
p(AB j C) = p(A j BC)p(B j C): (2)

Here the symbols, A;B;C, represent propositions, A represents the denial of A (read \not
A"), and AB means \A and B," a proposition that is true only if A and B are both true.
The vertical bar is the conditional symbol, indicating what information is assumed for the
assignment of a probability. We must always assume something about the phenomenon in
question, and it is good practice to put these assumptions out in the open, to the right of
the bar. Failure to do this can lead to apparent paradoxes when two problems with di�erent
background assumptions are compared; see Jaynes (1980a) for an educational example.
All legitimate relationships between probabilities can be derived from equations (1) and

(2). For example, we may want to know the probability that either or both of two propo-
sitions is true. Denoting this by p(A+B j C), it can be easily shown (Jaynes 1958, 1990b;
Grandy 1987) that the axioms imply

p(A+ B j C) = p(A j C) + p(B j C)� p(AB j C): (3)

In fact, we can take this in place of (1) as one of our axioms if we wish. If A and B
are exclusive propositions, so that only one of them may be true, p(AB j C) = 0, and
equation (3) becomes the familiar sum rule for exclusive propositions: p(A+B j C) = p(A j
C) + p(B j C).
It is important to keep in mind that the arguments for a probability symbol are propo-

sitions, not numbers, and that the operations inside the parentheses are logical operations.
The symbols for logical operations are here chosen to make the axioms mnemonic. Thus
logical \and," represented by juxtaposition in the argument list, leads to multiplication
of probabilities. Similarly, logical \or," indicated by a \+" in the argument list, leads to
sums of probabilities. But the meanings of juxtaposition and the \+" sign di�er inside and
outside of the probability symbols.
The propositions AB and BA are obviously identical: the ordering of the logical \and"

operation is irrelevant. Thus equation (2) implies that p(A j BC)p(B j C) = p(B j AC)p(A j
C). Solving for p(A j BC), we �nd

p(A j BC) = p(A j C)p(B j AC)
p(B j C) : (4)
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This is Bayes' theorem; it is a trivial consequence of axiom (2).
Bayesian probability theory is so-called because of its wide use of BT to assess hypotheses,

though of course Bayesians use all of probability theory, not just BT. To see how BT can
help us assess an hypothesis, make the following choices for the propositions A, B, and
C. Let A = H , an hypothesis we want to assess. Let B = D, some data we have that is
relevant to the hypothesis. Let C = I , some background information we have indicating
the way in which H and D are related, and also specifying any alternatives we may have
to H .* With these propositions, BT reads

p(H j DI) = p(H j I)p(D j HI)

p(D j I) : (5)

Thinking about this a little, we see that BT represents learning. Speci�cally, it tells us how
to adjust our plausibility assessments when our state of knowledge regarding an hypothesis
changes through the acquisition of data. It tells us that our \after data" or posterior

probability of H is obtained by multiplying our \before data" or prior probability p(H j I)
by the probability of the data assuming the truth of the hypothesis, p(D j HI), and
dividing it by the probability that we would have seen the data anyway, p(D j I). The
factor p(D j HI) is called the sampling distribution when considered as a function of the
data, or the likelihood function, L(H), when considered as a function of the hypothesis.
For reasons that will become clear below, p(D j I) is sometimes called the global likelihood,
and usually plays the role of an ignorable normalization constant.
Two points are worth emphasizing immediately about BT. First, there is nothing about

the passage of time built into probability theory. Thus, our use of the terms \after data,"
\before data," \prior probability," and \posterior probability" do not refer to times before
or after data is available. They refer to logical connections, not temporal ones. Thus, to be
precise, a prior probability is the probability assigned before consideration of the data, and
similarly for the other terms.
Second, for those who may have been exposed to BT before and heard some ill-informed

criticisms of it, the I that is always to the right of the bar in equation (5) is not some
major premise about nature that must be true to make our calculation valid. Nor is it
some strange, vague proposition de�ning some universal state of ignorance. It simply is
the background information that de�nes the problem we wish to address at the moment.
It may specify information about H that we are content to assume true, or it may simply
specify some alternative hypotheses we wish to compare with H . We will have the chance
to elaborate on this point below, when we see how to use (5) to solve concrete problems.
To solve Bernoulli's problem, Bayes used a special case of BT to evaluate di�erent

propositions about the the value of the single trial probability of an outcome, given its
relative frequency of occurrence in some �nite number of trials (Bayes 1763; Jaynes 1978).
Later, independently, Laplace greatly developed probability theory, with BT playing a key
role. He used it to address many concrete problems in astrophysics. For example, he
used BT to estimate the masses of the planets from astronomical data, and to quantify
the uncertainty of the masses due to observational errors. Such calculations helped him
choose which problems in celestial mechanics to study by allowing him to identify signi�cant
perturbations and to make predictions that would be testable by observers.

* To be precise, H is a proposition asserting the truth of the hypothesis in question (\The

plasma temperature is T ."), D is a proposition asserting the values of the data (\The observed

photon energy is �."), etc., but we will usually be a bit free with our language in this regard.
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2.3 FREQUENTIST PROBABILITY

Despite the success of Laplace's development of probability theory, his approach was soon
rejected by mathematicians seeking to further develop the theory. This rejection was due
to a lack of a compelling rationale for some of the practices of Bernoulli, Bayes, Laplace,
and their contemporaries.

First, the idea that probability should represent a degree of plausibility seemed too vague
to be the foundation for a mathematical theory. The mathematical aspect of the theory
followed from the axioms (1) and (2), but it was certainly not obvious that calculations
with degrees of plausibility had to be governed by those axioms and no others. The axioms
seemed arbitrary.

Second, there were problems associated with how prior probabilities should be assigned.
The probability axioms described how to manipulate probabilities, but they did not specify
how to assign the probabilities that were being manipulated. In most problems, it seemed
clear how to assign the sampling probability, given some model for the phenomenon being
studied. But �nding compelling assignments of prior probabilities proved more di�cult.
In a certain class of problems, Bernoulli and his successors found an intuitively reasonable
principle for such an assignment that we will call the Principle of Indi�erence (PI; it is
also known as the Principle of Insu�cient Reason). It is a rule for assignment of prob-
abilities to a �nite, discrete set of propositions that are mutually exclusive and exhaustive
(i.e., one proposition, and only one, must be true). The PI asserts that if the available
evidence does not provide any reason for considering proposition A1 to be more or less
likely than proposition A2, then this state of knowledge should be described by assigning
the propositions equal probabilities. It follows that in a problem with N mutually exclusive
and exhaustive propositions, and no evidence distinguishing them, each proposition should
be assigned probability 1=N .

While the PI seemed compelling for dealing with probability assignments on discrete
�nite sets of propositions, it was not clear how to extend it to cases where there were
in�nitely many propositions of interest. Such cases arise frequently in science, whenever
one wants to estimate the value of a continuous parameter, �. In this case, � is a label for
a continuous in�nity of propositions about the true value of the parameter, and we need to
assign a prior probability (density) to all values of � in order to use BT. We might specify
indi�erence about the value of � by assigning a at probability density, with each value of
� having the same prior probability as any other. Unfortunately, it seems that we could
make the same statement about prior probabilities for the value of �0 � �2. But a at
density for �0 does not correspond to a at density for �. For this reason, inferences about
continuous parameters seem to have a disturbing subjectivity, since di�erent investigators
choosing to label hypotheses di�erently by using di�erent parameters could come to di�erent
conclusions.

The mathematicians of the late nineteenth and early twentieth centuries dealt with these
legitimate problems by surgical removal. To eliminate the arbitrariness of the probability
axioms, they drastically restricted the domain of the theory by asserting that probability
had to be interpreted as relative frequency of occurrence in an ensemble or in repeated
random experiments. The algebra of relative frequencies obviously satis�ed the axioms, so
their arbitrariness was removed.

As a byproduct, the second problem with the Laplace theory disappeared, because the
frequency de�nition of probability made the concept of the probability of an hypothesis
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illegitimate. This is because the frequency de�nition can only describe the probability of a
random variable: a quantity that can meaningfully be considered to take on various values
throughout an ensemble or a series of repeated experiments. An hypothesis, being either
true or false for every element of an ensemble or every repetition of an experiment, is
not a random variable; its \relative frequency of occurrence" throughout the ensemble or
sequence of experiments is either 0 or 1. For example, were we to attempt to measure the
radius of a planet by repeated observation, the observed radius would vary from repetition
to repetition, but the actual radius of the planet would be constant, and hence not amenable
to frequentist description. Put another way, were we to analyze the observations with BT,
we would be attempting to �nd a posterior distribution for the radius; but if this posterior
distribution is a frequency distribution, there is an obvious problem: how can the frequency
distribution of a parameter become known from data that were taken with only one value
of the parameter actually present?

For these reasons, the concept of the probability of an hypothesis is held as meaningless
in frequentist theory. A consequence is that scientists are denied the ability to use BT to
assess hypotheses, so the problem of assigning prior probabilities disappears. The resulting
theory was originally deemed superior to BPT, especially because it seemed more objective.
The apparent subjectivity of prior probability assignments was avoided, and the frequency
de�nition of probability, by its reference to observation of repeated experiments, seemed
to make probability an objective property of \random" phenomena, and not a subjective
description of the state of knowledge of a statistician.

2.4 CRITICISM OF THE FREQUENTIST APPROACH

2.4.1. Arbitrariness and Subjectivity. Unfortunately, assessing hypotheses was one of the
principle aims of probability theory. Denied the use of BT for this task, frequentist theory
had to develop ways to accomplish it without actually calculating probabilities of hypothe-
ses. The frequentist solution to this problem was the creation of the discipline of statistics.
Basically, one constructs some function of observable random variables that is somehow
related to what one wishes to measure; such a function is called a statistic. Familiar statis-
tics include the sample mean and variance, the �2 statistic, and the F statistic. Since a
statistic is a function of random variables, its probability distribution, assuming the truth
of the hypothesis of interest, can be calculated. A hypothesis is assessed by comparing the
observed value of the statistic with the long-run frequency distribution of the values of the
statistic in hypothetical repetitions of the experiment.

Intuition was a clear guide for the construction of statistics for simple problems (the
familiar statistics mentioned above refer to the rather simple gaussian distribution). But
for complicated problems, there is seldom a compelling \natural" choice for a statistic.
Several statistical procedures may be available to address a particular problem, each giving
a di�erent answer. For example, to estimate the value of a parameter, one can use the
method of moments, the maximum likelihood method, or a more specialized ad hocmethod.
Or, to compare unbinned data with an hypothesized continuous distribution, one could use
one of the three Kolmogorov-Smirnov tests, the Smirnov-Cramer-von Mises test, or any of
a number of obvious generalizations of them.

To provide a rationale for statistic selection, many principles and criteria have been
added to frequentist theory, including unbiasedness, e�ciency, consistency, coherence, the
conditionality principle, su�ciency, and the likelihood principle. Unfortunately, there is
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an arbitrariness to these principles, and none of them have been proved to be of universal
validity (for example, there is currently a growing literature endorsing the use of biased
statistics in some situations; see Efron 1975 and Zellner 1986). Further, with the exception
of the concept of su�ciency (which applies to only a limited family of distributions), none
of these criteria alone leads to a unique choice for a statistic. Thus in practice more than
one criterion must be invoked; but there are no principles specifying the relative importance
of the criteria.
Once a statistic is selected, it must be decided how its frequency distribution will be used

to assess an hypothesis. To replace the Bayesian notion of the probability of an hypothesis,
other real number measures of the plausibility of an hypothesis are introduced, including
con�dence regions, signi�cance levels, type I and II error probabilities, test size and power,
and so on. These all require the consideration of hypothetical data for their de�nitions.
The resulting frequentist theory is far from uni�ed, and the proliferation of principles

and criteria in the theory and the availability of a plurality of methods for answering a
single question place the objectivity of the theory in question. This situation is ironic. The
frequency de�nition was introduced to eliminate apparent arbitrariness and subjectivity in
the Laplace theory. Yet a large degree of arbitrariness must enter the frequency theory to
allow it to address the problems Laplace could address directly.

2.4.2. Comparison with Intuition. Once a statistical procedure is chosen in frequentist
theory, it is used to assess an hypothesis by calculating its long-term behavior, imagining
that the hypothesis is true and that the procedure is applied to each of many hypothetical
data sets. But this is strongly at variance with how we intuitively reason in the presence
of uncertainty. We do not want a rule that will give good long term behavior; rather, we
want to make the best inference possible given the one set of evidence actually available.
Consider the following three examples of everyday plausible inference. When we come to

an intersection and must decide whether to cross, or wait for oncoming tra�c to pass, we
consider whether we will make it across safely or be hit, given the current tra�c situation
at the intersection. When a doctor diagnoses an illness, he or she considers the plausibility
of each of a variety of diseases in the light of the current symptoms of the patient. When
a juror attempts to decide the guilt or innocence of a defendant, the juror considers the
plausibility of guilt or innocence in light of the evidence actually presented at the trial.
These three examples have a common structure: in the presence of uncertainty, we

assess a variety of hypotheses (safe crossing or a collision; cold or u or bronchitis; guilty or
innocent) in the light of the single set of evidence actually presented to us. In addition, we
may have strong, rational prior prejudices in favor of one or more hypotheses. The doctor
may know that there is a u epidemic in progress, or that the patient has had a recurrent
viral infection in the past.
Bayes' theorem has just this structure. A variety of hypotheses, speci�ed in I , are

each assessed by calculating their posterior probability, which depends both on the prior
probability of the hypothesis, and on the probability of the one data set actually observed.
In contrast, the roles of hypothesis and data are reversed in frequentist reasoning. For-

bidden the concept of the probability of an hypothesis, the frequentist must assume the
truth of a single hypothesis, and then invent ways to assess this decision. The assessment
is made considering not only the data actually observed, but also many hypothetical data

sets predicted by the hypothesis but not seen. It is as if the juror tried to decide guilt or
innocence by taking into consideration a mass of evidence that might possibly have been
presented at the trial but which was not.
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In a word, frequentist reasoning assesses decisions to assume the truth of an hypothesis by
considering hypothetical data, while the Bayesian approach assesses hypotheses directly by
calculating their probabilities using only the data actually observed, the only hypothetical
elements of the calculation being the hypotheses themselves.

2.4.3. Randomness vs. Uncertainty. Frequentist theory is forced to base inferences
on hypothetical data because data, and not hypotheses, are considered to be \random
variables." The concept of randomness is at the heart of the theory. But a close inspection
of the notion of randomness reveals further di�culties with the frequentist viewpoint.
In frequentist theory, a quantity is random if it unpredictably takes on di�erent values

in otherwise identical repetitions of an experiment or among identically prepared members
of an ensemble. To explore this concept, we will consider as an example the prototypical
random experiment: the ip of a coin. Imagine an experiment speci�ed by the statement,
\A fair (i.e., symetrical) coin is ipped." Since either heads or tails can come up in a ip,
and since we cannot predict with certainty which will come up, the outcome of a ip is
considered random. The probability of a particular outcome|heads, say|is de�ned as the
limiting frequency with which heads comes up in an inde�nitely large number of ips. This
de�nition seems to refer to an observable property of the coin. For this reason, frequentist
probability appears more objective than Bayesian probability; the latter describes a state
of knowledge, while the former seems to describe an observable property of nature.
But certainly the motion of a coin is adequately described by classical mechanics; if we

knew the physical properties of the coin (mass, inertia tensor, etc.), the initial conditions
of the ip, and exactly how it was ipped, we could predict the outcome with certainty. If
the same coin was ipped under precisely the same conditions, the outcome would be the
same for each ip. What, then, gives rise to the \randomness" of the outcomes of repeated
ips?
If \identical" repetitions of a coin ip experiment produce di�erent outcomes, something

must have changed from experiment to experiment. The experiments could not have been
precisely identical. Hidden in the adjective, \identical", describing repetitions of an exper-
iment or elements of an ensemble in frequentist theory is the true source of \randomness":
the repeated experiments must be identical only in the sense that in each of them we are
in the same state of knowledge in regard to the detailed conditions of the ip. Put another
way, the description of the experiment is incomplete, so that repetitions of the experiment
that agree with our description vary in details which, though not speci�ed in our descrip-
tion, nevertheless a�ect the outcome. In the coin example, we have speci�ed only that the
same (i.e., physically identical) coin be ipped in repeated experiments. But this leaves the
initial conditions of the ips, and the precise manner of ipping, completely unspeci�ed.
Since the outcome of a ip depends as much on these unspeci�ed details as on the physical
properties of the coin, it is unpredictable.
There is variability in the outcome of \random" experiments only because our incomplete

knowledge of the details of the experiment permit variations that can alter the outcome. In
some cases, our knowledge may not constrain the outcome at all. This could be the case in
a coin ipping experiment, where merely specifying that the same coin be ipped leaves so
much room for variation that the outcome is totally uncertain, heads and tails being equally
probable outcomes for a particular ip. But often our knowledge, though incomplete,
su�ciently constrains the experiment so that some general features of the outcome can be
predicted, if not with certainty, than at least with high plausibility. The best example is
statistical mechanics. There, measurement of the temperature of an equillibrium system
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provides us with knowledge about its total energy. Though many, many microstates are
compatible with the measurement, our limited knowledge of the precise microstate of the
system still permits us to make very accurate predictions of, say, its pressure. This is
because the vast majority of microstates compatible with our limited knowledge have very
nearly identical pressures.

Thus even in frequency theory, situations are described with probability, not because
they are intrinsically random or unpredictable, but because we want to make the most
precise statements or predictions possible given the variations permitted by the uncertainty
and incompleteness of our state of knowledge (Jaynes 1985d). \Randomness", far from
being an objective property of an object or phenomenon, is the result of uncertainty and
incompleteness in one's state of knowledge. Once this is realized, the frequentist distinc-
tion between the uncertainty one may have about the value of a \random variable" and
the uncertainty one may have about the truth of an hypothesis appears highly contrived.
Randomness, like any uncertainty, is seen to be \subjective" in the sense of resulting from
an incomplete state of knowledge.*

Two operational di�culties with frequentist theory clearly indicate that it is as subjective
as BPT, and in some contexts even more subjective. First, though probability is de�ned
as long-term frequency, frequency data is seldom available for assignment of probabilities
in real problems. In fact, the in�nite amount of frequency data required to satisfy the
frequentist de�nition of probability is never available. As a result, the frequentist must ap-
peal to an imaginary in�nite set of repeated experiments or an imaginary in�nite ensemble.
Often, which imaginary reference set to choose will not be obvious, as the single data set
we wish to analyze can often be considered to be a member of many reasonable reference
sets. This subjectivity of frequentist theory has led to statistical paradoxes where simple,
apparently well-posed problems have no obvious solution. In the Bayesian approach, where
probability assignments describe the state of knowledge de�ned by the problem statement,
such paradoxes disappear (see Jaynes 1973 for an instructive example).

The second operational di�culty arises in the analysis of data consisting of multiple
samples of a random quantity. Since frequentist theory requires the consideration of hy-
pothetical data to assess an hypothesis, analysis requires the speci�cation, not only of the
phenomenon being sampled and the results of the sample, but also the speci�cation of what
other samples might have been seen. These hypothetical samples are needed to specify the
reference set for the observed sample, but unfortunately their speci�cation can depend on
the thoughts of the experimenter in disturbing ways. This complicated phenomenon is best
described by an example (Berger and Berry 1988).

Consider again the ip of a coin, and imagine that a coin has been ipped N = 17 times,
giving nH = 13 heads and nT = 4 tails. Is this evidence that the coin is biased? Strangely,
a frequentist cannot even begin to address this question with the data provided, because it
is not clear from these data what the reference set for the data is. If the frequentist is told

* A reader may object at this point, arguing that the success of quantum theory \proves"

that phenomena can be intrinsically random. But the successes of quantum theory no more prove

the randomness of nature than the success of statistical description of coin ipping proves that coin

ipping is intrinsically random, or the fact that a random number algorithm passes statistical tests

proves that the numbers it produces (in a purely deterministic fashion!) are random. Indeed, BPT

o�ers much hope in helping us to unravel inference from physics in quantum theory; see Jaynes

(1989a,b) for preliminary analyses.
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that the experimenter planned beforehand on ipping the coin 17 times, then analysis can
proceed, with probabilities determined by embedding the data in a reference set consisting
of many sets of 17 ips. But this is not the only way the data could have been obtained.
For example, the experimenter may have planned to ip the coin until he saw 4 tails. In
that case, the reference set will be many sets of ips di�ering in their total number, but
with each set containing 4 tails.
In the �rst case, the number of heads (or tails) is the random quantity, and in the second,

the total number of ips is the random quantity. Depending on which quantity is identi�ed
as random, a di�erent reference set will be used, and di�erent probabilities will result.
The results of the analysis thus depend on the stopping rule used by the experimenter.
Experiments must therefore be carefully planned beforehand to be amenable to frequentist
analysis, and if the plan is altered during execution for any reason (for example, if the
experimenter runs out of funds or subjects), the data is worthless and cannot be analyzed.
An example is worked out in Section 4.3.1, where it is shown that this so-called optional

stopping problem can lead to dispute over whether or not an hypothesis is rejected by a
given data set.
Intuition rebells against this strange behavior. Surely my conclusions, given the one data

set observed, should not depend on what I or anyone else might have done if di�erent data
were obtained. And surely, if my plan for an experiment has to be altered (as is often the
case in astronomy, where observations can be cut short due to bad weather or �ckle satellite
electronics), I should still be able to analyze the resulting data. In Bayesian probability
theory, the stopping rule plays no role in the analysis, and this has been an important
factor in bringing many statisticians over to the Bayesian school of thought (Berger and
Berry 1988). There is no ambiquity over which quantity is to be considered a \random
variable", because the notion of a random variable and the consequent need for a reference
set of hypothetical data is absent from the theory. All that is required is a speci�cation of
the state of knowledge that makes the outcome of each element of the data set uncertain.

2.4.4. The Frequentist Failure. The frequentist approach to probability theory was mo-
tivated by important de�ciencies in the Bayesian theory that it replaced. Unfortunately,
frequentist theory addressed these de�ciencies only by burying them under a super�cially
more objective facade. When examined more deeply, we see that frequentist theory only
exacerbates the ambiguity and subjectivity of the Bayesian theory.
One motivation for frequentist theory was the apparent arbitrariness of the probability

axioms. To make the axioms compelling, the frequency de�nition of probability was intro-
duced. But this de�nition forbade the use of Bayes' Theorem for the analysis of hypotheses,
and the resulting frequentist theory cannot by itself produce unique solutions to well-posed
problems. A wide variety of principles and criteria must be added to the theory, each at
least as arbitrary as the probability axioms seemed to be.
Another important motivation for frequentist theory was the subjective nature of Bayesian

probability assignments, particularly in regard to prior probabilities for hypotheses. Fre-
quentist theory replaces the subjective probability assignments of BPT with relative fre-
quencies of occurence of random variables. But the notion of randomness is itself subjective,
dependent on one's state of knowledge in a manner very similar to that of Bayesian prob-
ability. In many problems, it is substantially more subjective, since the identi�cation of
random variables and their probability assignments can depend in disturbing ways on the
thoughts of the experimenter. Such is the case in the optional stopping problems just
described.
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Finally, frequentist theory is badly at odds with the manner in which we intuitively reason
in the presence of uncertainty. Rather than evaluate a variety of hypotheses in the light of
the available evidence, the theory attempts to evaluate a single hypothesis by considering a
variety of hypothetical data. It also ignores any prior information one may have regarding
the possible hypotheses.

Frequentist theory has thus failed to address the problems that motivated it, and in fact
has exacerbated them. Though it has been used with great success for the analysis of many
problems, it is far from uni�ed, and can give anti-intuitive and paradoxical results. These
problems signal a deep aw in the theory, and indicate the need to �nd a better theory. This
new theory should duplicate the successes of frequentist theory, and eliminate its defects.
In the remainder of this paper, we will see that such a better theory exists, and is in

fact identical to the original probability theory of Bernoulli, Bayes, Laplace, and their
contemporaries, though with a sounder rationale.

2.5 SOME RECENT HISTORY

Sir Harold Je�reys was one of the earliest critics of the frequentist statistics of his day. But
he did more than criticize; he o�ered an alternative. In his book (Je�reys 1939) he presented
Bayesian solutions to dozens of practical statistical problems. He also tried to provide a
compelling rationale for Bayesian probability theory, and although he was not completely
successful in this, his mass of intuitively appealing results, many of them inaccessible to
frequentists, should have been a clear indication that \something is right here." But his work
was rejected on philosophical grounds, and has remained largely unnoticed until recently.

In the 1940's and 1950's, R. T. Cox, E. T. Jaynes, and others began to provide the missing
rationale for Bayesian probability theory. Their work was little appreciated at �rst, but
others rediscovered some of this rationale, and over the past few decades there has been a
slow but steady \Bayesian revolution" in statistics. Astrophysicists have been slow to reap
the bene�ts of this revolution. But in the last 15 years Gull, Skilling, Bretthorst and others
have begun working out astrophysical applications of BPT. In the remainder of this paper,
we will examine the rationale and foundations of BPT, learn how it is used to address
well-posed statistical problems, and then briey review some of the recent astrophysical
applications of BPT.

3. Bayesian Probability Theory: A Mathematical Language for Inference

The di�culties with frequentist theory, particularly its clash with common sense reasoning,
lead us to conclude that it is not generally appropriate for the analysis of scienti�c data.
The intuitive appeal of BPT and the mass of successful results from it lead us to suspect
that it may be the correct theory. But can a compelling, rigorous mathematical theory be
erected upon a concept as apparently vague as the notion that probability is a measure of
degree of plausibility?
Happily, the answer is yes. In this section we will see that a small set of compelling

qualitative desiderata for a measure of plausibility will be su�cient to completely spec-
ify a quantitative theory for inference that is identical to the probability theory used by
Laplace and Je�reys. Speci�cally, these qualitative desiderata will allow us to derive the
\axioms" of probability theory, giving them an unassailable status as the correct rules for
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the manipulation of real number valued degrees of plausibility. We will also recognize that
these rules for combination and manipulation|a \grammar" for plausible inference|are
only half of the required theory. The other half of the theory is the problem of assigning
initial probabilities to be manipulated|the \vocabulary" of the mathematical language|
and the desiderata will provide us with rules for unambiguous assignment of probabilities
in well-posed problems.
The desiderata make no reference to frequencies, random variables, ensembles, or imagi-

nary experiments. They refer only to the plausibility of propositions. Deductive reasoning,
by which we reason from true propositions to other true propositions, will be a limiting
case of the theory, and will guide its development. Thus, the theory can be viewed as
the extension of deductive logic to cases where there is uncertainty (Jaynes 1990a,b). Of
course, we are free to use the resulting theory to consider propositions about frequencies in
repeated experiments. In this way, connections between probability and frequency, includ-
ing Bernoulli's theorem and its generalizations, will be derived consequences of the theory,
and all the useful results of frequentist theory will be included in the new theory as special
cases.
The missing rationale for BPT was �rst provided by Cox (1946, 1961) and Jaynes (1957,

1958). Similar results were soon found in other forms by other statisticians (see Lindley
1972 for a terse review). We will only be able to describe briey this profound and beautiful
aspect of BPT here. More detailed, highly readable developments of these ideas may be
found in Jaynes (1957, 1958), Tribus (1969), Grandy (1987), and Smith and Erickson (1989).
A particularly eloquent and complete development will be available in the upcoming book
by Jaynes (1990b).

3.1 THE DESIDERATA

Our �rst desideratum for a theory of plausibility is simple:

(I) Degrees of plausibility are represented by real numbers.

Perhaps there are useful generalizations of the theory to di�erent number systems. But if
our theory is to represent something similar to the way we reason, or if we wish to consider
it possible to design a computer or robot that follows our quantitative rules, at some point
we will have to associate plausibility with some physical quantity, meaning we will have to
associate it with real numbers.
Not yet identifying degrees of plausibility with probability, we will indicate the plausi-

bility of proposition A given the truth of proposition C by the symbol A j C. We will take
it as a convention that greater plausibility will correspond to a greater number.
Our second desideratum will be

(II) Qualitative consistency with common sense.

There are several speci�c ways we will use this; they are noted below. For example, if the
plausibility of A increases as we update our background information from C to C0 (that
is, A j C0 > A j C), but our plausibility of B is una�ected (B j C0 = B j C), then we
expect that the new information can only increase the plausibility that A and B are both
true, and never decrease it (AB j C0 > AB j C). E�ectively, this desideratum will ensure
that the resulting theory is consistent with deductive logic in the limit that propositions
are certainly true or certainly false.
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Our �nal desideratum is

(III) Consistency.

More explicitly, we want our theory to be consistent in 3 ways.

(IIIa) Internal Consistency: If a conclusion can be reasoned out in more than one
way, every possible way must lead to the same result.

(IIIb) Propriety: We demand that the theory take into account all information
provided that is relevant to a question.

(IIIc) Jaynes Consistency: Equivalent states of knowledge must be represented by
equivalent plausibility assignments. This desideratum, a generalization of
the Principle of Indi�erence, is the key to the problem of assigning prior
probabilities. Though it seems obvious once stated, its importance has only
been appreciated beginning with the work of Jaynes (1968).

Amazingly, these few compelling desiderata will be su�cient to completely specify the
form of Bayesian probability theory.

3.2 THE GRAMMAR OF INFERENCE: THE PROBABILITY AXIOMS

Given two or more propositions, we can build other, more complicated propositions out
of them by considering them together. We would like to have rules to tell us how the
plausibilities of these new, compound propositions can be calculated from the plausibilities
of the original propositions. We will assume for the moment that the original plausibilities
are given. The rules we seek will play the role of a \grammar" for our theory.
Some of the ways we can build new propositions out of a set of propositions fA;B;C : : :g

include logical negation (A, \not A"), logical conjunction (AB, \A and B"), and logical
disjunction (A+B, \A or B"), mentioned above. An example of another important opera-
tion is implication: A) B is the proposition, \If A is true, then B follows." The symbolic
system governing the combination of propositions like this is Boolean Algebra. We want
our plausibility calculus to enable us to calculate the plausibility of any proposition built
from other propositions using Boolean algebra.
It will come as no surprise to students of computer science that only a subset of the logical

operations we have listed is needed to generate all possible propositions. For example, the

proposition A+B is identical to the proposition A B; that is, A+B is true unless both A
and B are false. One adequate subset of Boolean operations that will be convenient for us to
consider is conjunction and negation. If we can determine how to calculate the plausibility
of the negation of a proposition, given the plausibility of the original proposition, and if
we can determine how to calculate the plausibility of the conjunction of two propositions
from their separate plausibilities, then we will be able to calculate the plausibilities of all
possible propositions that can be built from one or more \elementary" propositions.
Our desiderata are su�cient to specify the desired rules for calculation of the plausibility

of a negated proposition and of the conjunction of two propositions; not surprisingly, they
are the sum rule and product rule, equations (1) and (2) above. We do not have the
space to discuss the derivation of these rules fully here. But since the resulting rules are the
foundation for probability theory, and since the kind of reasoning by which such quantitative
rules are derived from qualitative desiderata is prevalent in Bayesian probability theory, it
is important to have an understanding of the derivation. Therefore, we will outline here
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the derivation of the product rule, and only present the results of the similar derivation of
the sum rule; the above mentioned references may be consulted for further details.

3.2.1 The Product Rule. We will �rst look for a rule relating the plausibility of AB to the
plausibilities of A and B separately. That is, we want to �nd AB j C given information
about the plausibilities of A and B. The separate plausibilities of A and B that may be
known to us include the four quantities u � (A j C), x � (B j C), y � (A j BC), and
v � (B j AC). By desideratum (IIIb), we should use all of these, if they are relevant.
Now we invoke desideratum (II) to try to determine if only a subset of these four quan-

tities is actually relevant. Common sense tells us right away, for example, that (AB j C)
cannot depend on only one of x; y; u; or v. This leaves eleven combinations of two or more
of these plausibilities. A little deeper thought reveals that most of these combinations are
at variance with common sense. For example, if (AB j C) depended only on u and x we
would have no way of taking into account the possibility that A and B are exclusive.
Tribus (1969) goes through all eleven possibilities, and shows that all but two of them

exhibit qualitative violations of common sense. The only possible relevant combinations
are x and y, or u and v. We can understand this by noting that there are two ways a
decision about the truth of AB can be broken down into decisions about A and B. Either
we �rst decide that A is true, and then, accepting the truth of A, decide that B is true.
Or, we �rst decide that B is true, and then make our decision about A given the truth of
B. Finally, we note that since the proposition AB is the same as the proposition BA, we
can exchange A and B in all the quantities. Doing so, we see that the di�erent pairs, x; y
and u; v, merely reect the ordering of A and B, so we may focus on one pair, the other
being taken care of by the commutativity of logical conjunction.
Denoting (AB j C) by z, we can summarize our progress so far by stating that we seek

a function F such that
z = F (x; y): (6)

Now we impose desideratum (IIIa) requiring internal consistency. We set up a problem
that can be solved two di�erent ways, and demand that both solutions be identical. One
such problem is �nding the plausibility that three propositions, A;B;C; are simultaneously
true. The joint proposition ABC can be built two di�erent ways: ABC = (AB)C =
A(BC). The �rst of these equations and equation (6) tell us that (ABC j D) = F [(BC j
D); (A j BCD)], where we treat the proposition AB as a single proposition. A similar
equation follows from the second equality. Internal consistency then requires that the
function F obey the equation,

F [F (x; y); z] = F [x; F (y; z)]; (7)

for all real values of x, y, and z. Crudely, the function F is \associative." The general
solution of this functional equation is F (x; y) = w�1[w(x)w(y)], where w(x) is any posi-
tive, continuous, monotonic function of plausibility. Thus equation (7) does not uniquely
specify F , but only constrains its form. Using this solution in equation (6), our consistency
requirement tells us that

w(AB j C) = w(A j BC)w(B j C): (8)

This looks like the product rule of probability theory. But at this point we cannot identify
probability with plausibility, because equation (8) involves the arbitrary function w.
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3.2.2 The Sum Rule. We may apply similar reasoning to determine how to calculate
w(A j B) from w(A j B). Consistency with common sense and internal consistency again
lead to a functional equation whose solution implies that

wm(A j B) + wm(A j B) = 1: (9)

Here w(x) is the same function as in (8), and m is an arbitrary positive number. Along
the way, it is found that certainty of the truth of a propositition must be represented by
w = 1, and by convention, w = 0 is chosen to represent impossibility.
A new arbitrary element|the number m|has appeared; but since the function w is

itself arbitrary, we are free to make a simple change of variables from w(x) to the di�erent
monotonic function p(x) � wm(x), so that we may always write

p(A B) + p(A j B) = 1; (10)

and
p(AB j C) = p(A j BC)p(B j C); (11)

in place of equations (8) and (9). Thus the choice of m is irrelevant, and does not o�er us
any degree of freedom we did not already have in our choice of w(x).
The arbitrary function p(x) indicates that our desiderata do not lead to unique rules for

the manipulation of plausibilities. There are thus an in�nite number of ways to use real
numbers to represent plausibility. But what we have shown is that for any such plausibility
theory that is consistent with our desiderata, there must be a function p(x) such that the
theory can be cast in the form of equations (10) and (11). These equations thus contain
the content of all allowed plausibility theories.
Equations (10) and (11) are the \axioms" of probability theory, so we identify the quan-

tity p(A j B) as the probability of A given B. That is, probability is here taken to be
a technical term referring to a monotonic function of plausibility obeying equations (10)
and (11). We have shown that every allowed plausibility theory is isomorphic to probability

theory. The various allowed plausibility theories may di�er in form from probability theory,
but not in content. Put another way, since p(x) is a monotonic function of the plausibility
x, x is a monotonic function of p. Therefore all allowed plausibility theories can be created
by considering all possible functions x(p) and the corresponding transformations of (10)
and (11). Of all these theories, di�ering in form but not in content, we are choosing to
use the one speci�ed by x(p) = p, since this leads to the simplest rules of combination,
equations (10) and (11).
An analogy can be made with the concept of temperature in thermodynamics, a real

number encoding of the qualitative notion of hot and cold (Jaynes 1957, 1990b). Di�erent
temperature scales can be consistently adopted, each monotonically related to the others,
but the Kelvin scale is chosen for the formulation of thermodynamics, because it leads to
the simplest expression of physical laws.

3.3 THE VOCABULARY OF INFERENCE: ASSIGNING PROBABILITIES

We have found the rules for combining probabilities, a kind of \grammar" for inference.
Now we ask how to assign numerical values to the probabilities to be so combined: we want
to de�ne a \vocabulary" for inference. Probabilities that are assigned directly, rather than
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derived from other probabilities using equations (10) and (11), are called direct probabilities.
We seek rules for converting information about propositions into numerical assignments of
direct probabilities. Such rules will play a role in probability theory analogous to deciding
the truth of a proposition in deductive logic. Deductive logic tells us that certain propo-
sitions will be true or false given the truth or falseness of other assumed propositions, but
the rules of deductive logic do not determine the truth of the assumed propositions; their
truth must be decided in some other manner, and provided as input to the theory. Direct
probabilities are the analogous \input" for probability theory.
It is worth emphasizing that probabilities are assigned, not measured. This is because

probabilities are measures of the plausibilities of propositions; they thus reect whatever
information one may have bearing on the truth of propositions, and are not properties of
the propositions themselves. This is reected in our nomenclature, in that all probability
symbols have a vertical bar and a conditioning proposition indicating exactly what was
assumed in the assignment of a probability. In this sense, BPT is \subjective," it describes
states of knowledge, not states of nature. But it is \objective" in that we insist that
equivalent states of knowledge be represented by equal probabilities, and that problems be
well-posed: enough information must be provided to allow unique, unambiguous probability
assignments.
We thus seek rules for assigning a numerical value to p(A j B) that expresses the plausi-

bility of A given the information B. Of course, there are many di�erent kinds of information
one may have regarding a proposition, so we do not expect there to be a universal method
of assignment. In fact, only recently has it been recognized that �nding rules for converting
information B into a probability assignment p(A j B) is fully half of probability theory.
Finding such rules is a subject of much current research.
Rules currently exist for several common types of information; we will outline some of

the most useful here. The simplest kind of information we can have about some proposition
A1 is a speci�cation of alternatives to it. That is, we can only be uncertain of A1 if there
are alternatives A2; A3 : : : that may be true instead of A1; and the nature of the alternatives
will have a bearing on the plausibility of A1. Probability assignments that make use of only
this minimal amount of information are important in BPT as objective representations of
initial ignorance, and they deserve a special name. We will refer to them as least informative
probabilities (LIPs).* Probability assignments that make use of information beyond the
speci�cation of alternatives we will call informative probabilities.

3.3.1 Least Informative Probabilities. For many problems, our desiderata are su�cient to
specify assignment of a LIP. Consider a problem where probabilities must be asigned to
two propositions, A1 and A2. Suppose we know from the very nature of the alternatives
that they form an exclusive, exhaustive set (one of them, and only one, must be true), but
that this is all we know. We might indicate this symbolically by writing our conditioning
information as B = A1 +A2. Since the propositions are exclusive, p(A1A2 j B) = 0, so the
sum rule (3) implies that p(A2 j B) = 1� p(A1 j B). But this does not specify numbers for
the probabilities.
Now imagine someone else addressing this problem, but labeling the propositions dif-

ferently, writing A01 = A2 and A02 = A1. This person's conditioning information is B0 =
A01 + A02 = A1 + A2 = B. Obviously, p(A01 j B) = p(A2 j B), and p(A02 j B) = p(A1 j B).
But now note that since B is indi�erent to A1 and A2, the state of knowledge of this second

* Such probabilities are also referred to as uninformative probabilities in the literature.
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person regarding A01 and A02, including their labeling, is the same as that in the origi-
nal problem. By desideratum (IIIc), equivalent states of knowledge must be represented
by equivalent probability assignments, so p(A01 j B) = p(A1 j B). But this means that
p(A2 j B) = p(A1 j B) which, through the sum rule, implies p(A1 j B) = p(A2 j B) = 1=2.
We �nally have a numerical assignment!

This line of thought can ge generalized to a set of N exclusive, exhaustive propositions Ai

(i = 1 toN), leading to the LIP assignments p(Ai j B) = 1=N (Jaynes 1957, 1990b). This is
just Bernoulli's principle of indi�erence mentioned earlier, now seen to be a consequence of
consistency when all the information we have is an enumeration of an exclusive exhaustive
set of possibilities, with no information leading us to prefer some possibilities over the
others.

Note that other information could lead to the same assignment. For example, if we are
tossing a coin, and we know only that it has head and tail sides, we would assign least
informative probabilities of 1=2 to the possibilities that heads or tails would come up on
a single toss. Alternatively, we may have made careful measurements of the shape and
inertia tensor of the coin, compelling us to conclude that both outcomes are equally likely
and hence to assign informative probabilities of 1=2 to both heads and tails. The di�erence
between these assignments would show up once we ipped the coin a few times and then
reassessed our probabilities. If three ips gave three heads, in the �rst state of knowledge
this would constitute evidence that the coin was biased and lead us to alter our probability
assignment for the next toss, but in the informative state of knowledge it would not, since
our information leads us to believe very strongly that the two sides are equally probable.

When the set of possibilities is in�nite, as when we want to assign probabilities to the
possible values of continuous parameters, the analysis becomes more complicated. This is
because it may not be obvious how to transform the original problem to an equivalent one
that will help us determine the probability assignment. In the �nite discrete case, the only
transformation that preserves the identity of the possibilities is permutation, leading to the
PI. But in the continuous case, there is an in�nite number of possible reparametrizations.

The key to resolving this dilemma is to realize that specifying the possibilities not only
provides labels for them, but tells you about their nature. For example, the �nite discrete
problem we solved assumed that the nature of the possibilities indicated they formed an
exhaustive, exclusive set (this implied p(A1A2 j B) = 0, which we used in the sum rule).
In problems with continuous parameters, transformations that lead to equivalent problems
that can help one assign a LIP can often be identi�ed by the nature of the parameters
themselves. Information unspeci�ed in the problem statement can be as important for this
identi�cation as the speci�ed information itself, for problems that di�er with respect to
unspeci�ed details are equivalent.

For example, suppose we want to �nd the probability that a marble dropped at random
(e.g., by a blindfolded person) will land in a particular region of a small target on the oor.
Intuition tells us that the probability is proportional to the area of the region. How could we
have established this by logical analysis? Draw an (x; y) coordinate system on the target, so
the possibilities are speci�ed by intervals in x and y. Write the probability that the ball will
fall in the small area dxdy about (x; y) as p(x; y; dxdy j I) = f(x; y)dxdy; here I speci�es
the target region. But nothing in the problem speci�ed an origin for the coordinate system,
so our assignments to p(x; y; dxdy j I) and p(x0 = x+ a; y0 = y + b; dx0dy0 j I) must be the
same for any choice of a or b. It follows that f(x; y) = f(x + a; y + b) for any (a; b), so
f(x; y) = const (the constant is determined by normalization to be 1=[target area]), and the
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probability is proportional to the area dxdy.* Such arguments can produce LIPs for many
interesting and useful problems (Jaynes 1968, 1973, 1980; Rosenkrantz 1977; Bretthorst
1989). This tells us that mere speci�cation of the possibilities we are considering, including
their physical meaning, is a well-de�ned state of knowledge that can be associated with an
unambiguous probability assignment.

3.3.2 Informative Probabilities, Bayes' Theorem, and Maximum Entropy. Besides the
speci�cation of possibilities, I , we may have some additional information IA that should
lead us to probability assignments di�erent from least informative assignments. Rather
than p(Ai j I), we seek p(Ai j IIA), an informative probability assignment.
One way to �nd p(Ai j IIA) is to use Bayes' Theorem, equation (5), to update our

assignments for each of the Ai one at a time. To do this, the additional information
D � IA must be able to play the role of data, that is, it must be meaningful to consider
for each Ai the \sampling probability" p(D j IAi) that occurs on the right hand side of
BT. Speci�cally, D has to be a possible consequence of one or more of the Ai considered
individually, since each application of BT will require us to assume that one of the Ai is
true to calculate the likelihood of the additional information. If the information D is of this
type, we do not need any new rules for probability assignment; our rules of combination
tell us how to account for the additional information by using BT.**
But data|observation of one of the possible consequences of the Ai|is not the only

kind of information we may have about the various possibilities. Our information may
refer directly to the possibilities themselves, rather than to their consequences. In our
coin example above, the evidence E provided by the measurements took the form of the
proposition, \the probability of heads is the same as that of tails." Information like this
cannot be used in Bayes' theorem because it does not refer to a consequence of one of the
possibilities being considered. For example, here our possibilities are A1 = heads on the
next toss, A2 = tails. To use BT, we need p(E j IA1), which in words is \the probability
that heads and tails are equally probable if heads comes up on the next toss." But since
either heads or tails must come up on the next toss, asserting that one or the other will
come up tells us nothing about their relative probabilities. Put another way, a statement
about the relative probabilities of A1 or A2 is not a possible logical implication of the truth
of either of them, so it cannot be used in BT. Yet such information is clearly relevant for
assessing the plausibility of the propositions. We must therefore �nd rules that will allow
us to use information of this kind to make probability assignments.
Such a rule exists for converting certain types of information called testable information to

a probability assignment. The information E is testable if, given a probability distribution
over the Ai, we can determine unambiguously if the distribution is consistent with the
information E. In the example above, this was trivially true; E asserted all probabilities
were equal, and only one distribution is consistent with this. But in general, there may

* We expect the result to also be invariant with respect to rotations and scale changes. Since

the area element is already invariant to these operations, considering them does not alter the result.
** Of course, we must now address the problem of assigning p(D j IAi). This is no di�erent

in principle than assigning p(Ai j I), and is treated analogously. We start by specifying what

other consequences of Ai are possible, assign a LIP, and then account for any other information we

have about the possible consequences. In this sense, the distinction between prior probabilities and

sampling probabilities is somewhat arti�cial; both are direct probabilities, and the same rules are

used for their assignment.
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be many distributions consistent with testable information E. For example, we may know
that the mean value of many roles of a die was 4.5 (rather than 3.5 expected for a fair die),
and want to use this knowledge to assign probabilities to the six possible outcomes of the
next role of the die. This information is testable|we can calculate the mean value of any
probability distribution for the six possible outcomes of a roll and see if it is 4.5 or not|
but it does not single out one distribution. But despite the multiplicity of distributions
consistent with this information, our common sense seems to tell us something about the
distribution which represents knowledge of the mean value, and nothing else, beyond the
fact that it must be one of the distributions with the indicated mean value. For example, we
would reject the assignment fp1 = 0:3, p6 = 0:7, all other pi = 0g as unreasonable, despite
the fact that it agrees with the mean value constraint. This is because this particular
distribution, by excluding several of the possibilities that the evidence does not compel us
to exclude, violates our propriety desideratum (IIIb).
Denote the operation of altering a LIP distribution to reect testable information E by

O, writing p(H j IE) = O[p(H j I);E)]. Shore and Johnson (1980) have shown that our
desiderata are su�cient to specify the operation O. They consider three general types of
transformations of a problem into an equivalent one, and show that the requirement that
the solutions of these equivalent problems be consistent uniquely speci�es O: It selects
from among all the possible normalized distributions satisfying the constraints imposed by
E, the one with maximum entropy, where the entropy of a �nite discrete distribution over
exclusive, exhaustive alternatives is de�ned by

H = �
NX
i=1

pi log pi; (12)

and that of a continuous distribution is de�ned analogously by

H = �
Z
p(�) log

�
p(�)

m(�)

�
d�; (13)

with m(�) the LIP assignment for the parameter �. (Actually any monotonic function of
entropy will su�ce.) This rule is of enormous practical and theoretical importance; it is
called the maximum entropy principle (MAXENT).
MAXENT assignments have a number of intuitively appealing interpretations, and were

in fact introduced long before the work of Shore and Johnson, based on just such interpre-
tations (Jaynes 1957a,b, 1958; Tribus 1969). For example, we can seek a measure of the
amount of uncertainty expressed in a distribution. Arguments originating with Shannon
(1948) show that a few compelling desiderata lead to entropy as the appropriate measure
of uncertainty. It then seems reasonable to choose from among all distributions satisfying
the constraints imposed by E that which is otherwise the most uncertain (i.e., assuming
the least in addition to E); this leads to MAXENT (Jaynes 1957, 1958). An example of the
use of MAXENT to assign a direct probability distribution will be mentioned in Section
5.1 below; instructive worked examples can be found in Jaynes (1958, 1963, 1978), Tribus
(1962, 1969), Fougere (1988, 1989), and Bretthorst (1990).

3.4 THE FREQUENCY CONNECTION

Since there is presumably no end to the types of information one may want to incorporate
into a probability assignment, BPT will never be a �nished theory. Yet the existing rules are
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already su�cient for the analysis of uncertainty in many problems in the physical sciences,
and in this sense the theory is complete.
Note that the entire theory has been developed without ever even mentioning relative

frequencies or random variables. Yet the success of some frequentist methods indicates
that there must be a connection between frequency and probability. There is, and such
connections arise naturally in the theory, as derived consequences of the rules, when one
calculates the probabilities of propositions referring to frequencies.
For example, given that the probability of a particular outcome in a single trial of an

experiment is p, we can calculate the probability that N repetitions of the experiment will
give this outcome n times. This calculation is just what Bernoulli did to prove his large
number theorem|the equality of long-term relative frequency and probability in a single
trial|mentioned above. Note, however, that the theorem is restricted to the case where
each trial is independent of all the others; BPT is not so restricted.
Bernoulli's theorem is an example of reasoning from probability to frequency. But BPT,

through Bayes' Theorem, also allows us to reason from observed frequency to probability.
The observed frequency constitutes data which we can use to estimate the value of the
single trial probability. Such a calculation can be done for any number of trials; it is not
restricted to the in�nite case. This is of immense importance. In frequentist theory, there
is no way to reason from an observed frequency in a �nite number of trials to the value of
the probability (identi�ed as long-term frequency). This is an awkward situation, because
the theory by de�nition deals with long-term frequencies, but has no way of inferring their
values from actual data.
Other connections between frequency and probability can also be derived within BPT

by considering other propositions about frequencies. One connection of particular interest
is a kind of consistency relationship between Bayes' Theorem and MAXENT. Testable
information|information that refers directly to the relative probabilities of the events or
hypotheses under consideration|cannot be used in Bayes' Theorem because such infor-
mation does not refer to possible consequences in a single trial. But if we consider many
repeated trials, and reinterpret the testable information as referring to relationships be-
tween relative frequencies in many trials rather than probabilities in single trials, we can
use the information in BT to infer probabilities. For any �nite number of trials, precise
values of the probabilities will not be speci�ed; rather, BT will provide a distribution for
the values. But as the number of trials becomes in�nite, the assignment from BT converges
to the MAXENT assignment for a single trial (Jaynes 1978, 1982, 1988a; van Campenout
and Cover 1981). This result has been used as a justi�cation for MAXENT when the notion
of repeated independent trials is meaningful. But MAXENT is not restricted to such cases.

4. Some Well-Posed Problems

Our theory so far is rather abstract; now we take a step toward concreteness by illustrating
how two common types of statistical problems are addressed using BPT. We begin by noting
that any problem we wish to address with BPT must be well-posed, in the sense that enough
information must be provided to allow unambiguous assignment of all probabilities required
in a calculation. As a bare minimum, this means that an exhaustive set of possibilities
must be speci�ed at the start of every problem.* We will call this set the sample space if it

* Readers familiar with Kolmogorov's measure theory approach to probability theory will
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refers to possible outcomes of an experiment, or the hypothesis space if it speci�es possible
hypotheses we wish to assess.
Using experimental data to analyze parametrized models is an important task for physical

scientists. The two classes of well-posed problems we will focus on here are designed for such
analysis. They are called estimation and model comparison.** Estimation explores the
consequences of assuming the truth of a particular model, and model comparison assesses
a model by comparing it to one or more alternatives. These problems thus di�er in regard
to the speci�cation of an hypothesis space. We discuss them in turn. Further details may
be found in the excellent review of Bretthorst (1990).

4.1 BAYESIAN PARAMETER ESTIMATION

4.1.1 Parametrized Models. A parametrized model is just a set of exclusive hypotheses,
each labeled by the value of one or more parameters. The parameters may be either
continuous or discrete. For simplicity, we will focus attention on a model with a single
parameter, �.
In an estimation problem one assumes that the model is true for some (unknown) value

of its parameter, and explores the constraints imposed on the parameter by the data using
BT. The hypothesis space for an estimation problem is thus the set of possible values of
the parameter, H = f�ig. The data consist of one or more samples; to make the problem
well-posed, the space of possible samples, S = fsig, must also be speci�ed. The hypothesis
space, the sample space, or both can be either discrete or continuous.
Writing the unknown true value of the parameter as �, we can use BT to address

an estimation problem by calculating the probability that each of the possible parameter
values is the true value. To do this, make the following identi�cations in equation (5). Let
D represent a proposition asserting the values of the data actually observed. Let H be the
proposition � = � asserting that one of the possible parameter values, �, is the true value
(we will abbreviate this by just using the proposed value, �, as H in BT). The background
information I will de�ne our problem by specifying the hypothesis space, the sample space,
how the hypotheses (parameter values) and sample values are related, and any additional
information we may have about the hypotheses or the possible data. Symbolically, we might
write I as the proposition asserting (1) that the true value of the parameter is in H; (2)
that the observed data consisting of N samples is in the space SN ; (3) the manner in which
the parameter value relates to the data, Ir; and (4) any additional information IA; that is,
I = (� 2 H)(D 2 SN)IrIA. Of course, the physical nature of the model parameters and
the data is implicit in the speci�cation of H, S, and Ir.
Bayes' Theorem now reads*

p(� j DI) = p(� j I)p(D j �I)
p(D j I) : (14)

recognize this as similar to the requirement that probabilities refer to elements of a �-�eld. The

close connection of BPT with Kolmogorov's theory is elaborated on in Jaynes (1990b).
** Some model comparison problems are also called signi�cance tests in the literature.
* Bayes' Theorem refers to probabilities, not probability densities. Thus when considering

continuous parameters, we technically should write p(� j DI)d� = p(� j I)d�p(D j �I)dD=p(D j

I)dD, where the p's are here understood to be densities. But the di�erentials cancel, so equation

(14) is correct for densities as well as probabilities.
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To use it, we need to know the three probabilities on the right hand side. The prior p(� j I)
and the likelihood p(D j �I) are both direct probabilities and must be assigned a priori

using the methods described previously; concrete examples are given below. The term in
the denominator is independent of �. Given the prior and the likelihood, its value can be
calculated using the probability axioms as follows.
First, recall that we are assuming the model to be true for some value of its parameter(s).

Thus the proposition, \� = �1 or � = �2 or : : :" is true, and so has a probability of 1, given
I . Writing this proposition symbolically as (�1 + �2 + : : :), we thus have from axiom (2),

p(D[�1 + �2 + : : :] j I) = p(D j I)p(�1 + �2 + : : : j I)
= p(D j I): (15)

But by expanding the logical product on the left, and again using (2), we also have

p(D[�1 + �2 + : : :] j I) = p(D�1 j I) + p(D�2 j I) + : : :

=
X
i

p(D�i j I)

=
X
i

p(�i j I)p(D j �iI): (16)

Equations (14) and (15) together imply that

p(D j I) =
X
i

p(�i j I)p(D j �iI): (17)

This expresses p(D j I) in terms of the prior and the likelihood, as promised. Each term in
the sum is just the numerator of the posterior probability for each �i. Thus in an estimation
problem, the denominator of BT is just the normalization constant for the posterior. The
probability, p(D j I), is sometimes called the prior predictive distribution, since it is the
probability with which one would predict the data, given only the prior information about
the model. Though here it is just a normalization constant, it plays an important role in
model comparison, as will be shown below.
The trick we just used to calculate p(D j I)|inserting a true compound proposition and

expanding|arises frequently in BPT. It is just like expanding a function in a complete
orthogonal basis; here we are expanding a proposition in a complete \orthogonal" basis.
This trick is important enough to deserve a name: it is called marginalization.* The
quantity p(D j I) is sometimes called the marginal likelihood or the global likelihood. Of
course, when dealing with continuous parameters, the sum becomes an integral, and (17)
reads

p(D j I) =
Z
p(� j I)p(D j �I)d�: (18)

Inserting the various probabilities into BT, we can calculate the posterior probabilities for
all values of the parameters. The resulting probability distribution represents our inference
about the parameters completely. As an important matter of interpretation, note that in
this and any Bayesian distribution, it is the probability that is distributed, not the parameter

* This name is historical, and refers to the practice of listing joint probabilities of two discrete

variables in a table, and listing in the margins the sums across the rows and columns.
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(Jaynes 1986a). Stating an inference by saying something like \the parameter is distributed
as a gaussian: : :" is misleading. The parameter had a single value during the experiment,
and we want to infer something about this single value. We do not know it precisely, but
the data tell us something about it. We express this incomplete knowledge by spreading
our belief regarding the true value among the possible values according to the posterior
distribution.

4.1.2 Summarizing Inferences. We can present the full posterior graphically or in a table.
But usually we will want to summarize it with a few numbers. This will be especially true
for multiparameter problems, where graphical or tabular display of the full posterior may
be impossible because of the dimension of the parameter space. There are various ways to
summarize a distribution, depending on what is going to be done with the information.
One summarizing item is a \best �t" value for the parameter. Which value to choose will

depend on what is meant by \best". One obvious choice is the most probable parameter
value, the mode. It is the best in the sense of being the single value one has greatest
con�dence in. But its selection does not reect how our con�dence is spread among other
values at all. For example, if a distribution is very broad and at with a small \bump" to
one side, the mode will not be a good summarizing item, since most of the probability will
be to one side of it. In this case, the mean of the distribution would be a better \best"
value. On the other hand, if the distribution has two narrow peaks, the mean could lie
between them at a place where the probability is small or even zero. So some common
sense has to be used in choosing a best �t value.
There is a formal theory for making decisions about best �t values; it is called decision

theory (Eadie et al. 1971; Berger 1985). Decision theory is very important in business and
economics where one frequently must make a decision about a best value and then act as
if it were true. But in the physical sciences, best values are usually just a convenient way
to summarize a distribution. For this, common sense is usually a good enough guide, and
a formal decision theory is not needed.
Besides a best value, it is useful to have a simple measure of how certain one is of this

value. Again, decision theory can be brought to bear on this problem, but the traditional
practice of quoting either the standard deviation (second moment about the mean) or
the size of intervals containing speci�ed fractions of the posterior probability is usually
adequate. Of course, since probability is a measure of the plausibility of the parameter
values, when we quote an interval, we should choose its boundaries so that all values inside
it have higher probability than those outside. Such an interval is called a credible region,
or a highest posterior density interval (HPD interval) when it is used to summarize the
posterior distribution of one or more continuous parameters.*
In multiparameter problems, we may be interested only in certain subsets of the pa-

rameters. Depending on how many parameters are of interest, the distribution may be
summarized in di�erent ways. If the values of all of the parameters are of interest, a best �t
point can be found straightforwardly by locating the mean or mode in the full parameter
space. To quantify the uncertainty in the best �t point, all of the second moments can be
calculated and presented as an N �N matrix; but o�-diagonal moments are not an intu-
itively appealing measure of the width of the distribution. Alternatively, one can calculate

* Sometimes the name con�dence interval is given to credible intervals, and indeed it reects

well the intuitive meaning of a credible interval. But \con�dence interval" has a technical meaning

in frequentist theory that is di�erent from its meaning here, and so we avoid this term.
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an HPD region in the full parameter space, and present it by plotting its projection onto
one, two, or three dimensional subspaces of the full parameter space. Some information is
lost in such projections|the HPD region cannot be uniquely reconstructed from them |
but they conservatively summarize the HPD region in the sense that they will show the full
range of parameter values permitted in the region. They will also probably indicate the
nature of any correlations among parameters, though two dimensional cross sections of the
HPD better reveal correlations.
If only a subset of the parameters is of interest, the other parameters are called nuisance

parameters and can be eliminated from consideration by marginalization. For example,
if a problem has two parameters, � and �, but we are interested only in �, then we can
calculate p(� j DI) from the full posterior p(�� j DI) by using the trick we used to calculate
p(D j I). The result is p(� j DI) = R d� p(�� j DI); this is called the marginal distribution
for �. Using BT and the product rule, the marginal distribution can be written

p(� j DI) = 1

p(D j I)
Z
p(� j I)p(� j �I)p(D j ��I)d�: (19)

Marginalization is of great practical and theoretical importance, because it can often be used
to signi�cantly reduce the dimensionality of a problem by eliminating nuisance parameters,
making numerical calculations and graphical presentation much more tractable. Denied the
concept of the probability of a parameter value, frequentist theory is unable to deal with
nuisance parameters, except in special cases where intuition has led to results equivalent
to marginalization (Lampton, Margon, and Bowyer 1976; Dawid 1980). Marginalization is
thus an important technical advantage of BPT. It is a quantitative way of saying, in regard
to the uninteresting parameters, \I don't know, and I don't care."
As useful and necessary as summaries of distributions are, we must always remember

that the entire distribution is the full inference, not the summary.

4.2 BAYESIAN MODEL COMPARISON

Estimation problems assume the truth of the model under consideration. We often would
like to test this assumption, calling into question the adequacy of a model. If the model is
inadequate, then some alternative model must be better, and so BPT assesses a model by
comparing it to one or more alternatives. This is done by assuming that some member of
a set of competing models is true, and calculating the probability of each model, given the
observed data, with BT. As we will see in Section 5, the Bayesian solution to this problem
provides a beautiful quanti�cation of Ockham's razor: simpler models are automatically
preferred unless a more complicated model provides a signi�cantly better �t to the data.
To use BT for model comparison, I asserts that one of a set of models is true. This means

that I will have all the information needed to address an estimation problem for each model,
plus any additional information I0 that may lead us to prefer certain models over others
a priori. Denote the information needed to address an estimation problem with model
number k as Ik (k = 1 to M). Then symbolically we may write I = (I1 + I2 + : : :+ IM)I0.
Let D stand for the data, and let k stand for the hypothesis, \Model number k is true."
BT can now be used to calculate the probability of a model:

p(k j DI) = p(k j I)p(D j kI)
p(D j I) (20)
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To use this, we must calculate the various probabilities. Here we will consider the case
where we have no prior information preferring some models over the other, so the prior is
p(k j I) = 1=M .
To calculate p(D j kI), note that since k asserts the truth of model number k, only the

information Ik in I is relevant: kI = k(I1 + I2 + : : :)I0 = Ik . Thus, p(D j kI) = p(D j Ik),
the marginal likelihood for model k, described above. Labeling the parameters of model k
by �k , this can be calculated from

p(D j kI) =
Z
d�kp(�k j Ik)p(D j �kIk): (21)

To calculate p(D j I), we marginalize by inserting the true proposition (k = 1 + k =
2 + : : :). This gives

p(D j I) =
X
k

p(k j I)p(D j kI): (22)

As in an estimation problem, p(D j I) is simply a normalization constant. In model
comparison problems, we can avoid having to calculate it by focusing attention on the
ratios of the probabilities of the models, rather than the probabilities themselves. Such
ratios are called odds, and the odds in favor of model k over model j we will write as
Okj � p(k j DI)=p(j j DI). From the above equations, the odds can be calculated from

Okj =

�
p(k j I)
p(j j I)

� R
d�kp(�k j Ik)p(D j �kIk)R
d�jp(�j j Ij)p(D j �jIj)

�
�
p(k j I)
p(j j I)

�
Bkj ; (23)

where the factor in brackets is called the prior odds (and is here equal to 1), and Bkj is called
the Bayes factor. The Bayes' factor is just the ratio of the prior predictive probabilities,
Bkj = p(D j Ik)=p(D j Ij).
Equation (22) is the solution to the model comparison problem. In principle, such prob-

lems are little di�erent from estimation problems; Bayes' theorem is used similarly, with
an enlarged hypothesis space. In practice, more care must be exercised in calculating prob-
abilities for models than for model parameters when there is little prior knowledge of the
values of the parameters of the models under consideration. This is illustrated by way of
an example in Section 5 below.

4.3 PROBLEMS WITH FREQUENTIST MODEL ASSESSMENT

As a basic principle for the design of well-posed problems, we have demanded that an
exhaustive set of possibilities be speci�ed at the beginning of any problem. In an estimation
problem, this is accomplished by asserting the truth of a model, so that the hypotheses
labeled by values of model parameters form an exhaustive set of alternatives. In model
comparison, we satis�ed this principle by explicitly specifying a set of competing models.
How does this compare with frequentist methods for estimation and model assessment?
One of the most important frequentist statistics in the physical sciences is the �2 statistic.

It is used both for parameter estimation and for assessing the adequacy of a model (see,
e.g., Lampton, Margon, and Bowyer 1976). The use of �2 for obtaining best �t parameters
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and con�dence regions is mathematically identical to Bayesian parameter estimation for
models with gaussian \noise" probabilities and with at priors for the parameters. This is
because �2 is proportional to the log of the likelihood when there is gaussian noise, and BT
tells us that the posterior is proportional to the likelihood when the priors are at.
Besides being used for estimation, frequentist theory also uses the �2 statistic to assess an

hypothesis by calculating the tail area above the minimum �2 value in the �2 distribution|
the probability of seeing a �2 value as large or larger than the best �t value if the model
is true with its best �t parameters. This is very di�erent in character from the Bayesian
approach to model assessment. In particular, in this �2 goodness-of-�t (GOF) test and
other GOF tests (e.g., the Kolmogorov-Smirnov test, the Smirnov-Cramer-von Mises test,
etc.) no explicit alternatives are speci�ed. At �rst sight, this seems to be an important
advantage of frequentist theory, because it may be di�cult to specify concrete alternatives
to a model, and because it appears restrictive and subjective to have to specify an explicit
set of alternatives to assess a model.
Deeper thought reveals this apparent advantage of frequentist GOF tests to be a defect,

a defect that can be all the more insidious because its manifestations can be subtle and
hidden. The resulting problems with GOF tests and other frequentist procedures that rely
on tail areas began to be discussed openly in the statistics literature at least as early as the
late 1930s (Je�reys 1939), and continue to be expounded today (see Berger and Berry 1988
and references therein). Disturbingly, they are seldom mentioned in even the most recent
frequentist texts. We will briey note some of these important problems here.

4.3.1. Reliance on Many Hypothetical Data Sets. The �2 GOF test is based on the calcu-
lation of the probability P that �2 values equal to or larger than that actually observed
would be seen. If P is too small (the critical value is usually 5%), the model is rejected.
The earliest objections to the use of tests like �2 focused on the reliance of such tests,
not only on the probability of the observed value of the statistic, but on the probability of
values that have not been observed as well. Je�reys (1939) raised the issue with particular
eloquence:

What the use of P implies, therefore, is that a hypothesis that may be true may be rejected
because it has not predicted observable results that have not occurred. This seems a remarkable
procedure. On the face of it the fact that such results have not occurred mightmore reasonably
be taken as evidence for the law, not against it.

Indeed, many students of statistics �nd that the unusual logic of P -value reasoning takes
some time to \get used to."
Later critics strengthened and quanti�ed Je�reys' criticism by showing how P -value

reasoning can lead to surprising and anti-intuitive results. This is because the reliance
of P -values on unobserved data makes them dependent on what one believes such data
might have been. The intent of the experimenter can thus inuence statistical inferences
in disturbing ways, a phenomenon alluded to in Section 2.4.3 above, and known in the
literature under the name optional stopping. Here is a simple example (after Iverson 1984,
and Berger and Berry 1988).
Suppose a theorist predicts that the number of A stars in an open cluster should be a

fraction a = 0:1 times the total number of stars in that cluster. An observer who wants to
test this hypothesis studies the cluster and reports that his observations of 5 A stars out of
96 stars observed rejects the hypothesis at the 95% level, giving a �2 P -value of 0.03. To
check the observer's claim, the theorist calculates �2 from the reported data, only to �nd
that his hypothesis is acceptable, giving a P -value of 0.12. The observer checks his result,
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and insists he is correct. What is going on?

The theorist calculated �2 as follows. If the total number of stars isN = 96, his prediction
is nA = 9:6 A stars and nX = 86:4 other stars. Pearson invented the �2 test for just such
a problem; �2 is calculated by squaring the di�erence between the observed and expected
numbers for each group, dividing by the expected numbers, and summing (Eadie et al.

1971). From the predictions and the observations, the theorist calculates �2 = 2:45, which
has a P -value of 0.12, using the �2 distribution for one degree of freedom (given N , nX is
determined by nA, so there is only one degree of freedom).

Unknown to the theorist, the observer planned his observations by deciding beforehand
that he would observe until he found 5 A stars, and then stop. So instead of the number of
A and non-A stars being random variables, with the sample size N being �xed, the observer
considers nA;obs = 5 to be �xed, and the sample size as being the random variable. From
the negative binomial distribution, the expected value of N is 5=a = 50, and the variance of
the distribution for N is 5(1�a)=a2 = 450. Using the observed N = 96 and the asymptotic
normality of the negative binomial distribution, these give �2 = 4:70 with one degree of
freedom, giving a P -value of 0.03 as claimed.

The reason for the di�erence between the two analyses is due to di�erent ideas of what
other data sets might have been observed, resulting in di�erent conclusions regarding what
observed quantities should be treated as \random." But why should the plans of the
observer regarding when to stop observing a�ect the inference made from the data? If,
because of poor weather, his observing run had been cut short before he observed 5 A
stars, how then should his analysis proceed? Should he include the probability of poor
weather shortening the observations? If so, shouldn't he then include the probability of
poor weather in the calculation when he is able to complete the observations?

Because of problems like this, some statisticians have adopted the conditionality principle
as a guide for the design of statistical procedures. This principle asserts that only the data
actually observed should be considered in a statistical procedure. Birnbaum (1962) gave
this principle an intuitively compelling rationale through a reductio ad absurdum as follows.
Suppose there are two experiments that may be performed to assess an hypothesis, but that
only one can be performed with existing resources. A coin is ipped to determine which
experiment to perform, and the data is obtained. If the data are analyzed with any method
relying on P -values, we have to consider what other data might have been observed. But
in doing so, should we consider the possibility that the coin could have landed with its
other face up, and therefore consider all the data that might have come from the other

experiment in our analysis? Most people's intuition compels them to assert that only data
from the experiment actually performed should be relevant. Birnbaum argued that if this
is accepted, the conditionality principle follows, and only the one data set actually obtained
should be considered. Of course, BT obeys the conditionality principle, since it uses only
the probability of the actually observed data in the likelihood and the marginal likelihood.

In the same work, Birnbaum shows that another technical criterion (su�ciency) already
widely employed by statisticians implies with the conditionality principle that all the evi-
dence of the data is contained in the likelihood function. This likelihood principle is also
adhered to in BPT. Though widely discussed in the literature (see Berger and Wolpert 1984,
and references therein), the likelihood principle has so far had little e�ect on statistics in
the physical sciences.

As Je�reys himself noted (Je�reys 1939), the fundamental idea behind the use of P -
values|that the observation of data that depart from the predictions of a model call the
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model into question|is natural. It is the expression of this principle in terms of P that is
unacceptable. The reason we would want to reject a model with large �2 is not that �2

is large, but that large values of �2 are less probable than values near the expected value.
But very small values, with P near 1, are similarly unexpected, a fact not expressed by
P -values.*

We have argued that only the probability of the actually observed �2 value is relevant.
But this probability is usually negligible even for the expected value of �2 or any other
GOF statistic. P -values adjust for this by considering hypothetical data. Bayes' Theorem
remedies the problem by dividing this small probability by another small probability, the
marginal likelihood. But the use of BT requires the speci�cation of alternative hypotheses.
The apparent absence of such alternatives in frequentist tests is the basis for the next two
criticisms of such tests.

4.3.2. Reliance on a Single Hypothesis. GOF tests require one to assume the truth of a
single hypothesis, without reference to any alternatives. But this is clearly a weakness when
such tests are used to evaluate parameterized models, because they require one to assume,
not only that the model under consideration is true, but also that the best �t parameter
values are the true values. This raises two questions regarding the logic of GOF tests.

First, if we decide to reject the hypothesis, then certainly we must reject probabilities
calculated conditional on the truth of the hypothesis. But the P -value itself is such a
probability! Thus when an hypothesis is rejected, tail area reasoning seems to invalidate
itself. Bayes' theorem avoids this problem because rather than calculating probabilities
of hypothetical data conditional on a single hypothesis, it calculates the probabilities of
various hypotheses conditional on the observed data (Jaynes 1985c, 1986a).

Second, even if the model is true or adequate, it is almost certain that the best �t
parameter values are not the true values. This again seems to put the logical status of
the test in question, since its probabilities must always be calculated conditional on an
hypothesis we are virtually certain is false. One might appeal to intuition and argue that
if the model is rejected with its best �t parameter values, then surely the model as a whole
must be rejected. But if the best �t model is acceptable, the acceptability of the model as a
whole does not necessarily follow. For example, we feel that a model that produces a good
�t over a wide range of its parameter space is to be preferred to a model with the same
number of parameters but which requires parameter values to be carefully \�ne-tuned" to
explain the data; the data are a more natural consequence of the former model. Frequentist
GOF tests have no way to account for such characteristics of a model, since they consider
only the best �t parameter values.

Bayesian methods account for our uncertainty regarding the model parameters naturally
and easily through marginalization. The probability of model k is proportional to its
marginal likelihood p(D j Ik), which takes into account all possible parameter values.
Bayesian methods also take this uncertainty into account when making predictions about
future data. The probability of seeing data D0, given the observation of data D and the

* Many astronomers seem to consider a �t with, say, �2 = 16 with 25 degrees of freedom

(P = 0:915) to be better than one with, say, �2 = 27 (P = 0:356); in fact, the former value of

�2 is 40% less probable than the latter, despite the fact that its P -value is over 2.5 times greater.

To account for this, Lindley (1965) has advocated a 2-tailed �2 test, in which P is calculated by

integrating over all less probable values of �2, not just greater values.
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truth of model k, is easily shown to be

p(D0 j DIk) =
Z
d�kp(�k j DIk)p(D0 j �kIk): (24)

This is called the posterior predictive distribution, and it is derived by marginalizing with
respect to �k . It says that the probability of D0 is just its average likelihood, taking
the average over the posterior distribution for �k based on the observed data, D. Surely
any model assessment based on how unexpected the data are should rely on the marginal
likelihood or the predictive distribution, and not on distributions assuming the truth of
particular parameter values.

4.3.3. Implicit Alternatives: The Myth of Alternative-Free Tests. Though GOF tests appear
to make no assumptions about alternatives, in fact the selection of a test statistic corre-
sponds to an implicit selection of a class of alternatives. For example, the �2 statistic is the
sum of the squares of the residuals, and thus contains none of the information present in
the order of the data points. The �2 test is thus insensitive to patterns in the residuals, and
will not account for small but statistically signi�cant trends or features in the residuals in
its assessment of an hypothesis. Thus the �2 test implicitly assumes a class of alternatives
for which the data are exchangeable, so that their order is irrelevant (Jaynes 1985c).

This characteristic of test statistics has long been recognized, beginning with the work
of Neyman and Pearson (the inventor of �2) in 1938. It has led to the characterization
of statistical tests, not only by P -values, but also by their power, the probability that
they correctly identify a true model against a particular alternative. But though modern
statistical theory insists that tests be characterized both by P -values and by their power,
few statistics texts for the physical sciences even mention the concept of power (Eadie et al.
1971 is a notable exception), and as a rule, the power of a test is never considered by
physical scientists.
It is a far from trivial asset of Bayesian probability theory that by its very structure it

forces us to specify a set of alternative hypotheses explicitly, in I , rather than implicitly in
the choice of a test statistic.

4.3.4. Violation of Consistency and Rationality. The many problems of alternative free
GOF tests and tail area reasoning should come as no surprise in the light of the Cox-Jaynes
derivation of the probability axioms. This is because the P -value is an attempt to �nd a
real number measure of the plausibility of an hypothesis. But in Section 3 we saw that any
such measure that is consistent with common sense and is internally consistent must be
a monotonic function of the probability of the hypothesis. In general, a P -value will not
be a monotonic function of the probability of the hypothesis under consideration, and so
anti-intuitive and paradoxical behavior of P -value tests should be expected.
It also comes as no surprise that some of the most useful tail area tests have been shown

to lead to P -values that are monotonic functions of Bayesian posterior probabilities with
speci�c classes of alternatives, thus explaining the historical success of these tests (see, e.g.,
Zellner and Siow 1980; Bernardo 1980). Of course, the Bayesian counterparts to these
tests are superior to the originals because they reveal the assumed alternatives explicitly,
showing how the test can be generalized; and because they produce a probability for the
hypothesis being assessed, a more direct measure of the plausibility of the the hypothesis
than the P -value.
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5. Bayesian and Frequentist Gaussian Inference

We will now apply BPT to a common and useful statistical problem: infering the am-
plitude of a signal in the presence of gaussian noise of known standard deviation �, given
the values xi of N independent measurements. We will solve this problem with both fre-
quentist and Bayesian methods. The Bayesian result is mathematically identical to the
familiar frequentist result, but it is derived very di�erently and has a di�erent interpreta-
tion. Bayesian and frequentist results will not be identical in general; our study will tell us
about the conditions when identity may be expected.

5.1 THE STATUS OF THE GAUSSIAN DISTRIBUTION

We begin by �rst discussing the model: in what situations is a \gaussian noise" model
appropriate?

In frequentist theory, the noise model should be the frequency distribution of the noise
in an in�nitely large number of repetitions of the experiment. But there is seldom even
a moderate �nite number of repetitions available to provide us with frequency data, so
some other justi�cation for the gaussian distribution must be o�ered. Sometimes it is used
simply because it has convenient analytical properties. Often it is justi�ed by appealing to
the central limit theorem (CLT), which states that if the noise in a single sample is the the
result of a number of independent random e�ects, the gaussian distribution will be a good
approximation to the actual frequency distribution of the noise in many trials regardless of
the distributions for each of the e�ects, if the number of independent e�ects is large. But
in general noise is not the result of a large number of independent e�ects; and even when it
is, there is no way to be sure that the gaussian distribution is an adequate approximation
for a �nite number of e�ects without knowing the distributions describing each e�ect.

Bayesians interpret a noise distribution as an expression of our state of knowledge about
the size of the noise contribution in the single data set actually being considered. Of course,
if frequency data from many independent repetitions of an experiment are available, they
will be relevant for assigning a noise distribution. But such data is typically not available,
and the methods for assigning direct probabilities described in Section 3 must be used to
�nd the quantitative expression of our state of knowledge about the noise.

Usually by noise we mean e�ects from unknown causes that we expect would \average
out": positive and negative values are equally likely. Thus we expect the mean of the noise
distribution to be zero. Additionally, we usually expect there to be a \typical scale" to the
noise; we do not expect very large noise contributions to be as probable as smaller ones.
Thus we expect the noise distribution to have some �nite standard deviation, though we
may not have a good idea what its value should be.
The information that a distribution have zero mean and standard deviation � is testable:

given any distribution, we can see if its mean vanishes and if its second moment is �2.
Thus we can use MAXENT to assign the noise distribution, using the zero mean and �
as constraints. The resulting distribution is the gaussian distribution! Thus in BPT the
gaussian distribution is appropriate whenever we know or consider it reasonable to assume
that the noise has zero mean and �nite standard deviation, but we do not have further
details about it (Jaynes 1985c, 1987; Bretthorst 1988b, 1990). Additionally, we often need
not specify the actual value of � if it is not known. We can consider it a parameter of our
model, and estimate it from the data or marginalize it away.

113



The status of the gaussian distribution in BPT is thus very di�erent from its status in
frequentist theory. In BPT it simply represents the most conservative distribution consistent
with minimal information about the noise phenomena, and it will be appropriate whenever
such information is all we know about the noise, regardless of whether or not the CLT
applies. This accounts for the great practical success of models assuming gaussian noise.
The reasoning used in BPT to assign the gaussian distribution can be easily generalized

to other situations. For example, there is no single distribution for directional data on
a circle or on a sphere that has all of the properties of the gaussian distribution on a
line, and so there is some controversy over what distributions are the counterparts of the
gaussian distribution for directional data (Mardia 1972). But if our knowledge is restricted
to speci�cation of a mean direction and an expected angular scale for deviations, then
MAXENT identi�es the correct distributions as the von Mises distribution for circular data
and the Fisher distribution for spherical data (these distributions are discussed in Mardia
1972).
Having justi�ed our model, we now describe the development of frequentist and Bayesian

procedures for estimating the amplitude � of a signal for which there are N measurements
xi contaminated with noise with standard deviation �.

5.2 ESTIMATING THE SIGNAL

5.2.1. The Frequentist Approach. In frequentist theory, since the signal strength � is not
a random variable taking on values according to a distribution, we are forbidden to speak
of a probability distribution for �. But the xi are considered random variables, and their
distribution is just gaussian,

p(xi) =
1

�
p
2�

exp

�
�1

2

xi � �

�

�2
: (25)

To estimate �, the frequentist must choose a statistic|a function of the random variables
xi|and calculate its distribution, connecting it with �. A few of the many possible statistics
for estimating � include x3 (the value of the third sample); (x1 + xN )=2 (the mean of the
�rst and last samples); the median of the observations; or their mean, �x =

P
i xi=N .

To choose from among these or other statistics, some criteria de�ning a \best" statistic
must be invoked. For example, it is often required that a statistic be unbiased, that is, that
the average value of the statistic in many repeated measurements converges to the true value
of �. But the distributions for all of the above mentioned statistics can be calculated and
reveal them all to be unbiased, so additional criteria must be speci�ed. Unfortunately, all
such criteria have a certain arbitrariness to them. For example, the criterion of unbiasedness
focuses on the long-term mean value of the statistic. But the long-term median or most
probable value would also reect the intuitive notion behind the idea of bias, and in general
would lead to a di�erent choice of \best" statistic.
Of course, intuition suggests that to estimate the mean of a distribution, one should

take the mean of the sample.* Various criteria of frequentist theory are chosen with this in
mind, and eventually identify the mean, �x, as the \best" estimate of �.
Now we would like to know how certain we are that �x is near the unknown true value of

�. Interestingly, frequentist theory treats this problem as logically distinct from estimating

* Such intuitive reasoning does not always lead to good statistics; see Section 8.2.

114



best values, and in general completely di�erent statistics and procedures can be used for
these problems. In this simple gaussian problem, intuition again compels us to focus our
attention on �x, and a con�dence region for � is found from �x as follows.
Suppose � were known. Then the distribution for �x can be calculated from equation

(25); a somewhat tedious calculation gives

p(�x j �) =
�

N

2��2

�1=2
exp

�
� N

2�2
(�x� �)2

�
: (26)

This distribution is a gaussian about � with standard deviation �=
p
N . With � known,

we can calculate the probability that �x is in any interval [a; b] by integrating (26) over this
region with respect to �x. But when � is unknown, this is not possible. However, since
p(�x j �) is a function only of the di�erence between �x and �, we can always calculate the
probability � that �x lies in some interval relative to the unknown mean, such as the interval
[�+ c; �+ d], and the result will be independent of �. Using equation (26), we �nd

� � p(�+ c < �x < �+ d) =
1

2

�
erf

�
d

�
p
2=N

�
� erf

�
c

�
p
2=N

��
: (27)

For a given � of interest, there are many choices of c and d that satisfy (27). For example,
for the \1�" value � = 68%, we may choose any of [c; d] = [�1; x], [��=pN; �=pN ], or
[�x;1]. A priori, there is no reason to prefer any one of these to the others in frequentist
theory, and again some criterion must be invoked to select one as \best" (Lampton, Margon,
and Bowyer 1976). Popular criteria are to choose the smallest interval satisfying (27), or
the symmetric one. For this problem, both criteria lead to the choice [��=pN; �=pN ]
In summary, the frequentist inference about � might be stated by estimating � with �x,

and giving a \1�" con�dence interval of �x� �=
p
N , the familiar \root N" rule.

5.2.2. The Bayesian Approach. The Bayesian solution to this problem is to simply calculate
the posterior distribution for � using BT. We begin by specifying the background informa-
tion I . I will contain the information leading to the MAXENT assignment of a gaussian
distribution for a single datum, equation (25). I will also specify the hypothesis space, a
range of possible values for �. We will assume we know � to be in the range [�min; �max];
we discuss this assumption further below.
With this I , we must assign the prior and the likelihood. A simple consistency argument

(Jaynes 1968) shows that the LIP assignment for � is the uniform density,

p(� j I) = 1

�max � �min
: (28)

The likelihood follows from (25) using the product rule: the joint probability of the N
independent observations is the product of their individual probabilities,

p(fxig j �I) = 1

�N(2�)N=2
exp

"
� 1

2�2

X
i

(xi � �)2

#

=
1

�N(2�)N=2
exp

�
�Ns2

2�2

�
exp

�
� N

2�2
(�x� �)2

�
; (29)
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where we have separated out the dependence on � by expanding the argument of the
exponential and completing the square. Here s2 is the sample variance, s2 =

P
i(xi��x)2=N .

Together, the prior and the likelihood determine the marginal likelihood to be

p(fxig j I) = 1p
N
(�
p
2�)1�N exp

�
�Ns2

2�2

� erf � �x��max

�
p
2=N

�
� erf

�
�x��min

�
p
2=N

�
2(�max � �min)

; (30)

where the error functions arise from integrating (29) with respect to � over the interval
[�min; �max]. Equation (30) is constant with respect to �.
With these probabilities, BT gives our complete inference regarding � as

p(� j fxigI) =
2
4erf

�
�x��max

�
p
2=N

�
� erf

�
�x��min

�
p
2=N

�
2

3
5� N

2��2

�1=2

exp

�
� N

2�2
(�x� �)2

�
: (31)

This is just a gaussian about �x with standard deviation �=
p
N , truncated at �min and �max.

The factor in brackets is the part of the normalization constant due to the truncation.
As a best �t value, we might take the mode of the distribution, � = �x (assuming that �x

is in the allowed range for �). Alternatively, we might take the mean. The mean value, and
the limits of any HPD region, will depend on our prior range for �. But as long as the prior
range is large compared to �=

p
N , the e�ect of the prior range will be negligible. In fact, if

we are initially completely ignorant of �, we can consider the limit [�min; �max]! [�1;1],
for which the term in brackets becomes equal to 1. The mean is then the same as the mode,
and the \1�" HPD region is �x� �=

p
N , the same as in the frequentist case.

5.2.3. Comparison of Approaches. Despite the mathematical identity of the Bayesian and
frequentist solutions to this simple problem, the meaning of the results and their methods
of derivation could hardly be more di�erent.
First, the interpretations of the results are drastically di�erent. To a Bayesian, �x is the

most plausible value of � given the one set of data at hand, and there is a plausibility of 0.68
that � is in the range �x � �=

p
N . In contrast, the frequentist interpretation of the result

is a statement about the long term performance of adopting the procedure of estimating
� with �x and stating that the true value of � is in the interval �x � �=

p
N . Speci�cally,

if one adopts this procedure, the average of the � estimates after many observations will
converge to the true value of �, and the statement about the interval containing � will be
true 68% of the time. Note that this is not a statement about the plausibility of the single
value of �x or the single con�dence region actually calculated. Frequency theory can only
make statements about the long-term performance of the adopted procedure, not about the
con�dence one can place in the results of the procedure for the one available data set.
Mathematically, these conceptual di�erences are reected in the choice of the interesting

variable in the �nal gaussian distributions, equations (26) and (31). The frequentist ap-
proach estimates � and �nds the probability content of a con�dence region by integrating
over possible values of �x, thus taking into consideration hypothetical data sets with di�er-
ent sample means than that observed. The Bayesian calculation �nds the estimate and the
probability content of an HPD region by integrating over �, that is, by considering di�erent
hypotheses about the unknown true value of �. The symbolic expression of frequentist and
Bayesian interval probabilities expresses this di�erence precisely: The frequentist calculates
p(� � �=

p
N < �x < � + �=

p
N), the fraction of the time that the sample mean will be
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within �=
p
N of � in many repetitions of the experiment. In contrast, the Bayesian calcu-

lates p(�x� �=
p
N < � < �x + �=

p
N j DI), the probability that � is within �=

p
N of the

sample mean of the one data set at hand.
The second important di�erence between the frequentist and Bayesian calculations is the

uniqueness and directness of the Bayesian approach. Frequentist theory could only produce
a unique procedure by appealing to ad hoc criteria such as unbiasedness and shortest con-
�dence intervals. Yet such criteria are not generally valid (Jaynes 1976; Zellner 1986). For
example, there is a growing literature on biased estimators, because prior information or
evidence in the sample can identify a procedure that is appropriate for the case in consid-
eration, but that would not have optimal long term behavior (Efron 1975; Zellner 1986).
In contrast, BPT provides a unique solution to any well posed problem, and this solution
is guaranteed by our desiderata to be the best one possible given the information actually
available, by rather inescapable criteria of rationality and consistency.
As a third important di�erence, we note that the frequentist calculation of the \covering

probability" of the con�dence region depended on special properties of the distribution for
the statistic that was chosen. First, the statistic|the sample mean, �x|is what is called a
\su�cient statistic." This means that the � dependence of the probability of the data (i.e.,
the likelihood, equation [29]) depends on the data only through the value of the single num-
ber �x, and not on any further information in the sample; a single number summarizes all of
the information in the sample, regardless of the size of N . Second, the sampling probability
of �x, equation (26), depends on � and �x only through their di�erence. These properties
permitted the calculation of the coverage probability without requiring knowledge of the
true value of �. Unfortunately, not all distributions have su�cient statistics, and of those
that do, few depend on the the su�cient statistics and the parameters only through their
di�erences (Lindley 1958). In general, then, a frequentist con�dence region can only be de-
�ned approximately. In contrast, a Bayesian can always calculate an HPD region exactly,
regardless of the existence of su�cient statistics and without special requirements on the
form of the sampling distribution.
As a �nal, fourth di�erence, we note that the Bayesian result that is identical to the

frequentist result used a least informative prior. As soon as there is any cogent prior infor-
mation about unknown parameter values, the Bayesian result will di�er from frequentist
results, since the latter have no natural means for incorporation of prior information.
In summary, Bayesian and frequentist results will only be mathematically identical if

(1) there is only least informative prior information, (2) there are su�cient statistics, and
(3) the sampling distribution depends on the su�cient statistic and the parameters only
through their di�erences. Bayesian/frequentist equivalence is thus seen to be something of
a coincidence (Je�reys 1937). When these conditions are not met, Bayesian and frequentist
results will generally di�er (if a frequentist result exists!), and the Bayesian result will be
demonstrably superior, incorporating prior information and evidence in the sample that is
ignored in frequentist theory (Jaynes 1976).

5.2.4. Improper Priors. The Bayesian posterior becomes precisely identical to the fre-
quentist sampling distribution when [�min; �max] ! [�1;1]. Interestingly, in this limit
both the prior (28) and the marginal likelihood (30) vanish, but they do so in such a way
that the ratio p(� j I)=p(D j I) is nonzero. In fact, in this in�nite limit, we can set the
prior equal to any constant, say p(� j I) = 1, and we will get the same result. Such a
prior is not normalized, and is therefore called improper. It is frequently true in estima-
tion problems that use of improper priors gives the result that would be found by using a
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proper (normalizable) prior and taking the limit. Improper priors then become convenient
expressions of prior ignorance of the range of a parameter. It is usually Bayesian results
based on improper priors that are mathematically equivalent to frequentist results.
In some estimation problems, and more frequently in model comparison problems, allow-

ing parameter ranges in least informative priors to become in�nite leads to unnormalizable
or vanishing posterior probabilities. This is a signal that prior information about the al-
lowed ranges of parameters is important in the result. In principle, we will demand that all
probabilities be proper. This is never a serious restriction, for we always know something

about the allowed parameter range. For example, in measuring the length of an object in
the laboratory with a caliper, we know it can't be larger than the earth, nor smaller than
an atom. We can put these limits in our prior, and we will almost always �nd that the
posterior is independent of them to many, many signi�cant �gures; the data \overwhelms"
the information in the prior range. In these cases we might as well use an improper prior
as a kind of shorthand. On the other hand, if the result depends sensitively on the prior
range, BPT is telling us that the information in the data is not su�cient to \overwhelm"
our prior information, and so we had better think carefully about just what we know about
the prior range. Or alternatively, we could try to get better data!

5.2.5. The Robustness of Estimation. Not only does the information in the data usually
overwhelm the prior range; it also often overwhelms the actual shape of the prior, even
when it is informative. This is best illustrated by example.
Suppose in our gaussian problem that our prior information indicated that � was likely to

be within some scale � about some value �0. This state of knowledge could be represented
by a gaussian prior with mean �0 and standard deviation �,

p(� j I) = 1

�
p
2�

exp

�
�(�� �0)2

2�2

�
: (32)

Repeating the posterior calculation above with this prior, we �nd that the posterior mean
�̂ and variance �2� are now

�̂ =
�x+ �0

�
N

1 + �
N

; (33)

and

�2� =
�2

N + �
; (34)

where � = �=�. Therefore, unless �<��=N (so that �>�N), the posterior will not be signi�-
cantly di�erent from that calculated with a least informative prior.
This is an interesting result of some practical importance. The gaussian prior is clearly

much more informative than the uniform prior, but unless the prior probability is very
concentrated, with s � �=N , it will have little a�ect on the posterior. This is not a very
deep result; it is just what we should expect. It merely tells us that unless our prior
information is as informative as the data, it will have little e�ect on our inferences. Of
course, it is seldom the case that we have such prior information when we analyze an
experiment; our lack of such information is why we perform experiments in the �rst place!
The practical import of this result is that if it is not clear exactly what prior probability

assignment expresses our prior information, we might as well go ahead and use some simple
\di�use" prior that qualitatively respects any prior information we have (it should vanish
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outside the allowed parameter range!) and see if the result depends much on the prior.
Usually it will not. This phenomenon has been variously referred to as the \stability"
(Edwards et al. 1963) or \robustness" (Berger 1984, 1985) of estimation. Berger (1984,
1985) has extensively studied the robustness of many Bayesian calculations.
This is a special case of a more general practical rule: if a problem is not well posed, in the

sense of there not being obvious ways of converting information to probability assignments,
just do a calculation using some approximation (a di�use prior, a simple likelihood, a simple
hypothesis space) that does not do too much violence to the information at hand. Such
simpli�ed problems are often of great use by themselves (see Section 8.3 for an example),
and their solution may provide the insight one needs to put enough structure on the original
problem to make it well posed.

5.2.6. Reference Priors. A number of investigators have developed procedures for con-
structing di�use priors for estimation problems in which we are in a least informative state
of knowledge about parameter values, but do not know how to �nd the corresponding prior
distribution. The robustness of estimation implies that the detailed shape of the prior is
unimportant as long as it is di�use compared to the likelihood function, so these procedures
use properties of the likelihood function to \automatically" create a di�use prior. Such a
prior is often generically referred to as a \reference prior" (Box and Tiao 1973; Zellner
1977; Bernardo 1979): it is an \o�-the-shelf" di�use prior that many consider to be a
useful objective starting point for analysis.
All such priors are based on the idea that one can think of the least informative state

of knowledge pragmatically as the state of having little information relative to what the

experiment is expected to provide (Rosenkrantz 1977). Unfortunately, several di�erent pro-
cedures can been created to express this qualitative notion. Fortunately, many of them
lead to the same reference prior for many common statistical problems, and these priors
are often identical to least informative priors, when the latter are known.
Though several of the proposed reference priors are often identical to least informative

priors in speci�c problems, this will not be true in general. In particular, since the form of a
reference prior depends on the likelihood function, if we are estimating the same parameter
in two di�erent experiments, the reference prior will in general be di�erent for the two
experiments. This emphasizes that a reference prior does not describe an absolute state
of ignorance about a parameter, but rather speci�es a state of ignorance with respect to
the experiment. To the extent that we choose experiments based on our prior information
about the quantity we wish to measure, we expect the prior to depend on some properties
of the likelihood function. After all, the I that appears in the prior is the same I that
appears in the likelihood; the role the parameter plays in the likelihood is an important
part of our prior information about the parameter (Jaynes 1968, 1980a). But the form of
the likelihood can be determined in part by information that is irrelevant to the parameter
value, information that would have no inuence on a least informative prior, but that could
a�ect a reference prior.
Despite these problems, reference priors can play a useful role in Bayesian parameter

estimation because they produce di�use priors that qualitatively express ignorance about
parameters, and estimation is often robust with respect to the detailed form of a di�use
prior. Some of the reference priors that have been advocated include the invariant priors of
Je�reys and Huzurbazar (Je�reys 1939); the indi�erent conjugate priors of Novick and Hall
(1965); the maximal data informative priors of Zellner (1971, 1977); the data translated
likelihood priors of Box and Tiao (1973); and the reference priors of Bernardo (1979, 1980).
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The multiparameter marginalization priors of Jaynes (1980a), where the priors for each of
the parameters in a multiparameter model are chosen to ensure that they are uninformative
about the other parameters, may also be considered to be reference priors, in that they are
di�use priors determined by the form of the likelihood.

5.3 MODEL COMPARISON

We can use this signal measurement example to illustrate some key features of Bayesian
model comparison. Suppose there is some model, M1, that gives a precise prediction of
the signal: �true = �1. Suppose further that an alternative model, M2, speci�es only that
�true is in some interval, [�min; �max]. Model M2 has a single parameter, and model M1 is
a simple hypothesis, with no parameters.
Now suppose that we obtain some data, D, with a sample mean of �x. Which model is

more plausible in light of this data? We can answer this with Bayes' Theorem, in the form
of equation (20), or in the form of posterior odds, equation (22). To use it, we need the
marginal likelihoods for M1 and M2. Since M1 has no parameters, the marginal likelihood
is just the likelihood itself;

p(D j I1) = 1

�N(2�)N=2
exp

�
�
P

i(xi � �1)
2

2�2

�
: (35)

Model M2 is the model assumed for the estimation problem we solved above; its marginal
likelihood is given by equation (30). Together, these give the Bayes factor in favor of model
M1,

B12 =
p(D j I1)
p(D j I2)

� �max � �min

�=
p
N

1p
2�

exp

�
� N

2�2
(�1 � �x)2

�
; (36)

where we have assumed that �max and �min are large compared to �=
p
N , and are far enough

away from �x that the last factor in equation (30) is very nearly equal to 1=(�max � �min).
This assumption amounts to saying that the experiment has measured � more accurately
than M2 predicted it.
This result is very interesting. If �x happens to equal �1, B12 will be large, favoring model

M1 which predicts that the true mean is �1. But B12 will continue to favorM1 even when
�x is somewhat di�erent from �1, despite the fact that model M2 with best-�t � = �x �ts
the data slightly better than M1. In e�ect, M2 is being penalized for having a parameter
and therefore being more complicated than M1.
We can see this better if we note that the ratio of the best-�t likelihoods of the models,

from equations (35) and (29), is

R12 = exp

�
� N

2�2
(�1 � �x)2

�
: (37)

Thus the Bayes factor can be written

B12 =
1p
2�

�max � �min

�=
p
N

R12

� S12R12: (38)
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The best-�t likelihood ratio, R12, can never favor model M1; the more complicated model
almost always �ts the data better than a simpler model. But the factor S12 favors the
simpler model; it is called the \simplicity factor" or the \Ockham factor", and is a quanti�-
cation of the rule known as \Ockham's Razor": Prefer the simpler model unless the more
complicated model gives a signi�cantly better �t (Je�reys 1939; Jaynes 1980b; Gull 1988;
Bretthorst 1990).

We can understand how the penalty for complication arises by recalling that the Bayes'
factor is the ratio of the prior predictive probabilities of the models. Thus BT compares
models by comparing how well each predicted the observed data. Crudely speaking, a com-
plicated model can explain anything; thus, its prior predictive probability for any particular
outcome is small, because the predictive probability is spread out more or less evenly among
the many possible outcomes. But a simpler model is more constrained and limited in its
ability to explain or �t data. As a result, its predictive distribution is concentrated on a
subset of the possible outcomes. If the observed outcome is among those expected by the
simpler model, BT favors the simpler model because it has better predicted the data.

In this sense, BT is the proper quantitative expression of the notion behind P -values:
Assess an hypothesis by how well it predicts the data. To do so, BT uses only the prob-
ability of the actually observed data; additionally, it takes into account all of the possible
parameter values through marginalization. This is in stark contrast to frequentist GOF
tests, which consider the probabilities of hypothetical data, and assume the truth of the
best-�t parameter values.

Equation (36) has a sensitive dependence on the prior range of the additional parameter
that at �rst seems disconcerting. But a little thought reveals it to be an asset of the theory,
something we might have expected and wanted. For example, suppose the alternative to
model M2 was some model M3 which was just like M2, but had a smaller allowed range for
�. If the sample mean, �x, fell in a region of overlap between the models, the likelihood ratio
R32 would be 1, but S32 would lead BT to favor M3. If the value of �x fell outside of the
range for � speci�ed by M3, BT might still favor M3, depending on how far �x is from the
prediction of M3. In this way, BT \knows" that M3 is simpler or more constrained than
M2, even though both models are very similar, and in particular have the same number of
parameters. Such behavior could not result if the Bayes factor somehow ignored the prior
ranges of model parameters. A consequence of this dependence on the prior range is that
model comparison problems are not as robust as estimation problems with regard to the
prior range.

Here and in other problems we can deal with sensitivity to the prior by \turning Bayes'
Theorem around" and asking how di�erent kinds of prior information would a�ect the
conclusions. For example, if we report the likelihood ratio, R12, and the posterior variance
for �, �� = �=

p
N , then we know that the prior range for � in model M2 would have to

have been smaller than ��(2�)1=2=R12 for us to just favor the more complicated model.

This kind of analysis can give us some insight into the common practice of accepting a
new parameter if its value is signi�cant at the \2�" level. Taking j �x � �1 j= 2��, then
R12 = e�2, and the prior range that would make the Bayes factor indi�erent between the
models (giving B12 = 1) has a size of ��(2�)

1=2=R12 = 18:5��. Thus the common practice
of accepting a parameter signi�cant at about the 2� level corresponds to an initial state
of uncertainty regarding the parameter value that is about one to two orders of magnitude
greater than the uncertainty after the experiment.

The simple example we have worked here is more sensitive to the prior range than most re-
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alistic model comparison problems. Good examples of realistic model comparison problems
in the physical sciences are discussed by Bretthorst (1988b, 1989a,b,c,d). Many additional
model comparison problems have been worked in the Bayesian literature under the name,
\signi�cance testing". Important references include Je�reys (1939), Zellner (1980), and
Bernardo (1980).

6. Case Study: Measuring a Weak Counting Signal

We need only generalize the gaussian measurement problem slightly to obtain a problem
that is both astrophysically interesting and resistant to frequentist analysis. We will
consider in this section the measurement of a signal in the presence of a background rate
that has been independently measured. We will consider signals that are measured by
counting particles (photons, neutrinos, cosmic rays), so that the Poisson distribution is the
appropriate sampling distribution.

The usual approach to this problem is to obtain an estimate of the background rate, b̂,
and its and standard deviation, �b, by observing an empty part of the sky, and an estimate
of the signal plus background rate, r̂, and its standard deviation, �r, by observing the region
where a signal is expected. The signal rate is then estimated by ŝ = r̂ � b̂, with variance
�2s = �2r + �2b . This procedure is the correct one for analyzing data regarding a signal
which can be either positive or negative, when the gaussian distribution is appropriate.
Thus it works well when the background and signal rates are both large so that the Poisson
distribution is well-approximated by a gaussian. But when the rates are small, the procedure
fails. It can lead to negative estimates of the signal rate, and even when it produces a
positive estimate, both the value of the estimate and the size of the con�dence region are
corrupted because the method can include negative values of the signal in a con�dence
region.

These problems are particularly acute in gamma-ray and ultra-high energy astrophysics,
where it is the rule rather than the exception that few particles are counted, but where one
would nevertheless like to know what these sparse data indicate about a possible source.
Given the weaknesses of the usual method, it is hardly surprising that more sophisticated
statistical analyses of reported detections conclude that \not all the sources which have
been mentioned can be con�dently considered to be present" (O'Mongain 1973) and that
\extreme caution must be exercised in drawing astrophysical conclusions from reports of
the detection of cosmic -ray lines" (Cherry et al. 1980).

Three frequentist alternatives to the above procedure have been proposed by gamma-
ray astronomers (Hearn 1969; O'Mongain 1973; Cherry et al. 1980). They improve on the
usual method by using the Poisson distribution rather than the gaussian distribution to
describe the data. But they have further weaknesses. First, all three procedures interpret
a likelihood ratio as the covering probability of a con�dence region, and thus are not even
accurate frequentist procedures. Second, none of the procedures correctly accounts for the
uncertainty in the background rate. Hearn (1969) uses the best-�t estimate of the back-
ground in his calculation, correcting the result afterward by using the gaussian propagation
of error rule. O'Mongain (1973) tries to �nd `conservative' results by using as a background
estimate the best-�t value plus one standard deviation. Cherry et al. (1980) try to more
carefully account for the background uncertainty by a method similar to marginalization;
but strangely they only include integral values of the product of the background rate and
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the observing time in their analysis.
There are several reasons for the di�culty in �nding a unique, optimal frequentist solution

to this problem. First, there is important prior information in this problem: neither the
signal nor the background can be negative. Second, there is a nuisance parameter: we want
to estimate the signal, but to do so we must also consider possible values of the background.
Third, the appropriate distribution is not the gaussian distribution, and cannot be written
as a function of the di�erence between su�cient statistics and the relevant parameters; thus
frequentist methods for �nding con�dence regions and dealing with nuisance parameters in
the gaussian case do not apply.
Bayesian probability theory can deal with all these complications straightforwardly. The

Bayesian solution to this problem is as follows.
First, the background rate, b, is measured by counting nb events in a time T from an

\empty" part of the sky. If we were interested in the value of b, we could estimate it from
these data by taking prior information Ib specifying the connection between b, nb, and T ;
Ib will identify the Poisson distribution as the likelihood function (see Jaynes 1990a for an
instructive Bayesian derivation of the Poisson distribution). The likelihood function is thus

p(nb j bIb) = (bT )nbe�bT

nb!
: (38)

The least informative prior for the rate of a Poisson distribution can be derived from a simple
group invariance argument, noting that 1=b plays the role of a scale for measurement of
time (Jaynes 1968). The result is

p(b j Ib) = 1

b
: (39)

This is called the \Je�reys prior", since it was �rst introduced in similar problems by
Je�reys (1939). It corresponds to a prior that is uniform in log b, and expresses complete
ignorance regarding the scale of the background rate. As written here, it is improper. We
can bound b to make the prior proper, and take limits after calculating the posterior for b,
but as long as nb is not zero, the limit will exist and be the same as if we just used equation
(39) throughout the calculation. Of course, the prior probability for negative values of b
will be taken to be zero.
Given these probability distributions, the marginal likelihood is

p(nb j Ib) = Tnb

nb!

Z 1

0

db bnb�1e�bT

=
1

nb
: (40)

The posterior density for b is then,

p(b j nbIb) = T (bT )nb�1e�bT

(nb � 1)!
: (41)

If we are interested in the background, we might summarize this posterior by noting its

mean, hbi = nb=T , and its standard deviation, n1=2b =T , the usual \root N" result expected
from a Poisson signal. With a prior that is di�erent from equation (39), these values would
be di�erent, but not substantially so if nb is reasonably large. For example, a uniform prior
would give a mean value of (nb + 1)=T and a standard deviation of

p
nb + 1=T .
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Now we count n events in a time t from a part of the sky where there is a suspected
source. This measurement provides us with information about both b and the source rate
s. From BT, the joint posterior density for s and b is,

p(sb j nI) = p(sb j I)p(n j sbI)
p(n j I)

= p(s j bI)p(b j I)p(n j sbI)
p(n j I) : (42)

Of course, the information I includes the information from the background measurement, as
well as additional information Is specifying the possible presence of a signal. Symbolically,
I = nbIbIs.
The likelihood is the Poisson distribution for a source with strength s + b:

p(n j sbI) = tn(s + b)ne�(s+b)t

n!
: (43)

The prior for s, p(s j bI), is the least informative prior for a Poisson rate (s+ b), with the
value of b given,

p(s j bI) = 1

s+ b
: (44)

Again, we take the prior probability to be zero for negative values of s. The prior for b in
this problem is informative, since we have the background data available. In fact, since Is is
irrelevant to b, the prior for b in this problem is just the posterior for b from the background
estimation problem, and is given by equation (41). Ignoring the normalization for now, BT
gives the dependence of the posterior on the parameters as

p(sb j nI) / (s+ b)n�1bnb�1e�ste�b(t+T ): (45)

Usually, we are only interested in the source strength. To �nd the posterior density for
the source strength, independent of the background, we just marginalize with respect to b,
calculating p(s j nI) = R

db p(sb j nI). After expanding the binomial, (s + b)n�1, the
integral can be easily calculated. The resulting normalized posterior is,

p(s j nI) =
nX
i=1

Ci
t(st)i�1e�st

(i� 1)!
; (46)

with

Ci �
(1 + T

t )
i (n+nb�i�1)!

(n�i)!Pn
j=1(1 +

T
t )

j (n+nb�j�1)!
(n�j)!

: (47)

Note that
Pn

i=1 Ci = 1.
This result is very appealing. Comparing it with equation (41), we see that BT estimates

s by taking a weighted average of the posteriors one would obtain attributing 1, 2,: : :, n
events to the signal. The weights depend on n, t, nb, and T so that the emphasis is placed
on a weak signal or a strong signal, depending on how n=t compares with nb=T . Further
development of this result, including application to real data, will appear elsewhere.
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7. Case Study: Neutrinos from SN 1987A

The simple example of the previous section shows how straightforwardly Bayes' Theorem
provides a solution to a well-posed problem that, despite its simplicity, has so far evaded
straightforward frequentist analysis. Now we will discuss another problem that at �rst
appears to be much more complicated, but which we will see is no more complicated in
principle than the gaussian estimation problem discussed in Section 5.
In February of 1987, a supernova was observed in the Large Magellanic Cloud. This

supernova, dubbed SN 1987A, was the closest one observed in the history of modern as-
tronomy. Setting it apart from all other supernovae ever observed|indeed, from all other
astrophysical sources ever observed, except for the Sun|is the fact that it was detected,
not only in electromagnetic radiation, but also in neutrinos. Roughly two dozen neutrinos
were detected from the supernova by the Japanese Kamiokande II (KII), Irvine-Michigan-
Brookhaven (IMB), and Soviet Baksan detectors.
Neutrinos are believed to carry away about ninety-nine percent of the energy released by a

supernova; the KII, IMB, and Baksan detections thus represent the �rst direct measurement
of the energy of a supernova. In addition, neutrinos interact with matter so weakly that once
they leave the collapsing stellar core, they pass unimpeded through the massive envelope of
the supernova. Thus the detected neutrinos provide astrophysicists with their �rst glimpse
of a collapsing stellar core. The analysis of the observations is therefore of great signi�cance
for testing supernova theory.
In addition, important information about intrinsic properties of the neutrino, such as its

rest mass and electric charge, is contained in the data. This is because the 50 kpc path
length between the Large Magellanic Cloud and Earth is vastly larger than that accessible
in terrestrial laboratories.

Unfortunately, the weakness of neutrino interactions responsible for their usefulness as
probes of stellar core dynamics also makes them extremely di�cult to detect once they reach
Earth. Of the approximately 1016 supernova neutrinos that passed through the detectors,
only about two dozen were actually detected. Even these few events were not detected
directly, but only by detecting tertiary photons they produced in the detectors. The small
size of the data set, and the complicated relationship between properties of the incident
neutrino signal and properties of the detected tertiary particles, demand careful, rigorous
analysis of the implications of these data.

7.1 A BEWILDERING VARIETY OF FREQUENTIST ANALYSES

Within days after the landmark detection, the �rst contributions to what would soon be-
come a vast literature analyzing the detected neutrinos appeared. Today, the two dozen
supernova neutrinos are probably the most analyzed data set in the history of astrophysics,
the number of published analyses far outnumbering the number of data. Unfortunately,
nearly all of these analyses have ad hoc methodological elements, due to their frequentist
inspiration.
With the exception of several qualitative moment analyses, most investigators analyzed

the data by comparing them with parametrized models for the neutrino signal. With so
few data, only the simplest signal models can be justi�ed. But despite the simplicity of the
models, the complexity of the detection process greatly complicates any frequentist analysis
of the data, because the sampling distribution is extremely complex even for simple models.
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No obvious su�cient statistics exist, and it would be di�cult, if not impossible, to analyze
the frequency behavior of statistics to identify unbiased, e�cient estimators. A consequence
of the lack of su�cient statistics is that frequentist con�dence regions for parameters can
only be found approximately.

All the usual frequentist criteria therefore founder on this problem, and investigators
have been forced to rely on their intuitions and their Monte Carlo codes to create and cal-
ibrate statistics for their analyses. It is no wonder, therefore, that a bewildering variety of
statistics and statistical methodologies has been applied to these data, yielding a similarly
bewildering variety of results (see Loredo and Lamb 1989 for a review). Though many inves-
tigators used the maximum likelihood method to �nd best-�t parameters|a method with a
Bayesian justi�cation| several employed Pearson's method of moments, or invented their
own statistics. A wide variety of methods were invented to calculate \con�dence regions"
for parameters, most of them confusing GOF P -values with covering probabilities. The ma-
jority of these methods relied on one-dimensional or two-dimensional Kolmogorov-Smirnov
(KS) statistics, or similar goodness-of-�t statistics based on the cumulative distribution for
the events, rather than the likelihood, even when the likelihood was used to �nd best-�t pa-
rameter values. Finally, very few studies considered more than one model for the neutrino
emission. Usually, the adequacy of a single model was assumed without question; in some
cases, adequacy was justi�ed with an \alternative-free" goodness of �t test. A few studies
explored several models, attempting to compare them with maximum likelihood ratios, but
more complicated models always had larger likelihoods.

Testimony to the robustness of this problem, the results of many of these studies agree,
if not precisely, at least qualitatively. But there is still troubling variety in the conclusions
reached. For example, some investigators conclude that the observations are in conict
with soft equations of state for neutron star matter, though most conclude that the data
are consistent with all reasonable equations of state, soft or hard. Some investigators claim
the data indicate a small, nonzero electron antineutrino mass of a few eV, while most
claim that the data only indicate an upper limit on the mass in the 15 to 20 eV range.
The wide variety of statistical methods used in these investigations, and the variety in the
models assumed for the neutrino emission and detection processes, make the literature on
the supernova neutrinos appear muddled and confused. In the context of frequentist theory,
there is no compelling criterion for making a judgement about the relative soundness of one
analysis compared to another. Some scientists, in an attempt to summarize the analyses,
have been forced to do \statistical statistics", averaging the results of di�erent studies.

The majority of these studies were not even good frequentist analyses. In particular,
many investigators identi�ed \95% con�dence regions" with the range of parameter values
that had goodness-of-�t P -values of greater than 5%, based on a awed de�nition of a
con�dence region. These investigators did not notice that their best-�t P -values of � 0:80
implied that \con�dence regions" with probability smaller than about 20% could not even be

de�ned with their methods. But this is almost beside the point. The emphasis of frequentist
statistics on averages over hypothetical random experiments, and the lack of a clear rationale
for the choice of statistics, has led to a \Monte Carlo Mystique" in astronomical statistics
whereby almost any calculation relying on a su�cient number of simulated data sets is
deemed a \rigorous" statistical analysis.

Alone among these analyses is the work of Kolb, Stebbins, and Turner (KST, 1987).
They focus on one interesting parameter|the mass of the electron antineutrino, m��e|and
setting aside all of the fancy statistics and Monte Carlo codes, ask instead what careful
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intuitive reasoning about the data can reveal about m��e . They conclude that at best, the
data can put an upper limit on m��e of the order of 25 to 30 eV, not signi�cantly better
than current laboratory limits. Later detailed statistical studies found \95% con�dence"
limits ranging from 5 eV to 19 eV. Signi�cantly, some recent reviews of the observations
downplay these later studies and emphasize the qualitative KST limit, testimony to the
lack of con�dence scientists have in the statistical methods of astrophysicists.

7.2 THE BAYESIAN ANALYSIS

The Bayesian analysis of the neutrino data has been presented by Loredo and Lamb (1989;
1990a,b). They estimate parameters for simple neutrino emission models using Bayes'
Theorem with uniform priors. This calculation is as straightforward in principle as the
gaussian calculation of Section 5; the only complications are computational, arising from
the complexity of the detector response and the dimensionality of the parameter spaces.
The data produced by the detectors are the detected energies, �deti , and arrival times,

tdeti , of the detected neutrinos. To analyze these data, Loredo and Lamb consider a variety
of parametrized models for the neutrino emission, and use Bayes' Theorem to estimate
the model parameters and to compare alternative models. Given a model for the neutrino
emission rate, a predicted detection rate per unit time and unit energy, d2Ndet=d�

detdtdet,
can be calculated using the response function of the experiment. From this detection rate,
the likelihood function needed in Bayes' Theorem can be constructed as follows.
The expected number of neutrinos detected in a small time interval, �t, and a small

energy interval, ��, is just the detection rate times �t��. From the Poisson distribution,
the probability that no neutrinos will be detected within these intervals about a speci�ed
energy and time is

P0(�
det; tdet) = exp

�
�d

2Ndet(�
det; tdet)

d�detdtdet
���t

�
: (48)

Similarly, the probability that a single neutrino will be detected in the interval is

P1(�
det; tdet) =

d2Ndet(�
det; tdet)

d�detdtdet
���t exp

�
�d

2Ndet(�
det; tdet)

d�detdtdet
���t

�
: (49)

The intervals are chosen small enough that the probability of detecting more than one
neutrino is negligible compared to P0 and P1.
The likelihood of a particular observation is the product of the probabilities of detection

of each of the Nobs observed neutrinos, times the product over all intervals not containing
a neutrino of the probability of no detection. That is,

L =

"
NobsY
i=1

P1(�
det
i ; tdeti )

#Y
j

P0(�
det
j ; tdetj ); (50)

where j runs over all intervals not containing an event. It is more convenient to work with
the log likelihood, L = ln(L). From the de�nitions of P0 and P1 it follows that

L =
NobsX
i=1

ln

�
d2Ndet(�

det
i ; tdeti )

d�detdtdet
���t

�
�
X
j

d2Ndet(�
det
j ; tdetj )

d�detdtdet
���t; (51)
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where j now runs over all intervals. In the limit of small �� and �t, the second term becomes
the integral of the rate function over all time and all energy. Thus the log likelihood is

L =

NobsX
i=1

ln

�
d2Ndet(�

det
i ; tdeti )

d�detdtdet

�
�
Z tdur

0

dt

Z 1

0

d�det
d2Ndet(�

det; tdet)

d�detdtdet

=
NobsX
i=1

ln

�
d2Ndet(�

det
i ; tdeti )

d�detdtdet

�
�Ndet; (52)

where tdur is the duration of the time interval under study, and Ndet is the total number of
events expected to be detected in that interval. In this equation, the intervals �� and �t
have been omitted because they are constants that do not a�ect the functional dependence
of L on the detected rate function.
Equation (52) is the �nal form for the likelihood function. Combined with prior probabil-

ity densities for the parameters (Loredo and Lamb [1989] assume uniform priors), it yields
a posterior distribution for the model parameters. The calculation, though straightforward
in principle, is complicated in practice because the response functions of the detectors are
complicated. This is because the neutrinos are not detected directly; rather, tertiary pho-
tons produced in the detectors by the neutrinos are detected, leading to a complicated
relationship between detected photon energy and the energy of the incident neutrino. As
a result, calculation and study of the posterior distribution requires the resources of a
supercomputer. Details are presented in Loredo and Lamb (1989, 1990a,b).
These calculations show that the observations are in spectacular agreement with the

salient features of the theory of stellar collapse and neutron star formation which had
developed over several decades in the absence of direct observational data. In particular,
the inferred radius and binding energy of the neutron star formed by the supernova are in
excellent agreement with model calculations based on a wide range of equations of state,
despite earlier indications to the contrary.
These calculations also show that the upper limit on the mass of the electron antineutrino

implied by the observations is 25 eV at the 95% con�dence level, 1.5 to 5 times higher than
found previously, and not signi�cantly better than current laboratory limits.
This work demonstrates the value of using correct and rigorous Bayesian methods for

the analysis of astrophysical data, and shows that such an analysis is not only possible, but
straightforward, even when the data are related to the physical quantities of interest in a
very complicated manner.

8. Where to Go from Here

Bayesian probability theory, as described here, is impressive in its simplicity and its scope.
Desiderata of appealing simplicity lead to its rules for assignment and manipulation of
probabilities, which are themselves extremely simple. Its identi�cation of probability with
plausibility makes it a theory of drastically broader scope than traditional frequentist statis-
tics. This broad scope adds to the simplicity and unity of the theory, for whenever we wish
to make a judgement of the truth or falsity of any proposition, A, the correct procedure is
to calculate the probability, p(A j E), that A is true, conditional on all the evidence, E,
available, regardless of whether A refers to what would traditionally be called a random
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variable or a more general hypothesis (Jaynes 1990b). In most cases, this calculation will
involve the use of Bayes' Theorem.

Because of its broad scope, BPT is more than merely a theory of statistics. It is a theory
of inference, a generalization of deductive inference to cases where the truth of a proposition
is uncertain because the available information is incomplete. As such, it deserves to be a
familiar element of every scientist's collection of general methods and tools.

Of course, the theory is ideally suited for application to problems traditionally classi�ed
as \statistical". There, it promises to simplify and unify statistical practice. Indeed, it
is already doing so in the �elds of mathematical statistics, econometrics, and medicine.
Astrophysicists have been slow to reap the bene�ts of the theory, but several applications
relevant to astrophysics have been worked out. We will describe some here, as an entrance
to the expanding literature on Bayesian methods.

8.1 ASTROPHYSICAL ESTIMATION AND MODEL COMPARISON PROBLEMS

Because of the prevalence of the gaussian distribution in statistical problems, many fre-
quentist parameter estimation calculations will be equivalent to their Bayesian counterparts,
provided that there are no nuisance parameters and that there is no important prior infor-
mation about parameter values. But when there are nuisance parameters, or when there is
important prior information, Bayesian methods should prove superior to frequentist meth-
ods, if the latter even exist for such problems. Also, if the relevant distributions are
more complicated than gaussian, lacking obvious su�cient statistics, Bayesian methods
will almost certainly prove superior to frequentist methods, and will be easier to derive.

Problems for which Bayesian methods will provide demonstrable advantages are only
beginning to be be identi�ed and studied. All such problems are approached in a uni�ed
manner using Bayes' Theorem, eliminating any nuisance parameters through marginal-
ization. The signal measurement and supernova neutrino problems mentioned above are
examples.

Another example is the analysis of \blurred" images of point sources in an attempt to
resolve closely spaced objects (Jaynes 1988; Bretthorst and Smith 1989). In this problem,
some of the parameters specifying the locations of objects are nuisance parameters, since it
is their relative positions that are of interest. Further, the noise level is not always known; in
the Bayesian calculation it, too, can be a nuisance parameter to be eliminated by marginal-
ization, e�ectively letting Bayes' Theorem estimate the noise from the data. Finally, the
brightnesses of the two or more possible objects can be marginalized away, leaving a proba-
bility density that is a function only of relative position between objects, and which answers
the question, \Is there evidence in the data for an object at this position relative to another
object?" In analyzing an image for the presence of two objects, the Bayesian procedure can
thus reduce the dimensionality of the problem from seven (two two-dimensional positions,
two brightnesses, and the noise level) to one (the relative separation of the objects). Of
course, once the relative separation posterior is studied and found to reveal the presence of
closely spaced objects, their intensities and positions can be calculated, using knowledge of
their relative separation to simplify analysis of the full posterior.

Analytical work (Jaynes 1988) and numerical work analyzing simulated data (Bretthorst
and Smith 1989) indicate that the Bayesian algorithm can easily resolve objects at sepa-
rations of less than one pixel, depending on the signal-to-noise ratio of the data. Further,
model comparison methods can be used to determine the number of point sources for which
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there is signi�cant evidence in the data. Signi�cantly, the calculation also reveals that the
usual practice of apodizing an optical system to smooth out the sidelobes of the point
spread function destroys signi�cant information that the Bayesian calculation can use to
resolve objects (Jaynes 1988). Apodizing leads to a smoother image that is less confusing
to the eye, but it destroys much of the information in the sidelobes that probability theory
can use to improve resolution. This work awaits application to real data, and extension to
other similar problems, such as the analysis of data from optical interferometers.

8.2 BAYESIAN SPECTRUM ANALYSIS

One class of statistical problems is of such great importance in astrophysics that it deserves
special consideration: the analysis of astrophysical time series data for evidence of periodic
signals. This problem is usually referred to as spectrum analysis. In the past three years,
new Bayesian spectrum analysis methods have been developed that o�er order-of-magnitude
greater frequency resolution than current methods based on the discrete Fourier transform
(DFT). Additionally, they can be used to detect periodicity in amplitude modulated signals
or more complicated signals with much greater sensitivity than DFT methods, without
requiring the data to be evenly spaced in time.

Current frequentist methods seek information about the spectrum of the signal by calcu-
lating the spectrum of the data via the discrete Fourier transform (DFT). But the presence
of noise and the �nite length of the data sample make the data spectrum a poor estimate
of the signal spectrum. As a result, ad hoc methods are used to \correct" the data spec-
trum, involving various degrees of smoothing (to eliminate spurious peaks). The statistical
properties of the result are analyzed assuming the signal is just noise, to try to �nd the
\false alarm" probability of an apparent spectral feature being due to noise. (Good reviews
of these methods are in Press, et al. 1986, and van der Klis 1989.)

In contrast, Bayesian methods (Jaynes 1987; Bretthorst 1989, 1990) assess the signi�-
cance of a possible signal by directly calculating the probabilities that the data are due to
a periodic signal or to noise, and comparing them. To estimate the frequency of a signal,
these methods simply calculate the probability of a signal as a function of its frequency,
marginalizing away the phase and amplitude of the signal.

Using these methods, Jaynes (1987) derived the DFT as the appropriate statistic to use
when analyzing a signal with a single sinusoid present. His work shows how to manipulate
the DFT without smoothing to get an optimal frequency estimate that can have orders-of-
magnitude greater resolution than current methods. Bretthorst (1989, 1990) has extended
Jaynes' work, showing analytically and with simulated and actual data that the DFT is
not appropriate for the analysis of signals with more complicated structure than a single
sinusoid, and that Bayesian methods give much more reliable and informative results. In
particular, Bayesian methods can easily resolve two frequencies that are so close together
that there is only a single peak in the DFT of the data, simply by considering a model
with more than one sinusoid present. As was the case in the analysis of blurred images
just discussed, probability theory uses information in the sidelobes to improve resolution,
information that is thrown away by the standard Blackman-Tukey smoothing methods.
Model comparison calculations can be used to identify how many sinusoids there is evidence
for in the data. Bretthorst (1988a,b) has applied these methods to Wolf's sunspot data,
comparing the results of the Bayesian analysis with conventional DFT results.

For signals that are not stationary, such as chirped or damped signals, the DFT spreads
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the signal power over a range of frequencies. However, if the general form of the signal is
known, Bayesian generalizations of the DFT can be constructed that take into account the
possibility that the signal has some unknown chirp or decay rate, e�ectively concentrating
all of the signal power into a single frequency, thereby greatly improving detection sensi-
tivity for such signals. These methods should prove to be of immense value for the study
of nonstationary astrophysical time series, such as those observed from the \quasi-periodic
oscillator" x-ray sources, or those expected from sources of gravitational radiation. In par-
ticular, the gravitational radiation signal expected from coalescing binaries is chirped, so
the \chirpogram" introduced by Jaynes (1987) and further studied by Bretthorst (1988a,b)
should play an important role in the analysis of gravitational wave signals. An integrated
circuit is currently being developed to facilitate rapid calculation of the chirpogram (Erick-
son, Neudorfer, and Smith 1989).

8.3 INVERSE PROBLEMS

Problems that are mathematically ill-posed in the sense of being underdetermined arise
frequently in astrophysics; they are usually called inverse problems. Examples include
calculating the interior structure of the sun from helioseismology data, calculating radio
images from interferometric data, \deblurring" optical or x-ray images, or estimating a
spectrum from proportional counter or scintillator data. Abstractly, all of these problems
have the following form. Some unknown signal, s, produces data, d, according to

d = Rs+ e; (53)

where R is a complicated operator we will call the response function of the experiment, and
e represents an error or noise term. Given d, R, and some incomplete information about e,
we wish to estimate s. Such problems can be ill-posed in three senses.
First, the response operator is usually singular in the sense that a unique inverse operator,

R�1, does not exist. Put another way, there exists a class, A, of signals such that Rs = 0 for
any s in A. Thus d contains no information about such signals, so that even the noiseless
\pure inverse problem" of solving d = Rs for s does not have a unique solution: any
element of A can be added to any solution to give another solution. The set A is called the
annihilator of R. It exists because the \blurring" action of R destroys information about
�nely structured signals.
Second, the presence of noise e�ectively enlarges the annihilator of R, since signals s

such that Rs = �, with � small compared to the expected noise level, can be added to
any possible solution to obtain another acceptable solution. In practice, this is revealed
by instability in any attempt to directly invert equation (48), small changes in the data
resulting in large changes in the estimated signal.
Finally, the data, d, are usually discrete and �nite in number, and the signal, s = s(x), is

usually continuous. Thus, even if R were not singular and there were no noise, estimating
s(x) from d would still be severely underdetermined.
One approach to such ill-posed problems is to make them well-posed by studying simple

parameterized models for the signal. The resulting estimation problem can be addressed
straightforwardly with Bayes' Theorem. But often, one would like \model-independent"
information about the signal, s(x).
Frequentist approaches to this problem fall into two classes. Regularization methods

estimate the signal by invoking criteria to select one member of the set of all possible signals
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that are consistent with the data as being \best" in some sense. Resolution methods try
to determine what features all the feasible signals have in common by estimating resolvable
averages of them. All such methods have obvious ad hoc elements|the choice of regularizer,
or the choice of a measure of resolution|and there are usually many methods available for
solving a particular problem. In recent years, the importance of using prior information
to guide development of an inverse method has been greatly emphasized (Frieden 1975;
Narayan and Nityanada 1986). Unfortunately, it is not clear how to optimally use even
the simplest prior information, such as the positivity of the signal, to develop a frequentist
inverse method.
The Bayesian approach to inverse problems is to always address them as estimation

problems via Bayes' Theorem. They di�er from other more common estimation problems
only in the character of the model assumed. In particular, the model will usually have
more parameters than there are data. Prior information, taken into account through prior
probabilities, is what makes such problems well-posed despite the discrepancy between the
number of data and the number of parameters.
Bayesian solutions to inverse problems are only beginning to be developed and under-

stood. Only the simplest kinds of models and prior information have yet been explored.
Surprisingly, the resulting methods are usually as good as any existing frequentist methods,
and are sometimes signi�cantly better. These methods are the Maximum Entropy Methods

prominent in these Proceedings, though the \entropy" which plays such an important role
in these methods is not the entropy described in Section 3, above.
Bayesian inversion methods, including the popular maximum entropy methods, can be

developed as follows (Jaynes 1984a,b). Consider estimating a one-dimensional signal, s(x).
Begin by discretizing the problem, seeking to estimate the �nite number of values sj � s(xj),
j = 1 to M ; M may be much larger than the number of data. The \parameters" of our
model are thus just the M values of the discrete signal. Using Bayes' theorem, we can
calculate the posterior probability of a signal, given the data, the response function, and
information about the noise:

p(fsjg j DI) = p(fsjg j I)p(D j fsjgI)
p(D j I) : (54)

The likelihood function will be determined by our information about the noise; if the
information leads to a gaussian noise distribution, the log likelihood will just be proportional
to �2. The critical element of the problem is the assignment of prior probabilities to the sj .
Uniform priors clearly will not do, for then all of the possible signals that �t the data will be
equally likely, and the problem will remain underdetermined. Intuitively, we reject many of
the possible signals|for example, wildly oscillating signals|because our prior information
about the nature of the true signal makes it extremely unlikely that it could have been one
of the many unappealing but possible signals. We must �nd a way to encode some of this
information numerically in a prior probability assignment over the sj .
The natural way to proceed is to specify precisely the available information, I , and use

the principles discussed in Section 3.3 to assign the prior, p(fsjg j I). The information will
probably be of the form of a speci�cation of the nature of the alternatives, I0, and some
additional testable information, E. The information I0 will lead to a least informative
distribution, p(fsjg j I0). For example, if the signal s(x) must by nature be positive, the
LIP distribution for fsjg might be a product of Je�reys priors, p(fsjg j I0) =

Q
1=sj. The

testable information, E, could include, for example, information about the expected scale of
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detail in the signal, in the form of prior covariances among the sj . This information would
be used to identify the appropriate informative prior for the signal by MAXENT. The
entropy of the distribution p(fsjg) needed to use MAXENT is calculated by integrating
over the values of the sj variables,

H [p(fsjg)] = �
Z
ds1 : : :

Z
dsM p(fsjg) log

�
p(fsjg)
m(fsjg)

�
; (55)

where m(fsjg) is the LIP assignment for fsjg. The informative distribution is the one with
highest entropy, H [p(fsjg)], among all those that satisfy the constraints imposed by E, and
could be found (at least in principle) by the method of Lagrange multipliers.
For historical reasons, this is not the approach that has been taken in assigning a prior

for the signal, though it is a promising direction for future research. Instead, a prior has
been constructed by choosing an alternative space of hypotheses than the sj , from which
the sj values can be derived, but whose nature permits an unambiguous and appealing
prior probability assignment.
The well-known maximum entropy inversion methods arise from a particularly simple al-

ternative hypothesis space created as follows (Gull and Daniel 1978; Jaynes 1982, 1984a,b;
Skilling 1986). First, discretize the M signal values into some large number, N , of inde-
pendent \signal elements" of size �s.* Then build a signal by taking the N signal elements
one at a time and putting them in one of the M signal bins. A signal is built once each
of the N elements have been placed into a bin; we will call such a signal a \microsignal".
The new hypothesis space is the set of the MN possible resulting microsignals, and as a
least informative assignment, we will consider each of them to be equally probable, with
probability M�N . If we label each of the signal elements with an index, �si, then we can
describe each microsignal by a set of M lists of the indices corresponding to the elements
in each of the M bins. For example, for a two bin signal built from �ve signal elements, a
particular microsignal could be described by the set f(2; 3); (1; 4; 5)g.
Of course, the model leading to the microsignal hypothesis space is not the only model

one could imagine for constructing a signal; further, it is not clear exactly what information
about the signal is being assumed by this model. Nevertheless, the resulting prior for fsjg
has some intuitively pleasing properties, and leads to inversion methods that have proved
extremely useful for the analysis of complicated data.
The least informative distribution for microsignals implies a prior probability distribution

for the \macrosignals" speci�ed by the M numbers, sj , as follows. In terms of the basic
signal element, we can write s1 = n1�s, s2 = n2�s, and so on, with

P
j sj = N�s. An

element of the original hypothesis space can thus be speci�ed by a set of integers, nj . Now
the key is to note that, in general, each of the possible macrosignals|each of the possible
set of nj values|will correspond tomany possible microsignals. For example, a macrosignal
with n1 = 2 signal elements in bin 1 is equally well described by microsignals with signal
elements (1, 2) in bin 1, or (1, 3) in bin 1, or (1437, 3275) in bin 1.
Denote the number of microsignals that correspond to a given macrosignal by the multi-

plicityW (fnjg) of the macrosignal. The prior probability we will assign to each macrosignal
is just its multiplicity times the probability, M�N , of each of its constituent microsignals;

* These elements are not to be identi�ed with any physical \quantum" in the problem; for

example, they should not be identi�ed with photons detected by an experiment. They should reect

our prior information about the interesting scale of variation in the signal, not the data.

133



p(fnjg j I) = W (fnjg)M�N . The multiplicity of a macrosignal is given by the multinomial
coe�cient,

W (fnjg) = N !

n1!n2! : : :nM !
: (56)

Using Stirling's formula, the log of the multiplicity is well approximated by

logW (fnjg) � N logN �
MX
j=1

nj lognj

= N

2
4� MX

j=1

nj
N

log
nj
N

3
5

= NH(fnjg); (57)

where we have de�ned the combinatorial entropy of the signal, H(fnjg), as

H(fnjg) � �
MX
j=1

nj
N

log
nj
N
: (58)

In terms of the entropy, the prior probability of a macrosignal can now be written,

p(fnjg j I) =M�NeNH(fnjg): (59)

This prior has some intuitively appealing properties. In particular, it favors smoothly
varying signals in the following sense. A priori, the most probable signal using this particular
signal model is the signal with maximum combinatorial entropy; a simple calculation shows
that the completely uniform signal, with all nj equal, has maximum entropy. Similarly, a
signal with all N signal elements in one bin|the \least uniform" signal|is a priori the
least probable; it has a multiplicity of one. When combined with a likelihood function, this
prior assignment will thus tend to favor the most uniform of all those signals consistent
with the data.
To use the entropic prior (59), the values of M and N must be speci�ed. Their values

should express prior information we have about the signal and the experiment's ability to
measure it. M will be related to the resolution we expect is achievable from our data. N
might be related to how well the data can resolve di�erences in the signal level; it therefore
seems reasonable that the choice of N should be tied to the noise level. Finding ways to
convert prior information into choices forM and N is a current research problem (see, e.g.,
Jaynes 1985b, 1986b; Gull 1989). Fortunately, the results of inversion with entropic priors
do not depend sensitively on these numbers.
Despite the simplicity of the information leading to entropic inversion, it has proved

enormously successful for analyzing a wide variety of astrophysical data. Some impressive
recent examples include the calculation of radio images from interferometric data (Skilling
and Gull 1985); imaging accretion discs from emission line pro�les (Marsh and Horne 1989);
estimating distances to clusters of galaxies from angular positions and apparent diameters
of galaxies (Lahav and Gull 1989); and deconvolution of x-ray images of the Galactic center
region (Kawai et al. 1988). An extensive bibliography of earlier applications of entropic
inversion in astronomy is available in Narayan and Nityanada (1986), and in the physical
sciences in general in Smith, Inguva, and Morgan (1984).
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Entropic inverses like that described here were �rst introduced in astrophysics by Gull and
Daniel (1978), based on earlier work by Frieden (1972) and Ables (1974). In these works,
entropic inverses are presented as regularization methods, that is, as methods for producing
a single \best" estimate of the signal from the data. Most later work has emphasized this
regularization interpretation of the combinatorial entropy of an image (see Narayan and
Nityanada 1986 for a review). In this context, entropic inverses are referred to as \maximum
entropy methods", since they focus attention on what we would here identify as the most
probable (maximum entropy) signal. Only recently has the Bayesian interpretation of these
methods been clari�ed (Jaynes 1984b, 1985b, 1986b; Gull 1989; Skilling 1986, 1989, 1990).
As valuable as the regularization interpretation may be, the Bayesian interpretation should
prove even more valuable, for the following reasons.

First, as a regularization method, it is not clear why maximum entropy methods should
be preferred to other regularization methods. Many have argued that entropy should be
preferred as a regularizer by making analogies between the combinatorial entropy of a
signal and the entropy of a probability distribution. As we have shown above, a probability
distribution with maximum entropy consistent with the available information is the uniquely
correct distribution to choose to represent that information. The mathematical similarity
of equations (12) and (58) has led some to claim the same status for a signal with maximum
combinatorial entropy. But since a signal is not a probability distribution, the arguments
identifying the entropy of a distribution as the uniquely correct measure of its information
content do not apply to signals. (See Skilling 1989 for a di�erent viewpoint.)

Second, when entropy is viewed as a regularizer and not a prior probability, the manner
in which it should be used to address an inverse problem is not clear. It should be com-
bined with some statistical measure of the goodness-of-�t of a signal to the data, but the
choice of statistic and the relative weighting of the entropy factor and the goodness-of-�t is
arbitrary in frequentist regularization theory. Thus entropy has been combined, not only
with the likelihood of the signal, as dictated in the Bayesian approach, but also with other
goodness-of-�t statistics, such as the Kolmogorov-Smirnov statistic, adding a new element
of arbitrariness and subjectivity to the results. Further, the connection of the parameter
N with prior information is lost the regularization approach, where it plays the role of
a relative weighting between entropy and goodness-of-�t. No compelling criteria for the
speci�cation of the value of such a \regularization parameter" have yet been introduced in
regularization theory.

Third, as a regularization method, entropic inverses can provide only a single \best"
signal. When viewed as Bayesian methods, however, they can not only produce a \best"
(most probable) signal, but can also provide measures of the statistical signi�cance of
features in the inverted signal. This aspect of Bayesian entropic inverses is an important
element of the \Quanti�ed Maximum Entropy" approach described by Skilling (1990) and
Sibisi (1990) in these proceedings.

Finally, the Bayesian interpretation of entropic inverses reveals their dependence on prior
information and a speci�c model for the signal, indicating ways they may be improved for
speci�c problems. For example, though maximum entropy methods impressively recon-
struct signals with point sources against a weak background, it is well known that they
often poorly reconstruct signals that have a strong smoothly varying component, produc-
ing spurious features (Narayan and Nityanada 1986). To deal with such situations, several
ad hoc modi�cations have been advanced (see, e.g., Frieden and Wells 1978; Narayan and
Nityanada 1986; Burrows and Koornneef 1989). Yet from a Bayesian perspective, it is ap-
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parent that such poor behavior is simply the result of the minimal amount of information
assumed in calculating entropic inverses. The microsignal model assumes little more than
the positivity of a signal; in particular, it ignores possible correlations between values of
the signal in adjacent bins. Incorporation of such information should improve restorations;
initial studies by Gull (1989a) reveal the promise of such an approach.

Entropic inverses are only one particularly simple example of a Bayesian inverse method.
Others can be created, either by incorporating additional information into the prior (59)
through MAXENT, by considering some hypothesis space other than that of the microsignal
model that leads to the entropic inverse (Jaynes 1984b, 1986b), or especially by using
MAXENT to �nd the prior for the sj directly (using the entropy of the distribution, equation
[55], not that of the signal). Further research into Bayesian inversion should yield methods
superior to entropic inversion in particular problems, though the simplicity of the entropic
inverse will no doubt recommend it as a useful \jackknife" method, useful in the preliminary
analysis of a wide variety of problems.

8.4 JAYNESIAN PROBABILITY THEORY

Bayesian methods are playing an increasingly important role in many areas of science
where statistical inference is important. They have had a particularly powerful impact
in mathematical statistics and econometrics, and there is much a physical scientist can
learn from the statistical and econometric Bayesian literature. Particularly rich sources
of information are the books by Tribus (1969), Zellner (1971), Box and Tiao (1973), and
Berger (1985), and the inuential review article of Edwards et al. (1963). Many important
references to the literature are available in the reviews of Lindley (1972), Zellner (1989),
and Press (1989).

But with the exception of the much neglected work of Je�reys (1939), Bayesian methods
have had little impact in the physical sciences until very recently. This has been due in
large part to the lack of compelling rationale for the assignment of prior probabilities. The
majority of the Bayesian literature (including most of the references just mentioned) regards
prior probabilities as purely subjective expressions of a person's opinions about hypotheses,
allowing individuals in possession of the same information to assign di�erent probabilities
to propositions. With this subjective element, Bayesian probability theory was viewed as
being of little value to physical science.

Virtually alone among statisticians, Jaynes has emphasized that an objective probability
theory can be developed by requiring that probability assignments satisfy the desideratum
that we have here called Jaynes Consistency: Equivalent states of knowledge should be rep-
resented by equivalent probability assignments. This principle is the key to �nding objective
solutions to the problem of assigning direct probabilities|both prior probabilities and sam-
pling probabilities|which is fully half of probability theory. The resulting theory remains
subjective in the sense that probabilities represent states of knowledge, and not properties
of nature. But the theory is objective in the sense of being completely independent of
personalities or opinions. It is this objective aspect that makes the Jaynesian Probability

Theory outlined here the appropriate tool for dealing with uncertainty in astrophysics, and
indeed in all sciences.
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ERRATA

1. In the two paragraphs following equation (34) on page 118, make the following correc-
tions:
� Replace � = �=� with � = �2=�2.
� Replace �<��=N with �<��=

p
N .

� Replace s � �=N with s � �=
p
N .

2. Jaynes (1980b) appeared in 1979, not 1980; the remainder of the reference is correct. The
missing reference to Jaynes (1985d) is: Jaynes, E.T. (1985d) `Macroscopic Prediction',
in H. Haken (ed.), Complex Systems { Operational Approaches, Springer-Verlag, Berlin,
p. 254.

3. Bretthorst (1989b, c, d) have since appeared in 1990 in J. Mag. Res., 88, on pages 533,
552, and 571, respectively.


