Language and meaning

Emmanuel Chemla and Vincent Homer

Semaine de rentrée du cogmaster, 2008-2009

Semantics

Pragmatics

Semantics

Syntax

Goal of Syntax

Give systematic rules that derive whether a sentence belongs to a given (natural) language or not.

Examples

- My friend is in the garden. \checkmark (i.e. "grammatical") (1)
- My garden is in the friend. \checkmark (i.e. "grammatical") (2)
- My is the in garden friend. \mathbf{X} (i.e. "agrammatical") (3)

Semantics

Goal of Semantics

Give systematic rules that derive the **truth conditions** of every sentence from

- the meaning of its parts (lexicon);
- the way they are put together (syntax).

\rightarrow Compositionality

Example

- (4) All the objects in the box are red circles.
 - ► Situation 1:
 - ► Situation 2:

Specifying truth-conditions

First option

- $\mathsf{B}=\mathsf{set}$ of the objects in the box; $\mathsf{C}=\mathsf{set}$ of circles
- (5) a. All the objects in the box are circles. $\forall x, x \in B \rightarrow x \in C$
 - b. Some of the objects in the box are circles. $\exists x, x \in B \cap C$

But we want to compute meanings "compositionally"

(6) **Q** (A, B)
a. **Q**_{all} (..., ...) = ...
$$\subseteq$$
 ...
b. **Q**_{some}(..., ...) = ... \cap ... $\neq \emptyset$

c. $Q_{most}(..., ...) = ??$

Semantics: derived notions

Entailment:

 \triangleright S_1 entails S_2 if

every conceivable situation in which S_1 is true is a situation in which S_2 is true.

▶ Test: S_1 entails S_2 if S_1 and not S_2 is a contradiction.

Contradiction in language: Gajewski (2002)

Asymmetrical entailments:

 S_1 entails $S_2, \mbox{ and } S_2$ doesn't entail $S_1.$

Entailment and monotonicity

S₁ entails **S**₂

- (7) S₁: All the objects in the box are red circles.S₂: All the objects in the box are circles.
 - ▶ More generally: if C1⊆C2, $Q_{all}(B,C1) \rightarrow Q_{all}(B,C2)$
 - ▶ 'All' is monotone increasing in its second argument

S₂ entails **S**₁

- (8) S₁: All the red objects in the box are circles.S₂: All the objects in the box are circles.
 - ▶ More generally: if B1⊆B2, $Q_{all}(B1,C) \leftarrow Q_{all}(B2,C)$
 - ▶ 'All' is monotone decreasing in its first argument

Negative polarity items

- (9) a. * All the students will read any book.
 - b. All the students who read any book will pass.
 - c. * John read any book.
 - d. John didn't read any book.
 - ▶ NPIs: any, ever, le moindre, lever le petit doigt...

What's surprising about it

► Complicated properties are used online in everyday language

Monotonicity inferences: Geurts et al. (2005)

NPIs and inferences: Szabolcsi et al. (2002)

▶ Purely semantic properties have an effect on grammaticality

Pragmatics

The letter of recommendation

Imagine the following letter of recommendation:

(10)

Dear colleague, Mr. Smith is unfailingly polite and neatly dressed at all times. Sincerely yours, Harry H. Jones

Implicature: Smith is not a good candidate.

Derivation of this inference

The professor is supposed to mention the most positive features

- \longrightarrow The features mentioned are Smith' most positive features
- \longrightarrow Smith is a bad student

The letter of recommendation

This is not an entailment

- Application to a position which mainly requires to be "polite and neatly dressed"
- (i.e. there is a conceivable situation in which S_1 is true but not S_2 .)
- Explicit cancellation (i.e. S_1 and not S_2)
- (11)

Dear colleague,

Mr. Smith is unfailingly polite and neatly dressed at all times. But these are only his most superficial qualities. Mr. Smith is definitely a good student, even an excellent one. Sincerely yours, Harry H. Jones

Note on multiplicatures

Geurts, B. (2006). Implicatures without propositions.

More examples

(12) Can you pass the salt? Implicature: I want you to pass the salt.

Autism: Happé (1991), Mitchell et al. (1997)

(13) - Does Smith have a girlfriend these days?
 - He has been paying a lot of visits to New York lately.
 Implicature: Smith has a girlfriend in New York.

Entailments vs. Implicatures

Difference 1:

Entailments follow from what is linguistically encoded. Implicatures do not.

Difference 2:

Entailments satisfy the following test. Implicatures do not.

► To check whether S₁ entails S₂, check whether in every conceivable situation in which it is true that S₁, it is true that S₂.
■ Difference 2:

Difference 3:

Implicatures can be cancelled. Entailments cannot be.

Scalar implicatures

Examples

Three possibilities

Hypothesis 1: 'some of' means 'some but not all'

- ▶ i.e. the inference 'not all' is an entailment.
- Hypothesis 2: 'some of' is ambiguous
 - \rightarrow Find arguments against hypotheses 1 and 2!

Hypothesis 3: Scalar implicatures

- (17) John read **some of** the books.
 - Alternative: John read all the books.
 - ► The speaker said SOME.
 - ► If the speaker believed ALL it would have been more cooperative to utter this one (ALL asymmetrically entails SOME).
 - ▶ The speaker doesn't believe that John read all the books.

Scalar implicatures: why do we like this hypothesis?

- 1. It makes (good) predictions for any sentence containing some, no matter its complexity
 - (18) Every student read **some of** the books.
 - (19) Every student who read some of the books will succeed.
- 2. Scale reversal: predictions for some but also for all
- (20) It's not true that John read all the books.Alternative: It's not true that John read some of the books.
 - \longrightarrow The alternative is stronger, hence an implicature.
- 3. Quite general: many sets of competing items

 $\langle some, all \rangle$, $\langle or, and \rangle$, $\langle certain, possible \rangle$, $\langle warm, hot, boiling \rangle$, $\langle like, love, adore \rangle$, $\langle okay, good, excellent \rangle$, $\langle 1,2,3... \rangle$, contextually defined scales...

Scalar implicatures

Pragmatic inferences

due to competition between potential utterances

determined by scales in which lexical items enter.

Experimental data

- ▶ Acquisition: late (6 y-o), unless the competition is salient.
- ▶ Processing: derivation is costly.

Wrap up

- Meaning = truth-conditions
- Compositionality
- Formal descriptions
 - abstract properties
 - concrete consequences
- Beyond semantics
- Psycholinguistic investigations