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Abstract

We present a new model for lexical decision, REM-LD, that is based on REM theory (e.g.,

Shiffrin & Steyvers, 1997). REM-LD uses a principled (i.e., Bayes� rule) decision process that

simultaneously considers the diagnosticity of the evidence for the �WORD� response and the

�NONWORD� response. The model calculates the odds ratio that the presented stimulus is

a word or a nonword by averaging likelihood ratios for lexical entries from a small neighbor-

hood of similar words. We report two experiments that used a signal-to-respond paradigm to

obtain information about the time course of lexical processing. Experiment 1 verified the pre-

diction of the model that the frequency of the word stimuli affects performance for nonword
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stimuli. Experiment 2 was done to study the effects of nonword lexicality, word frequency, and

repetition priming and to demonstrate how REM-LD can account for the observed results.

We discuss how REM-LD could be extended to account for effects of phonology such as

the pseudohomophone effect, and how REM-LD can predict response times in the traditional

�respond-when-ready� paradigm.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we propose a new model for lexical decision, REM-LD (standing
for retrieving effectively from memory—lexical decision). The REM-LD model is a

global familiarity model based on Bayesian principles similar to those used in the re-

cently developed REM models for recognition memory (Diller, Nobel, & Shiffrin,

2001; Nobel & Shiffrin, 2001; Shiffrin & Steyvers, 1997; see also McClelland & Chap-

pell, 1998), recall (e.g., Diller et al., 2001; Malmberg & Shiffrin, in press; Nobel &

Shiffrin, 2001), long-term priming in perceptual identification (Schooler, Shiffrin,

& Raaijmakers, 2001), and short-term priming in perceptual identification (Huber,

Shiffrin, Lyle, & Ruys, 2001). The REM models constitute a general framework that
describes how information is stored and retrieved from memory, and how an optimal

decision can be made based on noisy information. The concept of optimal decision

making provides a principled basis for modeling the functioning of human memory

(cf. ACT-R, Anderson & Lebiere, 1998). We aim to show how the REM principles

can be applied in a straightforward fashion to describe performance in a lexical de-

cision task.

The outline of the article is as follows. First we will briefly describe the lexical de-

cision task and the signal-to-respond paradigm that is used throughout this article.
We then outline the general characteristics of the REM models. Next, we discuss the

REM model for lexical decision in more detail, presenting several simulations and an

experiment that conforms a prediction of the model. A second experiment is used to

demonstrate how REM-LD can account for the combined effects of processing time,

word frequency, repetition priming, and nonword lexicality. Subsequently we will

discuss how the REM-LD model can be extended to account for the pseudohomo-

phone effect and how the model can generate response latencies when it is to be ap-

plied to the traditional �respond-when-ready� paradigm. Finally, we argue that the
most popular and most complete quantitative models of lexical decision to date can-

not, in their current form, handle data from the signal-to-respond paradigm. We be-

lieve the principled Bayesian decision mechanism inherent in the REM-LD model

provides a parsimonious and attractive alternative to the often-used temporal dead-

line mechanism in which a �NONWORD� response is generated by default (i.e., when

a criterion amount of processing time has elapsed and the individual or summed ac-

tivation levels for word representations are below some threshold, e.g., Grainger &

Jacobs, 1996).
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2. The lexical decision task

It is generally assumed that the understanding of the skill of reading should be

based in part on an understanding of the storage and retrieval of words. These pro-

cesses are often studied through the use of the lexical decision task, requiring partic-
ipants to distinguish words (e.g., CHAIR, FUME) from nonwords (e.g., GREACH,

ANSU). Over the last decades, lexical decision experiments have produced an enor-

mous amount of data1 and various empirical regularities have been established.

Among the myriad of findings available in the literature on lexical decision, we

decided to select as targets for modeling by REM-LD three of the most robust

and most general phenomena. In the traditional �respond-when-ready� paradigm,

when accuracy is usually near ceiling, these three important phenomena, as seen in

the choice response latencies are: (1) the nonword lexicality effect (e.g., James,
1975; Joordens, Piercey, & Mohammad, 2000; Stone & Van Orden, 1989, 1993)—

nonwords that look like words (i.e., pseudowords such as GREACH) take longer

to be classified correctly than nonwords such as EAGRCH that are relatively dissim-

ilar to words; (2) the word frequency effect (e.g., Balota & Chumbley, 1984; Scarbor-

ough, Cortese, & Scarborough, 1977)—words that occur relatively often in natural

language (high frequency or HF words such as CHAIR) are classified correctly faster

than words that occur relatively rarely (low frequency or LF words such as FUME);

and (3) the repetition priming effect (e.g., Logan, 1988, 1990; Scarborough et al.,
1977)—the prior presentation of a word in an experiment leads to faster correct clas-

sifications for the same word on its second presentation (this increase in performance

is particularly pronounced for LF words; e.g., FUME benefits more from prior ex-

posure than CHAIR—see for instance Scarborough, Gerard, & Cortese, 1984).

Several models of visual word recognition have been proposed in order to give a

theoretical account of the empirical effects revealed by the lexical decision task (for a

review see Jacobs & Grainger, 1994). Most of the current models for lexical decision

share a number of basic assumptions and can be characterized in the following, very
general way. The presented stimulus (i.e., a letter string) initially activates the word

representations in memory that are orthographically and/or phonologically similar

to the presented stimulus. In case the stimulus is a word, the positive evidence in-

creases over time. A �WORD� response is given when the positive evidence exceeds

a criterion value. In many models for lexical decision, the �NONWORD� response
is a default response, because it is brought about by the absence or lack of positive

information. In this simplified view, lexical decision is equivalent to lexical activa-

tion. We will discuss these lexical decision models in some more detail later.
The models mentioned above have a decision mechanism that is very different

from the one inherent to REM-LD. In REM-LD, a response is based on the balance

between the positive evidence supporting a �WORD� response and the negative evi-

dence supporting a �NONWORD� response. We aim to show that the REM-LD
1 The scientific database PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) lists over 600

published papers since 1985 that have the words ‘‘lexical decision’’ in their abstract.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi


E.-J. Wagenmakers et al. / Cognitive Psychology 48 (2004) 332–367 335
model provides a principled and unified account of lexical decision performance.

One of the additional goals of the present approach toward modeling lexical decision

is to provide an explicit account of how performance increases with processing time

(i.e., the time course of lexical processing), rather than to focus solely on the end re-

sult of the processes involved. To address this issue, we used a signal-to-respond pro-
cedure (Antos, 1979; Hintzman & Curran, 1997), forcing participants to respond at

specific times. The dependent measure of interest is the probability of correct classi-

fication at various times after stimulus onset. This procedure provides more data

than the traditional lexical decision task in which instructions are given to �respond
as fast and accurately as possible� (i.e., the respond-when-ready paradigm). In addi-

tion, the increase of correct classification with processing time can constrain theories

for the time course of lexical processing.
3. Defining characteristics of the REM models

The basic assumptions of REM can be conveniently classified with respect to the

following three stages that jointly determine memory performance: (1) the storage of

information in memory; (2) the retrieval of information from memory; and (3) the

decision process.

With respect to storage and representation of information in memory, REM as-
sumes that memory traces of higher-order units such as words consist of a number of

lower-level elements or features (cf. Estes, 1950). Features can encode various types

of information that are convenient to classify into two types: properties of the high-

er-order representation itself (i.e., content or item-information including semantic,

phonological, and orthographic information) and contextual information (i.e., prop-

erties that correspond to the ‘‘physical, spatial/temporal, environmental, physiolog-

ical, and/or emotional states in which the item was experienced,’’ Malmberg &

Shiffrin, in press, p. 6). In the work presented here, the distinction between content
and context information is not of central importance. In REM, memory traces are

subdivided into episodic traces and lexical/semantic traces. Episodic traces contain

incomplete and error-prone information about one specific encounter with the cor-

responding stimulus. In contrast, lexical/semantic traces reflect the accumulation of

part of the information from each of the previous encounters with the corresponding

stimulus, eventually producing a relatively complete and accurate trace (at least for

the commonly occurring features of the encoded stimulus). Therefore, the presenta-

tion of a known stimulus such as a word will have two effects: (1) the formation of a
new episodic trace composed of relatively few features that encode error-prone infor-

mation both about the item and about the context in which the item was presented

and (2) the addition and/or updating of information in the lexical/semantic memory

trace that is not already stored. Since content or item-information is already stored

almost perfectly, not much new item-information such as meaning will be added to

the lexical/semantic trace. However, novel information such as the current context

and any unique font for the current presentation can be added to the lexical/semantic

trace.
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For some memory tasks such as recall and recognition (e.g., Shiffrin & Steyvers,

1997), it is vital that the subject uses the experimental context to filter items recently

presented on a study list (i.e., target items) from items that were not presented on a

study list (i.e., foils). In these context-dependent tasks, performance will rely to a

large extent on the quality and quantity of the stored episodic memory traces. For
other memory tasks such as perceptual identification (Huber et al., 2001; Schooler

et al., 2001; Zeelenberg, Wagenmakers, & Raaijmakers, 2002) or lexical decision,

performance does not usually depend on one specific past encounter with the pre-

sented stimulus. For the time being we will make the simplifying assumption that

lexical decision involves only the lexical/semantic traces, and not the weak and con-

text-dependent episodic traces. Other possibilities will be taken up in the Discussion

following Experiment 2.

With respect to the retrieval of information from memory, REM assumes that a
memory probe (e.g., the stimulus combined with current context in lexical decision,

or only context for the first retrieval attempt in a free recall task) is matched simul-

taneously to traces in memory. The matching process is based on a feature-by-fea-

ture comparison between the probe and each memory trace. Both the probe and

the traces contain a complete set of features, although not all of these become avail-

able instantly. This comparison process results in a number of matching features and

a number of mismatching features for each separate probe-to-trace comparison. In

Shiffrin and Steyvers (1997), feature values had different probabilities, corresponding
to base rate differences, so that the value of a matching feature determines the like-

lihood of that match. For simplicity we assume in this article that feature values are

equiprobable, so the only relevant information is whether features match or mis-

match.

A simplified example of the feature-comparison process is given in Table 1 (for

comparison see the episodic version given in Shiffrin & Steyvers, 1997, Fig. 1).
Table 1

An example of the feature-comparison process and the Bayesian decision process

Stage Probe Trace 1 Trace 2

Representation [1 3 1 4] [2 4 1 5] [1 3 4 4]

Retrieval

# matches 1 3

# mismatches 3 1

Decision

Likelihood
ð2Þ1 � 1

3

� �3

¼ 2

27
� 0:074 ð2Þ3 � 1

3

� �1

¼ 8

3
� 2:67

Odds ratio
1

2

2

27
þ 8

3

� �
¼ 37

27
� 1:37

See text for details. Note. The system operates under the assumption that the probability of a feature

match is twice as likely, and of a feature mismatch is one-third as likely, when the probe is compared to its

corresponding memory representation than when it is not.
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The probe is represented as a set (i.e., a vector) of features. Suppose a feature can

take on any integer value from one to five, with equal probability. In the example

given in Table 1, a probe is matched against two traces in memory. The four features

representing the probe are compared to the corresponding features in the two mem-

ory traces. For Trace 1 in Table 1, only the third feature has the same value as the
third feature from the probe. Hence, the feature-comparison process results in one

match, and three mismatches. As can be seen in Table 1, the probe is very similar

to Trace 2, and the comparison process results in three matches and only one mis-

match. One might think that for a trace that actually represents the probe, all feature

comparisons would be matches, but that is too strict, and we allow for some discrep-

ancies to arise even in such a case.

The task for the system at any point in time is to make an optimal decision (i.e.,

�WORD� or �NONWORD�) based on the observed number of matches and mis-
matches that result from the feature-comparison process between the probe and

each of the memory traces. The basic theme of the REM approach is the imple-

mentation of this idea of optimal or near-optimal decision making in the face of

noisy information (an idea that also underlies the rational approach of ACT-R;

e.g., Anderson & Lebiere, 1998). The idea can be illustrated by continuing our ex-

ample from Table 1. Assume the system has compared the probe to each memory

trace, and obtained a count of matching and mismatching features. In order to

make an optimal decision, the system needs to estimate two probabilities: (1) the
probability that a probe feature will match a trace feature, given that the probe

corresponds to the memory trace (i.e., P (matchjsame)) and (2) the probability that

a probe feature will match a trace feature, given that the probe does not corre-

spond to the memory trace (i.e., P (matchjdifferent)). These two probabilities deter-

mine the diagnosticity of a feature match and the diagnosticity of a feature

mismatch.

In the example from Table 1, assume that the system estimates P (matchjsame) to be

.8 (so PðmismatchjsameÞ ¼ :2), and P ðmatchjdifferentÞ to be .4 (so P ðmismatchj
differentÞ ¼ :6). Thus, the probability of a feature match is twice as likely (.8/.4),

and of a feature mismatch is one-third as likely (.2/.6), when the probe is compared

to its corresponding memory representation than when it is not. An optimal solution

multiplies these ratios of 2 (for matches) and 1/3 (for mismatches) for all features in a

trace. In our example, Trace 1 has only one matching and three mismatching features

giving a trace likelihood ratio of 2� ð1
3
Þ3 ¼ 2

27
. Thus the likelihood ratio that the probe

corresponds to Trace 1 is not very high. In contrast, the likelihood ratio of the probe

corresponding to Trace 2 is much higher: 1
3
� 23 ¼ 8

3
. As shown in Shiffrin and Steyvers

(1997), the odds ratio of the probe corresponding to one of the memory traces is given

by the average of the likelihood ratios. Thus, the odds ratio is ð 2
27
þ 8

3
Þ=

2 ¼ 37=27 � 1:37. Since the optimal response criterion is set at an odds ratio of 1, a

Bayesian system will tend to assume that the probe indeed corresponds to one of

the memory traces. If the calculated odds ratio were smaller than 1, the evidence

would have favored the opposite conclusion, namely that the probe does not corre-

spond to one of the memory traces. The next section will give a mathematical justifi-

cation of these calculations.
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4. The REM-LD model

This section describes the assumptions of the REM model as applied to lexical de-

cision in more detail, and subsequently gives a mathematical analysis of a Bayesian

lexical decision process. First, with respect to storage of information in memory,
both the probe and all the memory traces consist of k ¼ 30 features. Each of these

features can take on equiprobable integer values, the range being immaterial for

the current purposes. The assumptions regarding storage of information in memory

are similar to those used in other applications of the REM model and remain the

same throughout the work reported here.

Second, we assume that a probe is compared to the n ¼ 10 lexical/semantic traces

in memory that are most similar to the probe orthographically. If the probe is a

word, it will correspond to one of these 10 lexical/semantic traces. If the probe is
a nonword, it will correspond to none of these lexical/semantic traces. The limitation

to 10 traces was made for computational convenience and simplicity.

The similarity between the probe and a lexical/semantic trace is indexed by the

probability b that a given feature value in the probe matches the corresponding fea-

ture value in the lexical/semantic trace. For the purposes of simulation, for a given

probe vector, we construct the 10 most similar traces as follows. Let the probe-to-

trace similarity for corresponding (i.e., same) and noncorresponding (i.e., different)

representations be indexed by b1 and b2, respectively. Then, 0 < b2 < b1 < 1. The
fact that b1 < 1 means that there will always be a certain degree of dissimilarity be-

tween a presented word probe and the corresponding lexical/semantic trace: not all

features from the probe will match the features from the corresponding semantic/lex-

ical trace even if the comparison process were faultless. This discrepancy can be due

to various factors such as encoding variability, fallible perception or mismatching

contextual information. The fact that b1 > b2 means that the probe-to-trace similar-

ity is greater for corresponding representations than for noncorresponding represen-

tations. Finally, the fact that b2 > 0 means that even if the lexical/semantic trace does
not correspond to the probe, they can still have several features in common. With

probabilities 1� b1 and 1� b2 the trace features are dissimilar to the probe features.

Thus for the case when the probe and trace encode the same item (denoted by s), the
probability of a feature match is:
PðmatchjsÞ ¼ b1: ð1Þ
For the case when probe and trace encode different items (denoted by d), we write
P ðmatchjdÞ ¼ b2.

Throughout this paper, we generate predictions from the REM-LD model using

the values of b1 and b2 that were in fact used to generate the traces (i.e., the true val-

ues). When one assumes the process by which b1 and b2 are estimated is noisy, the

resulting variability around the true values will tend to decrease overall performance

(an effect that may be offset by increasing the difference between the average values

of b1 and b2). The issue of how the system estimates values of b1 and b2 is not the

topic of interest here, but such estimation can be based on the information (i.e.,
the number of observed matches and mismatches) obtained on previous trials.
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Depending on the total amount of information, such an estimation process could

operate quite accurately. Thus, for current purposes we use the true values of b1

and b2 throughout. To acknowledge the fact that the system (i.e., the participant)

has to estimate these values we will henceforth denote the values of b1 and b2 used

in the decision process as b̂1 and b̂2, respectively.
As mentioned above, one of our aims is to provide an explicit account of the time

course of lexical processing as revealed by the signal-to-respond paradigm. In order to

model the increase in performance with processing time, we assume that it takes a var-

iable amount of time to activate different probe features and compare them to trace

features. For simplicity, the time course of activation of probe features and compar-

ison to trace features are combined into a single activation process: The probability of

activation of a probe feature, a, increases monotonically over time according to
aðtÞ ¼ 1� exp½�bðt � t0Þ�; tP t0;
0; t < t0;

�
; ð2Þ
where t equals processing time, b represents the rate of increase in a with t, and t0
represents the starting point of the function, i.e., the minimum processing time for

correctly activating probe features.

The probability that exactly r probe features will be active at time t since stimulus

onset (out of a total of k ¼ 30 features) is given by a binomial distribution:
P ðR ¼ rÞ ¼ k
r

� �
aðtÞr 1½ � aðtÞ�k�r

: ð3Þ
Eqs. (2) and (3) describe how, as processing time increases, more and more probe

features are activated and become available to be compared to the traces. In other

words, the amount of information that is available to the comparison process in-

creases with processing time. These equations determine the distribution of the
number of probe features involved in comparison at any given time, t. Matches and

mismatches with any trace only occur for those features that are presently active.

Given r features are active at time t, the probability of observing exactly m
matches and r � m mismatches in comparison with a trace depends on whether

the trace encodes the same item as the probe. For the same encoding case, we have:
P ðM ¼ mjsÞ ¼ r
m

� �
P ðmatchjsÞm 1½ � P ðmatchjsÞ�r�m

: ð4Þ
The probability P ðM ¼ mjdÞ of observing m matches given that the probe does not

correspond to the lexical/semantic trace can be obtained by replacing P ðmatchjsÞ in
Eq. (4) by P ðmatchjdÞ. The likelihood ratio k of the probe corresponding to a lexical/

semantic trace, given that m matches were observed, is given by multiplying the

ratios for each feature:
k ¼ PðDjsÞ
P ðDjdÞ ¼

P ðmatchjsÞ
P ðmatchjdÞ

� �m
1� P ðmatchjsÞ
1� P ðmatchjdÞ

� �r�m

ð5Þ
(Eq. (5) is a special case of Eq. (3) in Shiffrin & Steyvers, 1997). Putting Eqs. (5) and

(1) together, and adding a subscript j to refer to the jth trace, we obtain:
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kj ¼
b̂1

b̂2

" #mj

1� b̂1

1� b̂2

" #r�mj

: ð6Þ
The number of matching and mismatching features (i.e. the exponents in this

equation) have a distribution determined by Eqs. (2)–(4).

Finally, we assume that the system makes an optimal decision given by Bayes�
rule. According to Bayes� rule (e.g., Hoel, Port, & Stone, 1971), the posterior odds
ratio U that the probe is a word can be obtained by multiplying the likelihood ratio

and the prior odds ratio:
U ¼ P ðW jDÞ
P ðNW jDÞ ¼

P ðDjW Þ
P ðDjNW Þ

P ðW Þ
PðNW Þ ; ð7Þ
where P ðW jDÞ and P ðNW jDÞ indicate the probability that given the observed data

(i.e., the number of matching and mismatching features), the probe is a word or a

nonword, respectively. For an unbiased Bayesian system, U indicates the degree of
belief that the probe item is a word. The probability of responding �WORD� is de-
rived by a simple transformation of this posterior odds ratio U, that is,

P ð‘WORD’Þ ¼ U=ðUþ 1Þ. For example, when the odds of the probe being a word is

two (i.e., U ¼ 2), the corresponding probability of responding �WORD� is two-

thirds.2 When the probe is equally likely to be a word or a nonword, as is usually the

case in lexical decision experiments, the prior odds ratio is one and the posterior

odds ratio is determined by the first ratio from the right side of Eq. (7).

If the probe is a word, then exactly one of the activated traces corresponds to (i.e.,
matches) the probe. If the probe is a nonword, then none of the activated traces cor-

responds to the probe. Given the former case, the probability that a given trace

matches is just 1=n (1/10 if we assume 10 traces in the comparison set); a simple der-

ivation (Shiffrin & Steyvers, 1997, Appendix A) then shows that the posterior odds

ratio U is the average of n likelihood ratios:
U ¼ P ðDjW Þ
P ðDjNW Þ ¼

1

n

Xn

j¼1

P ðDjjsjÞ
P ðDjjdjÞ

¼ 1

n

Xn

j¼1

kj; ð8Þ
where P ðDjjsjÞ and P ðDjjdjÞ denote the probability of observing the data (i.e., the

number of matching and mismatching features resulting from a comparison between

the activated probe features and the features of the memory trace) given that the

probe corresponds to the jth memory trace, and given that the probe does not cor-
respond to the jth memory trace, respectively. In short, REM-LD bases its �WORD�
t would be optimal for the system to always respond �WORD� when U > 1, respond �NONWORD�
U < 1, and guess when U ¼ 1. The assumption that the choice of the participant depends on the

te difference between the value of U and 1 is, however, quite plausible (e.g., it is hard to imagine that

pants would consistently respond �WORD� when confronted with odds ratios only slightly higher

). We found that the behavior of the system is not qualitatively affected by the implemented response

y. Simulations did show that the strategy used here (i.e., the continuous transformation from odds

o response probability) is less variable and hence requires fewer iterations than the strategy in which

lue for U is irrelevant as long as it is above or below 1.
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vs. �NONWORD� decision on the posterior odds ratio that the probe corresponds to

exactly one of the n lexical/semantic traces. This is equivalent to averaging the n
separate likelihood ratios kj that the probe corresponds to lexical/semantic trace j.
5. Predictions and general implications of the REM-LD model

The most straightforward predictions of REM-LD follow from the fact that the

system simultaneously evaluates the diagnosticity of the evidence supporting a

�WORD� response (i.e., P ðW jDÞ) and the evidence supporting a �NONWORD� re-
sponse (i.e., P ðNW jDÞ). A crucial aspect of REM-LD is that the �NONWORD� re-
sponse is not just a default response. Rather, the �WORD� and �NONWORD�
responses are two sides of the same coin. This observation follows naturally from
a Bayesian analysis of the lexical decision task, such as provided by the REM-LD

model. We will illustrate this notion with two well-documented phenomena in lexical

decision: (1) the effect of nonword lexicality and (2) the effect of word frequency.

Several researchers (e.g., James, 1975; Joordens et al., 2000; Stone & Van Orden,

1989, 1993) have shown that performance for nonwords that are very similar to

words (i.e., pseudowords such as GREACH) is worse than performance for non-

words that are less similar to words (e.g., EAGRCH). Moreover, the similarity of

nonwords to words also affects performance for word stimuli: performance for word
stimuli that have to be distinguished from word-like nonwords is worse than for

words that have to be distinguished from less word-like nonwords. We will demon-

strate by simulation that REM-LD predicts these results. For all simulations re-

ported in this paper, each data point reflects the average of 10,000 decisions.

In REM-LD the similarity of nonwords to the lexical/semantic traces in memory

is quantified by the parameter b2 (i.e., the probability of a matching feature given

that the probe does not correspond to the lexical/semantic trace). In other words,

the similarities between the nonword test string and the 10 most similar lexical im-
ages will tend to be lower for test strings that are not very word-like. Throughout

this paper, we make the simplifying assumption that the similarity between a word

probe and a noncorresponding lexical/semantic trace is the same as the similarity be-

tween a word-like nonword probe and any of the lexical/semantic traces.

In this paper we simulate the signal-to-respond procedure used in Experiments 1

and 2. In this paradigm, the participant has to respond immediately after hearing a

tone, and the dependent variable of interest is the probability of responding �WORD�
as a function of processing time (i.e., time after stimulus onset). In almost all of the
simulations and experiments reported here, the tone (i.e., the signal-to-respond)

could be presented at one of six times after stimulus onset (i.e., deadlines): 75,

200, 250, 300, 350, and 1000ms. In accordance with the empirical results we let

the model �respond� after adding 200ms to the deadlines (i.e., we take 200ms. to

be the nondecision time required for post-decisional motor processes). Fig. 1a shows

the behavior of the REM-LD model with the following parameter values: b̂1 ¼ :8
(words), b̂2 (word-like nonwords or pseudowords)¼ .4, and b̂2 (less word-like non-

words)¼ .3. The feature activation function (Eq. (2)) uses t0 ¼ 270ms for the onset



Fig. 1. (a) The predicted effect of nonword lexicality in the REM-LD model. Performance for words is

worse when the nonword stimuli are word-like then when the nonword stimuli are not word-like. P (Word):

probability of responding �WORD,� PW: pseudowords (i.e., word-like nonwords), NW: nonwords (i.e.,

less word-like nonwords). (b) The predicted effect of nonword lexicality with respect to the word frequency

effect in the REM-LD model. The word frequency effect is larger when the nonword stimuli are word-like

than when they are not. HF: high frequency words, LF: low frequency words. See text for details.
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parameter and b ¼ 0:0025 for the rate parameter. The model is applied to two sep-

arate paradigms: one in which words are paired with nonwords (open symbols) and

another in which words are paired with pseudowords (closed symbols). If it were as-

sumed instead that the kinds of foils were mixed, then perhaps the model/system

would choose an estimate of b̂2 somewhere between .4 and .3; in this case the curves

for pseudowords and less word-like nonwords would still separate because of the dif-

fering number of matches, but the two word curves would not differ from each other.

The results show a number of effects that match those found in the literature: (1)
performance is at chance accuracy at the shortest deadline, and asymptotes to
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near-perfect performance at the longest deadline (cf. Hintzman & Curran, 1997), (2)

performance for word-like nonwords (i.e., pseudowords) is worse than for less word-

like nonwords (Grainger & Jacobs, 1996), and (3) performance is worse for words

that have to be distinguished from word-like nonwords than for words that have

to be distinguished from less word-like nonwords (Grainger & Jacobs, 1996, Fig. 25).
Another well-documented finding in lexical decision is the effect of word fre-

quency: performance for high-frequency or HF words is better than performance

for low-frequency or LF words (e.g., Scarborough et al., 1977). In REM-LD we as-

sume that the probability that a feature of a word probe matches the corresponding

feature in its own lexical/semantic trace, b̂1, is higher for HF word probes than for

LF word probes.3 An increased matching probability for HF words over LF words

may arise as a result of various mechanisms, for example: (1) HF word traces may

match more readily with the experimental context. This could be due to the fact that
HF words (e.g., CHAIR) generally occur in many different contexts, whereas LF

words (e.g., PYRAMID, PHARAOH) are often tied to relatively few contexts

(e.g., Dennis & Humphreys, 2001; Landauer & Dumais, 1997).4 (2) More accurate

content-information (i.e., semantic, orthographic or phonological properties, such

as spelling) might be stored in an HF trace than in an LF trace. To our knowledge,

present empirical evidence does not allow a choice to be made from the various al-

ternatives.

A second simulation was carried out to study whether REM-LD could produce
the following effects: (1) the word frequency effect and (2) the finding that the word

frequency effect is attenuated when the nonwords are not very word-like. Again two

paradigms are modeled, one in which the high- and low-frequency words are mixed

with nonwords and one in which the high- and low-frequency words are mixed with

word-like nonwords (i.e., pseudowords). The results can be seen in Fig. 1b. The pa-

rameter values are: b̂1 (HF words)¼ .85, b̂1 (LF words)¼ .75, b̂2 (pseudowords) ¼
.50, and b̂2 (nonwords)¼ .35. As before, the feature activation function uses

t0 ¼ 270ms for the onset parameter and b ¼ 0:0025 for the rate parameter. Because
words of different frequency are mixed in the simulated paradigm, the estimated va-

lue for the overall similarity of a word probe to its corresponding memory trace was
3 We believe it is difficult to pinpoint one specific mechanism that is related to word frequency. Word

frequency is correlated with many variables such as concreteness, age of acquisition, feature frequency,

context frequency, neighborhood density, neighbor frequency, etc. Rather than introduce a different

parameter for every variable that we know is related to word frequency, we decided to use a more general

approach, consistent with extant models in which word frequency manifests itself in better �resonance�
(e.g., Gordon, 1983), or a higher �resting level of activation� (e.g., McClelland & Rumelhart, 1981).

4 It should be noted that this contextual specificity account of word frequency correctly predicts an

advantage for LF words over HF words in episodic recognition. In episodic recognition, subjects have to

decide whether or not a probe word occurred in the context of the experiment. Since LF words generally

occur in fewer different contexts than HF words, the LF words are more discriminable with respect to the

experimental context than are HF words. In the REM model for episodic recognition (Shiffrin & Steyvers,

1997) subjects match the word probe to a set of episodic memory traces. Since it is assumed that episodic

memory traces of LF words consist of more specific (i.e., less common or more general) features, matches

for LF words tend to provide more diagnostic information (i.e., higher likelihood ratios).
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set at the average of the b-values for HF and LF words. That is the actual values of b
used to generate probe and trace vectors were .85 and .75, but the equations used to

calculate likelihood ratios used a common value of (.85+.75)/2 for both kinds of

words. The two important results illustrated in Fig. 1b are: (1) performance for

HF words (circle symbols) is better than performance for LF words (triangle sym-
bols) (i.e., the word frequency effect) and (2) the word frequency effect is larger when

the nonwords are very word-like (i.e., pseudowords, filled symbols) then when they

are not (open symbols).

Up to this point we have illustrated the behavior of the model by showing how

it accounts for the finding that nonword characteristics affect performance for the

word stimuli. The mirror image of this result, namely that word characteristics af-

fect performance for the nonword stimuli, has also been occasionally reported

(e.g., Joordens et al., 2000; Stone & Van Orden, 1993). More specifically, the afore-
mentioned studies showed that the frequency of the word stimuli affects perfor-

mance for the nonword stimuli: when all word stimuli are of high frequency,

classification performance for nonword stimuli is facilitated relative to when all

word stimuli are of low frequency. From a Bayesian perspective (cf. Eqs. (4)

and (6)) this result is to be expected, since lexical decision performance depends

on the discriminability of the words and the nonwords. We begin by presenting

an experiment carried out to test this prediction of the REM-LD model using

the signal-to-respond paradigm.
6. Experiment 1

6.1. Method

6.1.1. Participants

Thirty-five students of the University of Amsterdam participated for course cred-
it. All participants were native speakers of Dutch and reported normal or corrected-

to-normal vision.

6.1.2. Stimulus materials

We used three types of experimental stimuli: (1) 144 HF Dutch words, each occur-

ring more than 25 times per million according to the CELEX lexical database (Baa-

yen, Piepenbrock, & van Rijn, 1993), (2) 144 LF Dutch words, each occurring one to

five times per million, and (3) 288 pronounceable nonwords created by replacing one
letter of an existing word (e.g., GREACH derived from PREACH). Specifically, the

nonwords were created by replacing one letter from a word that was not used in the

experiment. The letter position subject to replacement was determined randomly. A

vowel was always replaced by a vowel and a consonant was always replaced by a

consonant. The replacement letters were sampled in proportion to the letter frequen-

cies (e.g., the rare letter �z� was unlikely to be used as a replacement, whereas the

common letter �r� was relatively likely to be used as a replacement). We verified that

the letter string that resulted from the replacement operation was not another word.
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The three stimulus categories were matched on neighborhood structure (a neigh-

bor is a word differing from another word in one letter, so TIED is a neighbor of

LIED): these categories had roughly the same summed logarithmic word frequency

of the neighbors, defined as
P

iðlogNi þ 1Þ, where Ni is the word frequency of the ith
neighbor (cf. Massaro & Cohen, 1994). For each stimulus class (i.e., HF words, LF
words, and nonwords) one-third of the stimuli were four letters long, one-third were

five letters long, and one-third were six letters long. In addition to the experimental

stimuli there were 192 lexical decision practice stimuli, consisting of 48 HF words, 48

LF words, and 96 nonwords. The lexical decision practice stimuli had the same gen-

eral characteristics as the experimental stimuli. Finally, the stimuli ‘‘>’’ and ‘‘<’’

were used as stimuli to familiarize the subjects with the signal-to-respond procedure.

The word and nonword stimuli (and their neighborhood characteristics) can be ob-

tained from http://www.psych.nwu.edu/~ej/remldstimuli.xls.

6.1.3. Design

The experiment consisted of five blocks: (1) a general, nonlexical practice block

during which subjects were familiarized with the signal-to-respond procedure. To

this aim, we required subjects to classify arrows (‘‘>’’ and ‘‘<’’). Throughout the ex-

periment, subjects were required to respond immediately after hearing a tone. The

tone could be presented at one of six times after the onset of the target stimulus

(i.e., deadlines): 75, 200, 250, 300, 350, and 1000ms. The general practice block con-
sisted of 96 trials, (2) the first lexical decision practice block. In this block, subjects

had to make 96 lexical decisions. For half of the subjects, the practice block con-

tained 48 HF words and 48 nonwords, and for the other half of the subjects, the

practice block contained 48 LF words and 48 nonwords, (3) the first experimental

block. This block consisted of 288 trials. The frequency class of the 144 word stimuli

was identical to that of the previous practice block, (4) the second lexical decision

practice block, and (5) the second experimental block. Block four and five were iden-

tical to block two and three, respectively, except for the fact that new nonwords were
used and the frequency class of the word stimuli was reversed. Only responses to ex-

perimental stimuli were analyzed. The experimental stimuli were assigned to each of

the six deadlines in a counterbalanced (Latin square) design. Also, two sets of 144

experimental nonword stimuli were assigned either to the block with only HF word

stimuli or to the block with only LF word stimuli using a counterbalanced design.

The order of the trials was randomly determined for each subject. All word and non-

word stimuli occurred only once throughout the experiment. Participants were al-

lowed a short break after completing the first experimental block (block three).

6.1.4. Procedure

Subjects received spoken and written instructions explaining the signal-to-respond

lexical decision task. Subjects were instructed to respond immediately after hearing a

tone (i.e., the signal-to-respond). In addition, subjects were informed about the fre-

quency of the word stimuli before the start of each block (i.e., ‘‘the words in this block

are not encountered very often’’ for LF words, versus ‘‘the words in this block are

encountered often’’ for HF words). Each trial started with the 1000ms presentation

http://www.psych.nwu.edu/~ej/remldstimuli.xls
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of a trial marker (##) at the center of the screen. Next, the trial marker was replaced

by the stimulus. In order to further encourage timely responding, the stimulus was re-

moved from the screen at the exact moment the signal-to-respond tone was presented.

This 32ms, 1000Hz tone could be presented at one of six time intervals after stimulus

onset. Subjects gave a �NONWORD� response by pressing the �z� key of the keyboard
with the left index finger and a �WORD� response by pressing the �?/� key with the right

index finger. When no response was given after 500ms since the presentation of the

tone, the message �TE LAAT� (Dutch for �too late�) was presented for 1500ms. When

the subject anticipated the tone (i.e., responding faster than 75ms after presentation

of the tone), the message �TE VROEG� (Dutch for �too early�) was presented for

1500ms. For all other responses, subjects received feedback on both accuracy and

timing, presented for 2000ms during which the relevant stimulus was also presented

on the screen.

6.2. Results

The results of Experiment 1 are presented in Fig. 2a and Table 2. Fig. 2a shows

the accuracy data and Table 2 shows the response latencies. ANOVAs were per-

formed on error percentages and on the mean latencies of correct responses. The

data of three subjects were excluded from the analysis because of excessive error

rates and an apparent failure to obey instructions. Of the remaining 32 subjects, only
data falling within a response time window extending from 100 to 350ms after the

onset of the tone were analyzed (cf. Hintzman & Curran, 1997). This resulted in

the exclusion of 15.8% of the data. Other methods of analysis (e.g., binning the data

or using different window-sizes) yielded similar results.
Fig. 2. (a) Results from Experiment 1. Nonwords are responded to more accurately when presented in one

block with only high-frequency words than with only low-frequency words. P (WORD), probability of re-

sponding �WORD�; HF, high frequency words; LF, low frequency words; NW, nonwords. (b) The pre-

dicted effect of word frequency on performance for nonwords in the REM-LD model. Performance for

nonwords is better when they have to be distinguished from HF words than when they have to be distin-

guished from LF words.



Table 2

Mean response times (in milliseconds) in Experiment 1 as a function of target word status and deadline

Target Deadline

75 200 250 300 350 1000

HF 370 453 490 532 572 1207

LF 377 464 501 538 581 1205

NW (HF) 373 466 502 542 583 1208

NW (LF) 372 462 507 550 592 1172

Note. Response times are from stimulus onset, independent of response accuracy. HF, high frequency

words; LF, low frequency words, NW (HF), nonwords presented in one block with only HF words; NW

(LF), nonwords presented in one block with only LF words.
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As can be seen in Fig. 2a, HF words were responded to more accurately than LF

words, F ð1; 31Þ ¼ 61:7, MSE ¼ 242, p < :001. HF words were also classified cor-

rectly faster than LF words, F ð1; 31Þ ¼ 5:7, MSE ¼ 810, p < :05. The crucial finding
of this experiment is that nonwords presented in a block with only HF words were

responded to more accurately than nonwords presented in a block with only LF

words, F ð1; 31Þ ¼ 42:6,MSE ¼ 265, p < :001. No effect of word frequency on perfor-

mance for nonwords was apparent from the response latencies, F < 1. For all four

stimulus categories, performance increased with processing time, all p�s < .001.

6.3. Discussion

Experiment 1 demonstrated that the effect of word frequency on performance for

nonwords (e.g., Joordens et al., 2000; Stone & Van Orden, 1993) is also consistently

obtained in the signal-to-respond paradigm where accuracy rather than response

time is the dependent variable. The finding that word frequency affects performance

for nonwords is predicted by REM-LD because of the centering aspect of the Bayes-

ian decision mechanism (cf. Eqs. (4) and (6)): if classification accuracy for words is

enhanced, for instance by using HF words instead of LF words, this will in turn

make nonwords more discriminable and hence leads to an improvement in classifi-
cation performance for nonwords. REM-LD predicts the effect of nonword lexicality

on performance for words for the same reason: if classification accuracy for non-

words is enhanced (e.g., by using nonwords that are not very word-like), this will

lead words to be more discriminable, and hence result in an increase in classification

accuracy for words.

Thus, the prediction of REM-LD with respect to the effect of word frequency on

nonword classification is quite general and holds over a wide range of parameter val-

ues. In a simulation study, we tested the prediction of REM-LD under the conditions
of Experiment 1 using the following three parameter estimates:5 b̂1 (HFwords)¼ .795,
5 For all fits of the model to data, we used the Nelder–Mead simplex method (Lagarias, Reeds, Wright,

& Wright, 1998) to estimate the parameter values that minimized the sum of squared deviations between

the model predictions and the data. Plausible starting values were chosen after a cursory examination of

the parameter space.
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b̂1 (LF words)¼ .627, and b̂2 ¼ :277. Again simulations of two paradigms were car-

ried out, one in which the words were all HF and one in which the words were all

LF. With these parameter settings, the model captures the qualitative effects of word

frequency on nonword classification. The model predictions were quantitatively fine-

tuned by the following two adjustments. First, Fig. 2a clearly shows that participants
have a bias to respond ‘‘WORD’’ early in processing—in contrast, for an unbiased

Bayesian system performance starts off at the neutral P (WORD)¼ .5 level (cf. Figs.

1a and b). In REM-LD, the most straightforward way to implement a priori bias is

to let the posterior odds U be influenced by a bias term (i.e., the prior odds), that

is, U ¼ ð1n
Pn

j¼1 kjÞ � bias (cf. Eq. (8)). Thus, when the system has not yet processed

any features, performance is determined by the size of the bias component. For in-

stance, when bias is 1.5, the posterior odds starts out at 1.5 instead of at 1.0, and

the associated probability of responding ‘‘WORD’’ is shifted from PðWORDÞ ¼ :5
to PðWORDÞ ¼ 1:5=ð1:5þ 1Þ ¼ :6. In this simulation, bias was estimated to be 1.22.

The second adjustment to the model concerns the function that relates the in-

crease in classification performance to processing time. Figs. 1a and b show that

the REM-LD model predicts that classification performance increases as a convex

(or concave) function of processing time. However, the observed data (cf. Fig. 2a)

indicate that performance increases over time somewhat as an S-shaped function.

This S-shaped function can be captured by the REM-LD model by assuming that

the onset of the feature activation process varies randomly from trial to trial, for in-
stance due to endogenous fluctuations in attention or motivation. In this simulation,

we assumed a uniform distribution, ranging from 195 to 502ms, over the onset pa-

rameter t0 that determines the minimum time for the activation of probe features (cf.

Eq. (2)). The rate parameter b of the feature activation function was estimated to be

.0041. The results of the simulation are shown in Fig. 2b. The results capture the ef-

fect of word frequency on nonword responding, the a priori bias to respond

‘‘WORD’’ and the S-shaped increase in performance over time.
7. Experiment 2

The objective of Experiment 2 was the study of lexical decision performance as a

function of processing time, nonword lexicality, word frequency, and, particularly,

repetition priming. Experiment 2 was inspired by the work of Hintzman and Curran

(1997, Experiment 2). Hintzman and Curran used a signal-to-respond lexical decision

task to track the time course of processing for four types of stimuli: (1) HF words, (2)
LF words, (3) nonwords created by changing one letter from an HF word, and (4)

nonwords created by changing one letter from an LF word. In addition, all stimuli

were presented twice (see Hintzman & Curran, 1997, Fig. 9, for their results). Because

the two types of nonword stimuli did not differ significantly, we collapsed the data

over the two types of nonwords to avoid clutter and re-plotted the Hintzman and Cur-

ran data in Fig. 3c. As can be seen, performance for HF words is better than LF words

(i.e., the word frequency effect). Also, performance for repeated words is better than

performance for words that are presented for the first time. This repetition priming



 

 

 

Fig. 3. (a) Results from Experiment 2. Repeated stimuli are more likely than novel stimuli to be classified as

a word. P (Word), probability of responding �WORD�; HF, high frequency words; LF, low frequency words;

NW1, �one letter replaced� nonwords; NW2, �two-letters replaced� nonwords. The digit 2 in brackets indi-

cates the second presentation. (b) Predictions of the REM-LD model for the conditions from Experiment

2. (c) Re-plotted data from Hintzman and Curran (1997, Experiment 2, Fig. 9). As is apparent from the fig-

ure, prior exposure increases the probability of classifying a stimulus as a word, for all stimulus categories.

(d) Predictions of the REM-LDmodel for the conditions fromHintzman and Curran (1997, Experiment 2).
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effect is more pronounced for LF words than for HF words, thus reducing the word

frequency effect (see also Scarborough et al., 1977, 1984). For nonwords, prior presen-
tation led to a decrease in performance: repeated nonwords were more likely than no-

vel nonwords to be classified as a word. The inhibitory repetition priming effect for

nonwords is of considerable theoretical importance. Logan (1988, 1990) reported sub-

stantial facilitatory repetition priming effects for nonwords (i.e., performance for re-

peated nonwords is better than for novel nonwords), and argued that this finding

constitutes evidence for a theory based on automatic retrieval of episodic information

(i.e., instance theory). We will discuss the implications of both inhibitory and facilita-

tory effects of prior presentations for nonwords in more detail later.
One of the most important differences between the current experiment and that of

Hintzman and Curran (1997, Experiment 2) is a more powerful manipulation of non-

word lexicality. In our experiment, we used two types of nonwords: (1) nonwords such

asGREACHcreated by changing one letter of an existing word and (2) nonwords such

as ANSU that differ in two letters from any existing word.We expected lexical decision
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performance to be better for the �two letter replaced� nonwords than for the �one letter
replaced� nonwords. For modeling purposes, we also equated the HF words, LF

words, and the �one letter replaced� nonwords for certain orthographic neighborhood

characteristics, as in Experiment 1, using a combinedmeasure for both the number and

the frequency of orthographically similar words (cf. Massaro & Cohen, 1994).

7.1. Method

7.1.1. Participants

Thirty-seven students of Indiana University participated for a small monetary re-

ward. All participants were native speakers of English and reported normal or cor-

rected-to-normal vision.

7.1.2. Stimulus materials

We used four types of experimental stimuli: (1) 168 HF English words, each oc-

curring more than 30 times per million according to the CELEX lexical database

(Baayen et al., 1993), (2) 168 LF English words, each occurring one or two times

per million, (3) 168 pronounceable nonwords created by replacing one letter of an

existing word (e.g., GREACH derived from PREACH), (4) 168 pronounceable

nonwords differing by at least two letters from any word (e.g., ANSU).6 As in Ex-

periment 1, the first three stimulus categories were matched on neighborhood
structure, having roughly the same summed logarithmic word frequency of the

neighbors. The nonword stimuli were constructed by applying the same rules as

the ones used in Experiment 1. All stimuli were four, five, six, or seven letters long,

occurring in the respective proportions 2:2:2:1. In addition to the experimental

stimuli there were 72 fillers and 72 lexical decision practice stimuli, each group con-

sisting of 18 HF words, 18 LF words, 18 �one-letter replaced� nonwords, and 18

�two-letters replaced� nonwords. Both fillers and lexical decision practice stimuli

had the same general characteristics as the experimental stimuli. Finally, the stimuli
‘‘>’’ and ‘‘<’’ were used as stimuli to familiarize the subjects with the signal-to-re-

spond procedure. The word and nonword stimuli can be obtained from http://

www.psych.nwu.edu/~ej/remldstimuli.xls.

7.1.3. Design

The experiment consisted of three phases: (1) a general, nonlexical practice phase

during which subjects were familiarized with the signal-to-respond procedure. As in

Experiment 1, we required subjects to classify arrows (‘‘>’’ and ‘‘<’’). Throughout
the experiment, subjects were required to respond immediately after hearing a tone.

The tone could be presented at one of six times after the onset of the target stimulus

(i.e., the same deadlines as used in Experiment 1): 75, 200, 250, 300, 350, and

1000ms. The general practice phase consisted of 300 trials. (2) a lexical decision prac-
6 Due to a programming error, some nonwords that were created by changing two letters from a

�parent� word only differed by one letter from yet another word. Despite this inaccuracy, the data showed

substantial differences between the two types of nonwords.

http://www.psych.nwu.edu/~ej/remldstimuli.xls
http://www.psych.nwu.edu/~ej/remldstimuli.xls
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tice phase. In this phase, subjects had to make 96 lexical decisions to 72 different

stimuli (i.e., one block of 48 new stimuli followed by a block of 24 new stimuli

and 24 stimuli from the first block). (3) the experimental phase. This phase consisted

of 30 blocks of 48 trials each, resulting in a total of 1440 trials. In each block except

the first, half of the stimuli were new, and half of the stimuli had been presented in
the previous block (i.e., a blocked design was used). In a blocked design (cf. Hintz-

man & Curran, 1997, Experiment 2; Logan, 1988, Experiment 3; Smith & Oscar-Ber-

man, 1990), the presentation condition (i.e., first or second presentation) of a

stimulus and the total number of trials preceding the stimulus are not confounded.

Therefore, any change in performance over the number presentations of a stimulus is

due to a stimulus specific repetition effect and can not be ascribed to some general

practice effect, skill learning, fatigue, or a criterion-shift due to improvement for a

subset of stimuli (for a more detailed discussion see Wagenmakers, Zeelenberg, Stey-
vers, Shiffrin, & Raaijmakers, in press). The transition from one block to another

block was not marked in any way and from the point of view of the participants

the experiment consisted of one long sequence of trials. The first block consisted

of 48 filler stimuli. In the final block, the remaining 24 filler stimuli were added to

24 experimental stimuli that had been presented in the previous block. Each block

consisted of an equal number of word and nonword stimuli, and each of the six

deadlines occurred eight times in one block. Only responses to experimental stimuli

were analyzed. The experimental stimuli were assigned to each of the six deadlines in
a counterbalanced (Latin square) design. The order of the trials was randomly

determined for each subject. Participants were allowed two short breaks, one after

480 trials in the experimental phase, and one after 960 trials in the experimental

phase.

7.1.4. Procedure

The procedure was identical to the procedure of Experiment 1, with the exception

that the feedback on response latency and accuracy was presented for 1500ms in-
stead of 2000ms, and the stimulus was not presented on the screen while this feed-

back was presented. In addition, of course, all messages (e.g., too late, too early)

were translated from Dutch to English.

7.2. Results

The results of Experiment 2 are presented in Fig. 3a and Table 3. Fig. 3a shows

the accuracy data and Table 3 shows the response latencies. ANOVAs were per-
formed on the mean latencies of correct responses and on error percentages. The

data of 14 subjects were excluded from the analysis, either because of evident failure

to obey instructions, excessive error rates, or poor response timing (i.e., over 30% of

the responses outside the response window mentioned below).7 Of the remaining 23
7 The difficulty of the signal-to-respond procedure is also witnessed by the fact that Hintzman and

Curran (1997, Experiment 2) had to exclude 6 out of their initial 25 participants, either because of low

accuracy or because of bad timing.



Table 3

Mean response times (in milliseconds) for first presentations and second presentations (after the comma)

in Experiment 2 as a function of target word status and deadline

Target Deadline (ms)

75 200 250 300 350 1000

HF 361, 360 433, 422 465, 460 504, 501 553, 551 1196, 1196

LF 362, 362 442, 431 483, 476 529, 517 568, 561 1199, 1197

NW1 363, 361 447, 440 487, 484 529, 527 574, 571 1202, 1203

NW2 361, 360 443, 446 482, 488 521, 524 562, 563 1200, 1197

Note. Response times are from stimulus onset, independent of response accuracy. HF, high frequency

words; LF, low frequency words; NW1, �one letter replaced� nonwords; NW2, �two letters replaced�
nonwords.
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subjects, only data falling within a response time window extending from 100 to

350ms after the onset of the tone were analyzed (cf. Experiment 1). This resulted

in the exclusion of 18.8% of the data. Other methods of analysis (e.g., binning the

data or using different window-sizes) yielded similar results.
As is apparent from Fig. 3a and Table 3, both response latency and response ac-

curacy increased with an increase in deadline, all p�s < .001. HF words were responded

to more accurately than LF words, F ð1; 22Þ ¼ 224:8,MSE ¼ 174, p < :001. HF words

were also classified correctly faster than LF words, F ð1; 22Þ ¼ 73:5, MSE ¼ 199,

p < :001. These word frequency effects for both response accuracy and response la-

tency were attenuated by a prior presentation, F ð1; 22Þ ¼ 49:5, MSE ¼ 73, p < :001,
and F ð1; 22Þ ¼ 5:3, MSE ¼ 53, p < :05, respectively. Nonwords that differed in two

letters from a word were both classified more accurately and classified correctly faster
than nonwords that differed in only one letter from a word, F ð1; 22Þ ¼ 586:7,
MSE ¼ 51, p < :001, and F ð1; 22Þ ¼ 11:4, MSE ¼ 134, p < :01, respectively.

Facilitatory effects of repetition priming were observed for both HF stimuli and

LF stimuli. More specifically, both HF words and LF words were responded to more

accurately on their second presentation than on their first presentation,

F ð1; 22Þ ¼ 17:7, MSE ¼ 57, p < :001, and F ð1; 22Þ ¼ 209:6, MSE ¼ 65, p < :001, re-
spectively. HF words and LF words were also classified correctly faster on their sec-

ond presentation than on their first presentation, F ð1; 22Þ ¼ 11:2,MSE ¼ 84, p < :01,
and F ð1; 22Þ ¼ 54:0, MSE ¼ 55, p < :001, respectively. Fig. 3a also shows that for

nonwords differing in only one letter from an existing word (i.e., �one letter replaced�
nonwords), inhibitory effects of repetition priming were observed with respect to re-

sponse accuracy. More specifically, �one letter replaced� nonwords were responded to

less accurately on their second presentation than on their first presentation,

F ð1; 22Þ ¼ 7:4, MSE ¼ 101, p < :05. In addition, although the absolute size of the

effect is very small, �one letter replaced� nonwords were responded to faster on their

second presentation than on their first presentation, F ð1; 22Þ ¼ 12:0, MSE ¼ 43,
p < :01. With respect to nonwords differing in two letters from any existing word

(i.e., �two-letters replaced nonwords�), the effects of repetition priming did not reach

significance for either response accuracy or response latency, F ð1; 22Þ ¼ 2:2,
MSE ¼ 44, p > :15, and F ð1; 22Þ ¼ 2:8, MSE ¼ 42, p > :10, respectively.
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7.3. Discussion

Experiment 2 showed substantial effects of stimulus type. Performance for HF

stimuli was better than performance for LF stimuli (i.e., the word frequency effect)

and performance for �two letter replaced� nonwords was better than for �one letter
replaced� nonwords. In addition, prior presentation reduced the word frequency ef-

fect. Also, �one letter replaced� nonwords showed inhibitory effects of nonword rep-

etition. In a very similar experiment,8 Wagenmakers et al. (in press, Experiment 3)

showed that inhibitory repetition priming for nonwords can be obtained for the

�two letters replaced� nonwords used in this study, albeit of a smaller magnitude than

that observed for �one letter replaced� nonwords. In general, then, the data from Ex-

periment 2 are consistent with previous findings obtained in the signal-to-respond

paradigm (i.e., Hintzman & Curran, 1997; Wagenmakers et al., in press).
How can REM-LD account for the present results, and those of Hintzman and

Curran (1997)? In the previous sections, we discussed how REM-LD models the

word frequency effect (i.e., a higher value of b1 for HF words than for LF words)

and the nonword lexicality effect (i.e., a higher value of b2 for word-like nonwords

than for nonwords relatively dissimilar to words). To model the effect of repetitions

for words we assume that study and test of a word adds information about the cur-

rent presentation and context to the lexical/semantic trace of the tested word. In the

REM framework generally, implicit memory effects are ascribed to such a mecha-
nism (e.g., Schooler et al., 2001). Further, this assumption is consistent with the as-

sumption in REM that such a mechanism is responsible for the development of

lexical/semantic traces through repetitions of a word over developmental time. Fi-

nally, we note that the approach in this respect is consistent with the approach to

word frequency that is used in most models (e.g., McClelland & Rumelhart, 1981;

Morton, 1969; Wagenmakers et al., 2000b; but see Ratcliff & McKoon, 1997).9 Thus

in REM-LD, if the probe includes low level physical features like font, and current

context features, these will produce better matches to traces that have been aug-
mented by such features, namely those that represent traces of repeated words.

Rather than implement this idea in detail, possibly by distinguishing types of fea-

tures, we simply assumed that prior presentation increases the value of b1. This sim-

plification is quite sufficient for present purposes.

It is somewhat less straightforward to model the repetition priming effect for non-

words. It is assumed in the REM approach that presentation almost always produces

storage of an incomplete and error-prone episodic trace of the study event. Thus

one approach would assume that this episodic trace is activated and produces the
8 Experiment 3 from Wagenmakers et al. (in press) used the same stimulus materials, but adopted a

slightly different �signal-to-respond� procedure (i.e., participants were required to respond at an imaginary

tone, the �occurrence� of which was indicated by a rhythmic sequence of three prior tones). Also,

Wagenmakers et al. (in press) used different deadlines than those used in the present study.
9 The Ratcliff and McKoon counter model for perceptual identification assumes that repetition

priming affects the drift rate of a discrete random walk process (i.e., a processing bias), whereas word

frequency affects the starting point (i.e., an a priori bias; for a discussion see Wagenmakers et al., 2000a).
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additional matching that is seen as an inhibitory effect in the data. However, this

would introduce a mechanism different from that used for words. Thus, in an at-

tempt to create a model for lexical decision that is both conceptually and mathemat-

ically transparent, we adopt an approach based on that used for words: it is assumed

that only lexical/semantic traces are matched to the presented stimulus. In particular,
it is assumed that on the first presentation of a nonword (e.g., GREACH), partici-

pants will retrieve a number of words that are orthographically and/or phonologi-

cally similar to the test string. We further make the simplifying assumption that

on a certain proportion of trials the subjects will retrieve one of the similar words

(e.g., PREACH).10 For instance, after the subject is presented with GREACH, he

or she might think something like ‘‘this stimulus looks very similar to PREACH.’’

In other words, the presentation of a nonword will sometimes lead to a trace-specific

retrieval of an orthographically similar word representation. Although this example
provides a description of a retrieval event that is �aware and conscious,� it is quite

conceivable that such retrieval occurs implicitly, without lasting awareness. What-

ever the degree of awareness, this retrieval event could produce storage of current

context information in the trace of the retrieved word. When the nonword is tested

again, the trace of this similar word will be part of the activated set of 10 most similar

traces, and will contribute more matching due to the additional context features

stored. Consequently, the retest will lead to a relatively high estimate of familiarity

(i.e., posterior odds ratio U), and bias the system to give a �WORD� response. We
implement this idea in the simplest way possible, by assuming that one of the lexi-

cal/semantic traces in the activated set has a slightly higher value of b2 than on

the first presentation.

Fig. 3d shows how REM-LD handles the data from Hintzman and Curran (1997;

Experiment 2, Fig. 7); see our Fig. 3c. Hintzman and Curran used seven deadlines

instead of six. In their experiment, the signal-to-respond could be presented either

at 75, 125, 200, 300, 400, 600, or 1000ms after stimulus onset. Again, we let

REM-LD �respond� after adding 200ms to these deadlines. The parameter estimates
are: b̂1 (HF words)¼ .736, b̂1 (LF words)¼ .629, the increase in b̂1 due to prior pre-

sentation for both HF and LF words¼ .083, b̂2 ¼ :285, and the increase in b̂2 for one

lexical/semantic trace due to prior presentation of a nonword¼ .042. As in Experi-

ment 1, the data showed an a priori bias to respond ‘‘WORD,’’ and this finding

was accommodated by allowing a bias term to influence the posterior odds, esti-

mated to be bias ¼ 1:49. In addition, to capture the S-shaped increase in classifica-

tion performance over processing time, onset parameter t0 of the feature

activation function (cf. Eq. (2)) was drawn from a uniform distribution, ranging
from 204 to 482ms. The rate parameter b of the feature activation function was es-

timated to be 0.0042.

Fig. 3b shows how REM-LD can account for the results of Experiment 2 (cf.

Fig. 3a). The parameter estimates are: b̂1 (HF words)¼ .847, b̂1 (LF words)¼ .634,
10 Previous REM-LD simulations were done using the assumption that all of the similar lexical/

semantic traces were slightly more accessible after the first presentation of a nonword. These simulations

yielded similar results to those reported here.
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the increase in b̂1 due to a prior presentation for both HF and LF words¼ .081, b̂2

(word-like nonwords or pseudowords)¼ .361, b̂2 (less word-like nonwords)¼ .270,

the increase in b̂2 for one lexical/semantic trace due prior presentation of a word-like

nonword¼ .073, and the increase in b̂2 for one lexical/semantic trace due to prior

presentation of a less word-like nonword¼ .037. The bias component was estimated
to be 1.22, t0 was drawn from a uniform distribution ranging from 110 to 524ms,

and the rate parameter b was estimated to be 0.0039.

In both experiments the materials are mixed across trials for each participant, so

in the simulations (Figs. 3b and d) the different values of b1 and the different values

of b2 are used to generate the vector values and hence determine the number of

matches and mismatches, but the calculations of the likelihood ratios are based on

a single estimate of b1, the arithmetic mean of the four b1 values, and a single esti-

mate of b2, the arithmetic mean of the two (Fig. 3d) or four (Fig. 3b) b2 values. The
model captures the observed pattern of results. We would like to stress that the per-

formance of the model is not strongly dependent on specific parameter values. Most

of the predictions of the REM-LD model are generated by the Bayesian decision

mechanism that is inherent to the model. Consequently, the predicted results hold

qualitatively across a range of parameter values and are quite general.

Note that in both simulations, the attenuation of the word frequency effect due to

prior presentation follows from the differential effect that the same increase in b̂1 has

on HF words and LF words. In a Bayesian system, it is generally the case that the
impact of a given variable is greater to the extent that the decision making process

was ambiguous. Thus, the gain in performance obtained by adding new information

to a lexical trace is relatively small when the lexical trace already contains a lot of

information, and this can be seen as an example of the law of diminishing returns

(e.g., Spillman & Lang, 1924).

Turning to nonwords, recall that we propose that negative repetition priming for

nonwords occurs because current context information is added to the trace of a sim-

ilar word, a trace that is retrieved following presentation of the nonword. Assuming
that such retrieval is harder and less likely for test strings that are less similar to words,

the negative effect for such test strings will be smaller. This idea was implemented in

the simulation by setting the increase in b2 for one lexical/semantic trace due to prior

presentation of a nonword to a lower value for nonwords that are dissimilar to words

(i.e., .037) than for nonwords that are relatively similar to words (i.e., .073). In sum,

Figs. 3b and d show that REM-LD can predict the observed effects on performance of

processing time, word frequency, repetition priming, and nonword lexicality.

Logan (1988, 1990; see also Wagenmakers et al., in press) reported substantial fa-
cilitatory effects due to prior presentation of a nonword. That is, in some experi-

ments subjects classify nonwords more accurately on their second presentation

than on their first presentation. In its present form, REM-LD predicts less accurate

nonword performance (basically due to increased familiarity). It should be noted

that under speed-stress such as imposed by the signal-to-respond paradigm, facilita-

tory nonword repetition priming is usually not observed in lexical decision (Wagen-

makers et al., in press). In a study that provides insight into these discrepant results,

Zeelenberg, Wagenmakers, and Shiffrin (in press) (see also Smith & Oscar-Berman,
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1990; Wagenmakers et al., in press) presented empirical evidence that two opposing

processes jointly determine performance for repeated nonwords: (1) a inhibitory fa-

miliarity process as for instance implemented by the REM-LD model and (2) a fa-

cilitatory process that is perhaps based on automatic episodic retrieval of the

interpretation associated with the nonword stimulus on its initial presentation (i.e.,
‘‘I remember GREACH is a nonword,’’ cf. Logan, 1990; Tenpenny, 1995; but see

Bowers, 2000). That is, a particular form of episodic retrieval could in some studies

dominate the familiarity factor that we propose affects lexical access. We will not car-

ry this point further, because it goes beyond the scope of this paper to extend the

present model by adding an episodic retrieval component.
8. Extensions of the REM-LD model

Up to this point we have shown how REM-LD provides a parsimonious explana-

tion for the effects of word frequency, repetition priming, and nonword lexicality as

observed in a signal-to-respond lexical decision task. We would like to stress that

REM-LD correctly predicts the interactions of the above effects (e.g., the attenuation

of the word frequency effect when the word-likeliness of the nonwords is reduced, the

enhanced classification performance for nonwords when HF words are used instead

of LF words) by application of the likelihood-based statistical decision process that
forms an integral part of the model. The above phenomena were selected for mod-

eling based on their generality, robustness, and theoretical importance. However,

our choice was up to a certain point arbitrary, and it is certainly possible to extend

the REM-LD model to handle other phenomena than the ones considered so far. In

this section we will tentatively explore how REM-LD can be applied to the pseud-

ohomophone effect and the prediction of response latencies.

8.1. The pseudohomophone effect

For simplicity, we have so far assumed that the probe-to-trace comparison pro-

cess involves only orthographic features (cf. Grainger & Jacobs, 1996). Therefore,

REM-LD in its present simple form does not address the role of phonology in visual

word recognition (or, more specifically, in lexical decision). Note that in the lexical

decision task, activation of phonology is not required for successful performance as

the distinction between a word and a nonword is purely based on orthography.

Nonetheless, several findings have unambiguously demonstrated that phonological
information does play an important role in lexical decision (e.g., Frost, 1998; Stone,

Vanhoy, & Van Orden, 1997; Van Orden, 1987).

One of the most robust findings that attest to the role of phonology in lexical de-

cision is the pseudohomophone effect (Coltheart, Davelaar, Jonasson, & Besner,

1977; Rubenstein, Lewis, & Rubenstein, 1971), that is, nonwords that are pro-

nounced as words (e.g., BRANE) are more difficult to correctly reject than nonwords

that are not pronounced as words (e.g., SLINT). It is relatively straightforward to

extend REM-LD to account for the pseudohomophone effect. We assume that there
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are stages of processing that occur automatically en route to construction of the set

of probe features, and that part of these stages involves production of phonological

features. Such features are of course also part of the lexical/semantic representations

in memory. Hence the matching process used to produce likelihood ratios includes

both orthographic and phonological features. More specifically, we assume that a
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Fig. 4. The pseudohomophone effect simulated by REM-LD. P(Word): probability of responding

�WORD.� (a) Predicted increase in accuracy with processing time for words, regular nonwords, and pseud-

ohomophones with the same time course for activating orthographic and phonological features (see (c)).

(b) Predicted increase in accuracy with processing time for words, regular nonwords, and pseudohomo-

phones with a different time course for activating orthographic and phonological features (see (d)). (c)

An identical time course for activating orthographic and phonological features in REM-LD (for results

see (a)). (d) A different time course for activating orthographic and phonological features in REM-LD

(for results see (b)).
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lexical trace contains kp ¼ 10 phonological features, in addition to ko ¼ 15 ortho-

graphic features.11 For both words and regular nonwords, b̂1 (orthography)¼ b̂1

(phonology) and b̂2 (orthography)¼ b̂2 (phonology), that is, the probability of

matching a feature (i.e., b̂1 and b̂2 when the probe does and does not correspond

to a trace, respectively) is the same for orthographic and phonological features.
The difference between regular nonword probes and pseudohomophone probes such

as BRANE is that the latter have a particular lexical trace (e.g., BRAIN) for which

the phonological information matches with probability b1 instead of b2. In other

words, pseudohomophones have an average a higher odds ratio U than regular non-

words because the phonological information of the pseudohomophone probe (e.g.,

BRANE) will tend to match the phonological information of a similar sounding lex-

ical trace (e.g., BRAIN), boosting the likelihood ratio that the probe matches the

phonologically similar (but orthographic dissimilar) lexical trace.
Fig. 4 shows two exploratory simulations of the pseudohomophone effect in a sig-

nal-to-respond setting. In both simulations we let the model respond after 275, 350,

450, 550, and 650ms. Each trace consisted of 15 orthographic features and 10 pho-

nological features, b̂1 ¼ :8 and b̂2 ¼ :35. The top left panel show the predictions of

REM-LD when orthographic features and phonological features become available

at the same rate. The bottom left panel of Fig. 4 shows how the probability of acti-

vating/retrieving a feature increases over time (according to Eq. (2)). As can be seen

from Fig. 4, top left panel, classification performance for pseudohomophones (e.g.,
BRANE) is consistently lower than for regular nonwords (e.g., SLINT). The top

right panel shows a second simulation of the pseudohomophone effect, this time us-

ing a different activation function for phonological features. Fig. 4, bottom right pa-

nel shows that the activation function for phonological features first increases at the

same rate as the activation function for orthographic features, but decreases after

450ms. Specifically, the equation for the activation function of phonological features

is identical to Eq. (2) if t6 tp; when t > tp, the activation function is given by

exp½�bðt � tpÞ� � exp½�bðt � t0Þ�. The form of this activation function reflects the hy-
pothesis that in the first stages of processing phonological information is computed

automatically, whereas it can be suppressed or discounted in later stages of process-

ing. Such a process of discounting is plausible given that subjects should be able to

correctly classify pseudohomophones as nonwords when given enough time.

The two simulations shown in Fig. 4 serve to illustrate how REM-LD can be ex-

tended to handle the pseudohomophone effect. The simulations also show how the

signal-to-respond paradigm can potentially be used to infer the relative time course

of activation of orthographic versus phonological information. That is, the difference
in classification performance between pseudohomophones and nonwords provide an

indication of the impact of phonology. A model such as REM-LD may be fitted to

experimental data, and estimates of the activation functions for orthographic and
11 Explicitly modeling the process by which phonology is computed from orthography is a complicated

task (e.g., for details see Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001). For the exemplary

simulations presented here, we take this process as a given as its details are beyond the aim of this

illustration.
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phonological features can then be obtained. Of course, the presented simulations are

speculative in the sense that to our knowledge a signal-to-respond experiment with

pseudohomophones has yet to be performed.

It is worth mentioning one recent result with respect to the role of phonology in

lexical decision: Ziegler, Jacobs, and Klueppel (2001) replicated in German results
from Van Orden (1991) and Van Orden et al. (1992) showing that pseudohomo-

phones derived from HF words are faster classified (i.e., correctly rejected) than

pseudohomophones derived from LF words. Ziegler et al. (2001) noted that this re-

sult is at odds with predictions of the standard versions two of the most popular

models for lexical decision (i.e., the Multiple Read-Out Model, Grainger & Jacobs,

1996 and the Dual Route Cascaded model, Coltheart et al., 2001). Such a result falls

naturally out of REM models that incorporate differentiation (e.g., Shiffrin & Stey-

vers, 1997; see also Shiffrin, Ratcliff, & Clark, 1990): the idea is that traces stored bet-
ter are better differentiated from (i.e., less similar to) traces of other items. In the

REM-LD model, we could assume that for both HF and LF pseudohomophones,

their corresponding word is in the activated set. However, differentiation would

mean that HF similarity would be lower than LF similarity, reflected in the b values.

To illustrate with an example, the well-stored information about BRAIN would pro-

duce relatively little confusion with BRANE, but the not-so-well stored information

about FLOTSAM would produce relatively more confusion with FLOTSUM.

8.2. Prediction of response times

Throughout this paper, we have used a lexical decision signal-to-respond para-

digm (Antos, 1979; Hintzman & Curran, 1997). In this paradigm, the variable of in-

terest is response accuracy, or more specifically the increase in classification accuracy

with processing time. For the dominant paradigm in lexical decision, however, the

variable of interest is response latency or response time (RT). In other words, in

the majority of lexical decision experiments, subjects are typically instructed to �re-
spond as quickly as possible without making errors� or �respond as quickly and ac-

curately as possible.� These instructions (henceforth �respond-when-ready�) are meant

to result in very few errors (e.g., about 5%), so that the difference in RT between var-

ious conditions is a valid indication of the differential processing demands associated

with these conditions. It is worthwhile to consider how REM-LD can be extended to

predict RTs in the respond-when-ready procedure, both because of the popularity of

this procedure, and because it is desirable for any model to be able to account for RT

as well as response accuracy.
In the REM-LD model without a priori bias, the odds ratio U equals 1 (i.e., no ev-

idence to support either the �WORD� response or the �NONWORD� response) when no
probe features have yet been compared to trace features. As probe and trace features

become available for matching, information accumulates and the odds ratio starts to

drift. Generally, the odds ratio will drift toward high values when the probe is a word,

andwill drift toward low values when the probe is a nonword. It is important, however,

to realize that the drift of the odds ratio is noisy: sometimes the odds ratio will drift

toward high or low values when the probe is a nonword or word, respectively.
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In the signal-to-respond paradigm, the evidence (i.e., the odds ratio U) is evalu-
ated at the time the system knows it has to respond (i.e., at some desired time t after
stimulus onset). In the respond-when-ready paradigm, in contrast, the system has to

decide by itself when to respond. Intuition suggests that it is desirable for a system to

respond, say, �WORD� when there is reliable evidence in support of the �WORD� re-
sponse over the alternative �NONWORD� response. Responding before reliable ev-

idence has accumulated will lead to many incorrect decisions; responding after

reliable evidence has accumulated will lead to unnecessarily slow RTs.

Theproblemofwhen tohalt processing of information anddecide has been formally

studied both in cognitive psychology and in other fields. For example, the use of an op-

timal stopping rule is important for quality control of industrial products (e.g.,

Sveshnikov, 1978, pp. 346–368). Consider the problem of assessing with some prede-

termined amount of confidence whether a batch of products is good or bad. When in-
dividual items are sampled from the batch one-by-one (and labeled after inspection to

be �defect� or �not defect�), an optimal stopping rule provides the best criterion of when

to stop sampling individual items and label the entire batch �defect� or �not defect.� The
problem of optimal stopping rules was addressed by Wald (1947) and applied to deci-

sion-making in psychology by, among others, Edwards (1965), Stone (1960), andLam-

ing (1968, 1973). The optimal stopping rule in the case of sequential sampling is given

by the probability ratio test (see also Townsend & Ashby, 1983). That is, if the proba-

bility of stimulus A or stimulus B given the data sampled up to time t is denoted by
PtðAjdataÞ and PtðBjdataÞ, respectively, the probability ratio k ¼ PtðAjdataÞ

PtðBjdataÞ gives the

strength of evidence, based on the data, in favor of A over B. At time t, if k exceeds a

preset upper bound, the response associated with stimulus A is executed. If k exceeds

a preset lower bound, the response associated with stimulus B is executed. In both

cases, the decision time equals t. When neither boundary has been reached, sampling

continues. This procedure is termed the sequential probability ratio test (SPRT) and

has been explored in some detail as a model for response time by Laming (1968, 1973).

Although the REM-LD model differs from the SPRT model in that the REM-LD
model calculates the odds ratio based on the average of 10 probe-to-trace likelihood

ratios (cf. Eq. (8)), the underlying principles are in fact identical. Hence, the most

principled method to generate RTs from the REM-LD model is to monitor how

the odds ratio U drifts over time, and respond when U reaches an upper or lower

boundary. This REM-LD model for response times would inherit many of the desir-

able properties of the SPRT approach. To name one, the SPRT model accounts for

the speed-accuracy trade-off in a straightforward way. The distance between the

upper and lower boundary for the odds ratio U corresponds to the amount of evi-
dence required to make a decision. Thus, when accuracy is stressed subjects can

move the boundaries out, requiring greater certainty (i.e., more evidence or a more

extreme odds ratio) before a choice is made. This greater certainty comes at the cost

of having to sample more information, on average, before a response can be made.

The SPRT approach suggested here is conceptually similar to modeling RTs by

means of a random walk model (or its continuous version, the diffusion process).

Under certain conditions, the SPRT model and the random walk model can even

be shown to be mathematically equivalent (for details see Thomas, 1975). The differ-
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ence between a random walk/diffusion model (e.g., Ratcliff, 1978; Ratcliff, Gomez, &

McKoon, in press) and the SPRT model is that in a random walk model the sampled

units of information are evaluated with reference to a single criterion, whereas in the

SPRT model the sampled units of information are evaluated with respect to their di-

agnosticity (cf. Link & Heath, 1975). Highly diagnostic information leads to a size-
able contribution to the decision process, whereas information that is not very

diagnostic contributes little to the decision process. In most cases there will be a very

high correlation between diagnosticity (i.e., the information that drives the SPRT

process) and the distance to a reference criterion (i.e., the information that drives

the random walk).

Because of the close relation between the SPRT model and the random walk

model, it comes as no surprise that REM-LD has much in common with Gordon�s
resonance model (Gordon, 1983) and Stone and Van Orden�s canonical random
walk model (Stone & Van Orden, 1993; other random walk models for lexical de-

cision were recently proposed by Joordens & Becker, 1997 and Joordens et al.,

2000). Recently, Ratcliff et al. (in press) provided the first quantitative fits for this

type of model for lexical decision. In the random walk models, information accu-

mulates over time. Incoming information can either support the �WORD� response
or support the �NONWORD� response, and a decision is made when the difference

in the amount of supportive evidence for the two response options reaches some

criterion value.
Random walk models can be applied to the signal-to-respond paradigm in various

ways. For instance, a decision can be based on the position of the random walk at

the time the signal-to-respond is detected (cf. Ratcliff, 1988). The system can then

go with the favored response either in a discrete all-or-none fashion (i.e., when the

position of the walk is closer to the word boundary or closer to the nonword bound-

ary respond �WORD� or �NONWORD,� respectively) or in a continuous fashion (i.e.,

the distance of the position from the neutral point corresponds to a continuous re-

sponse probability).
Thus, as in REM-LD, random walk models base their decision on an evaluation of

both positive lexical information (i.e., supporting the �WORD� response) and negative

lexical information (i.e., supporting the �NONWORD� response). With respect to un-

derlying representational assumptions we believe the REM-LD model to be poten-

tially more informative than random walk models—random walk or diffusion

models often make no representational assumptions at all. Future work involving

the SPRT model would hope to obtain the descriptive power of random walk models

without sacrificing the representational assumptions inherent in the REM framework.
9. Comparison to temporal deadline models of lexical decision

Quantitative models of lexical decision other than REM-LD have thus far not

been applied to the signal-to-respond paradigm. A discussion of how these models

can handle the results presented here is therefore to some degree speculative. In this

section we will discuss two of the most popular and widely used models: the Multiple
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Read-Out Model (MROM; Grainger & Jacobs, 1996) and the Dual Route Cascaded

model of visual word recognition and reading aloud (DRC; Coltheart et al., 2001).

The Multiple Read-Out Model (MROM; Grainger & Jacobs, 1996) and the Dual

Route Cascaded model (DRC; Coltheart et al., 2001) are similar in many ways. In

particular, both models use the same decisional mechanism to account for lexical de-
cision performance. The most characteristic aspect of this decisional mechanism is

arguably the use of a temporal deadline criterion for �NONWORD� responses. We

will first briefly outline the decisional mechanism of these temporal deadline models,

and then discuss whether and how such models can account for the observed data

from the signal-to-respond paradigm.

9.1. Decision making in temporal deadline models

MROM and DRC both assume that upon presentation of a printed word the in-

coming visual information from sub-lexical units such as letters and features gradu-

ally activates the associated word nodes. The lexical system is thought to

continuously monitor the activation levels in the word nodes. In addition, the system

also keeps track of the time that has elapsed since the stimulus appeared. A response

is made when either one of three criteria or thresholds has been exceeded. The first

criterion is a fixed criterion for the activation of a single lexical word node. When this

single unit criterion is reached by any of the word nodes, the stimulus is identified as
a specific word, and the corresponding lexical decision �WORD� is made.

Many researchers have, however, argued that under certain circumstances correct

lexical decisions can be made without such lexical access to a specific word represen-

tation and that a single unit criterion alone is not sufficient to explain lexical decision

performance. For instance, when words have to be distinguished from �easy,� not
very word-like nonwords (e.g., DJIPK), a superficial first-pass analysis of the stim-

ulus might already provide sufficient evidence for the correct response (e.g., Balota &

Chumbley, 1984, p. 352; Balota & Spieler, 1999). Such a first-pass judgment is gen-
erally said to be based on familiarity.

In order to equip MROM and DRC with a familiarity-like mechanism, the second

criterion that these models use is based on the summed lexical activation over all

word nodes. This criterion is specific to the lexical decision task, as it does not crit-

ically depend on selection of one particular word (such a selection is necessary for

successful performance in other visual word recognition tasks such as perceptual

identification). When the summed unit criterion is reached, the �WORD� response
is given. This criterion can be strategically set, depending on the list context and task
instructions. For instance, when the word and nonword stimuli are orthographically

dissimilar, and hence generate distinct overall values of familiarity (i.e., words acti-

vating the entire lexicon to a higher degree than nonwords), it is adaptive to lower

the summed unit criterion for responding based on this discriminative information.

Instructions stressing speed over accuracy are also assumed to lower the summed

unit criterion.

Finally, the third criterion provides a mechanism for generating a �NONWORD�
response. The nonword criterion takes the form of a temporal deadline criterion
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T , that is, the system defaults to the �NONWORD� response when neither the single

unit criterion nor the summed unit criterion have been reached by time T . If this
deadline criterion were to be fixed, or vary stochastically around a fixed mean value,

this would imply that nonword stimuli are always responded to at about the same

speed. However, performance for nonword stimuli shows systematic effects of list
context, effects of similarity to the word stimuli in the experiment, effects of similarity

to words in general, and effects of task instructions such as stressing speed over

accuracy. To account for these effects the temporal deadline in MROM cannot fixed

but needs to be variable (cf. Coltheart et al., 1977). As for the summed unit criterion,

the setting of the temporal deadline criterion is assumed to be under strategic

control. For instance, when the summed activation of all word nodes is high early

in processing, this constitutes evidence that the stimulus might be a word.

Consequently, the temporal deadline is extended (and the summed unit criterion is
lowered).

To summarize, when either the single or the summed unit criterion for lexical

activation is reached before the temporal deadline, a �WORD� response is made.

When the temporal deadline is reached before either of the two activation criteria,

this results in a �NONWORD� response (for an illustration see Grainger & Jacobs,

1996, Fig. 2). The flexible decision process enables the temporal deadline models to

handle a large number of phenomena in lexical decision. Specifically, MROM has

been applied to effects of neighborhood density and neighbor frequency (but see
Davis, 1999, Chapter 7, and Paap, Johansen, Chun, & Vonnahme, 2000),

and the model can also handle the frequency blocking effect (e.g., Glanzer &

Ehrenreich, 1979; Gordon, 1983; Stone & Van Orden, 1993). In addition, MROM

can account for the effect of nonword lexicality (Grainger & Jacobs, 1996, p. 529),

and for the increase in performance for nonwords when HF word stimuli are used

instead of LF stimuli (Grainger & Jacobs, 1996, Fig. 27). MROM has further been

extended to account for phonological effects (i.e., MROM-p; Jacobs, Rey, Ziegler,

& Grainger, 1998).

9.2. Application of temporal deadline models to the signal-to-respond paradigm

As mentioned earlier, in temporal deadline models such as MROM and DRC the

�NONWORD� response is a default response, given when neither of the two activa-

tion criteria (i.e., the single unit criterion and the summed unit criterion) have been

reached before the temporal deadline T . It is unclear to us what temporal deadline

models predict when the system is forced to respond before any of the three criteria
has been reached. This situation will presumably arise when subjects are forced to

respond at specific short deadlines after stimulus onset, such as those imposed by

a signal-to-respond procedure.

In the standard MROM/DRC application the temporal deadline T is set by the

subject. It is not entirely clear where to set the deadline criterion T in the signal-

to-respond procedure, but one might let T be determined by the imposed deadline

for responding, so that a �NONWORD� response would be given when neither of

the two activation criteria has been reached by the imposed deadline. However, this



364 E.-J. Wagenmakers et al. / Cognitive Psychology 48 (2004) 332–367
proposal would lead the system to display a very large bias toward the �NON-

WORD� response at the early stages of processing (i.e., when it is unlikely that either

of the activation criteria have been reached), and this is clearly not what is observed

in the data.

An approach that might overcome the large bias to respond �NONWORD� is
one in which the system adjusts the summed unit criterion as a function of process-

ing time: the summed unit criterion is set low when subjects are forced to respond

relatively fast and the criterion gradually increases as the signal-to-respond is pre-

sented later. This criterion drift reflects the expectation of the system. Even if the

stimulus is a word, it is unlikely that it would generate high levels of summed ac-

tivity immediately after stimulus onset. Although such a solution might possibly fit

the data, it should be pointed out that allowing the summed unit criterion to drift

over time adds substantial flexibility and freedom to the model. As described ear-
lier, the summed unit criterion is also adjustable with respect to stimulus variables.

The task of adjusting the summed unit criterion as a function of time and, simul-

taneously, as a function of stimulus variables would present a formidable and

delicate challenge.

In sum, we believe that temporal deadline models might be adjusted to account

for data from the signal-to-respond paradigm, but it appears to us that doing so

would involve adding additional and fairly complex processes.
10. Conclusions

We have shown that the global memory model REM, previously applied to rec-

ognition memory (Diller et al., 2001; Malmberg, Zeelenberg, & Shiffrin, in press; No-

bel & Shiffrin, 2001; Shiffrin & Steyvers, 1997), recall (Diller et al., 2001; Malmberg

& Shiffrin, in press; Nobel & Shiffrin, 2001), long-term priming in perceptual identi-

fication (Schooler et al., 2001), and short-term priming in perceptual identification
(Huber et al., 2001), can be extended in a straightforward fashion to account for sev-

eral key phenomena in a signal-to-respond lexical decision paradigm. Our simula-

tions show how the new model, REM-LD, accounts for the time course of effects

for word frequency, nonword lexicality, repetition priming, the interaction of word

frequency with both repetition priming and nonword lexicality, the effect of word

frequency on nonword classification (cf. Experiment 1), and the decrease in classifi-

cation performance for repeated nonwords (cf. Experiment 2).

The optimality-constraint as incorporated in the REM models has been shown to
provide a very useful theoretically motivated perspective on performance in a num-

ber of different memory tasks (for a �biologically plausible� interpretation of this op-

timality-constraint see Gold & Shadlen, 2001). Our ultimate goal is to construct a

principled model that is able to explain various phenomena in different memory/per-

ceptual tasks (for an overview see Shiffrin, 2003). We believe that the recent develop-

ments of the REM model, particularly including the present application to lexical

decision, constitute a promising step toward a fairly comprehensive understanding

of human memory.
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