Computational Neuroscience Introduction Day

- 9.30am Introduction (C.Machens)
- IOam MI (C.Machens)
- I0.I5am M2 (V. Hakim)
- 10.40 break
- I I. 00 Matching Law (S. Deneve)
- I I. 20 Rescorla-Wagner Learning (C. Machens)
- II. 40 Reinforcement Learning (J.-P. Nadal)
- 12.00-14.00 Lunch break + paper reading
- I4.00 Student presentations

Computational Neuroscience: How does the brain work?

Christian Machens
 Group for Neural Theory Ecole normale supérieure Paris

What's the brain good for?

What's the brain good for?

Tree
no neurons
C. elegans 302 neurons
brains generate motion
(= behavior)

What's the brain good for?

no neurons


```
C. elegans 302 neurons
```

Fly
I 000000
more complex brains generate a greater variety of behaviors

What's the brain good for?

no neurons

more complex brains generate a greater variety of behaviors
more complex brains can learn more behaviors

What's the brain made of?

What's the brain made of?

$100 \mu \mathrm{~m}$

What's the brain made of?

What's the brain made of?

A physics/engineering approach

 Just rebuild the whole thingThe quest for mechanisms:

Constructing systems from parts

The quest for mechanisms:

Constructing systems from parts

Biophysics of the membrane voltage:

 The Hodgkin-Huxley Model

个voltage

Reconstructing neurons:

 Ralls' cable theory and compartmental modeling

Detailed compartmental models of single neurons:
Large-scale differential equation models

Reconstructing neurons

 Simulating the membrane potential

The quest for mechanisms:

Constructing systems from parts

Reconstructing circuits
 Electron microscopy and brute-force simulations

Reconstructing circuits Electron microscopy and brute-force simulations

Scan brain slices and reconstruct the circuit..."connectonomics"
H. Markram (Lausanne): "blue-brain project"
B. Sakmann/W. Denk (Heidelberg) J. Lichtman (Harvard) H.S. Seung (MIT)
but: the devil is in the details and when it comes to connectivity, details matter!

Theory of neural networks

Neurons, synapses
\Rightarrow network activity

$$
\dot{r}_{i}=-r_{i}+f\left(\sum_{j=1}^{N} w_{i j} r_{j}+I_{i}\right)
$$

Network dynamics
 largely determined by connectivity

$\dot{r}_{i}=-r_{i}+f\left(\sum_{j=1}^{N} w_{i j} r_{j}+I_{i}\right)$
Possible dynamics:

- stable/ unstable fixed points
- limit cycles
- chaotic attractors

Note: different attractors can co-exist
 in different parts of the state space!

For $N \rightarrow \infty$

- neural networks can compute anything

(Statistical) theory of neural networks

Neurons, synapses
 network activity

Under what conditions do you get

- only fixed points
- synchronous activity
- asynchronous activity
- Poisson spike trains
- oscillations
- spatial patterns

The quest for mechanisms:

Constructing systems from parts

Connectionist models:

From networks to behavior

A computer science approach

Study the computational problems

Computation:

manipulating information

Normal Hearing

Representation of information, more or less lossy

Example music: sheet notes

Sound

CD

Language

Why represent information differently?

Example numbers:

XXIII
23
00010111

Roman System
Decimal System
Binary System

Representations make information explicit

Example numbers:

XXIII
23
00010111
mixed decomposition
powers of 10
powers of 2

Can you divide this number by 10 ?

Decimal System

Representations make information explicit

Example numbers:

XXIII
23
00010111
mixed decomposition
powers of 10
powers of 2

Can you divide this number by 10 ?

$$
\begin{aligned}
& C \\
& 100 \\
& 01100100
\end{aligned}
$$

Roman System
Decimal System
Binary System

Representations allow for easier algorithms

Example numbers:

XXIII
23
00010111

in ...?
in multiples of 10
in multiples of 2

Can you add these numbers?

$$
\begin{array}{rrr}
29 & 00011101 & \text { XXIX } \\
+33 & +00100001 & + \text { XXXIII }
\end{array}
$$

Representations allow for easier algorithms

Example numbers:

XXIII
23
00010111

in ...?
in multiples of 10
in multiples of 2

Can you add these numbers?

29	00011101	XXIX
+33	+00100001	+ XXXIII
--------------1		

Representations allow for easier algorithms

Example numbers:

XXIII
23
00010111

in ...?
in multiples of 10
in multiples of 2

Can you add these numbers?

29	00011101	XXIX
+33	+00100001	+ XXXIII
------------1		

Representations can ease certain computations

Example numbers:

XXIII
23
00010111

in ...?
in multiples of 10
in multiples of 2

Can you add these numbers?

Most famous example:

"edge detectors" in visual system

Stimulus:
black bar

Hend

Activity of a neuron in VI

Another famous example: Place cells in the hippocampus

Studying representations in the brain

Experimental work

- perceptual representations: vision, audition, olfaction, etc.
- representation of motor variables
- "higher-order" representations:
decisions
short-term memory
rewards
dreams
uncertainty
... you name it ...

Theoretical work

- Quantifying information content quest for the neural code, information theory, discriminability, ...
- Understanding the computational problems: object recognition, sound recognition, reward maximization

What we understand now

very little

What we understand now

very little

What we need

- biologists
- psychologists

- to probe the brains of animals and humans
- to design and carry out clever experiments
- to investigate and quantify human and animal behavior

What we need

- physicists, computer scientists, engineers, etc.

$$
\begin{aligned}
& \dot{r}_{1}=-r_{1}+f\left(\sum_{j=1}^{N} w_{1 j} r_{j}+E_{1}\right) \\
& \dot{r}_{2}=-r_{2}+f\left(\sum_{j=1}^{N} w_{2 j} r_{j}+E_{2}\right)
\end{aligned}
$$

- to formulate mathematical theories of information processing
- to create biophysical models of neural networks

Teaching in the Cogmaster

Computational Neuroscience

Core Classes

MI/SI
MI/S2 CO6 Introduction to Comput. Neuroscience AT2 Atelier Comput. Neuroscience

M2/SI CA6 Theoretical Neuroscience
XXX Seminar in Quantitative Neuroscience
M2/S2 YYY Research Seminar

L3/MI
 Introduction aux neurosciences computationnels

Christian Machens

Neurons

- Membrane voltage
- Action potentials
- Computations

Networks

- Attractors
- Associative memory
- Decision-making
- Sensory processing

Behavior

- Psychophysics
- Reinforcement Learning
- Neuroeconomics

L3/MI
 Introduction aux neurosciences computationnels

Christian Machens

What you need

- Basic math skills,

High-School Level
(ask if you are uncertain!)

S2, Wed, I7-I9

$$
\begin{aligned}
& \dot{r}_{1}=-r_{1}+f\left(\sum_{j=1}^{N} w_{1 j} r_{j}+E_{1}\right) \\
& \dot{r}_{2}=-r_{2}+f\left(\sum_{j=1}^{N} w_{2 j} r_{j}+E_{2}\right)
\end{aligned}
$$

What you get
Validation

- Foundations of Comp Neurosci - I00\% exam
- 4 ECTS

L3/MI
 AT2
 Atelier théorique neuromodélisation

Christian Machens

What you need

- Basic math skills

High School Level

What you get

S2, Tue, I0-I 2

Validation

- Putting models into the computer! - 100% course exercises
- 4 ECTS

MIM2 Seminar / Journal Club Quantitative Neuroscience

Rava da Silveira,Vincent Hakim, Christian Machens

S3, Tue, I 5.30-I7 Start: Sep 30th

What you need

- Basic knowledge of computational neuroscience (ask if you are uncertain!)

What you get

- Learn about recent research
- Learn how to give a talk
- 3 ECTS

Validation

- 50\% talk
- 50 \% course participation

Theoretical Neuroscience

Rava da Silveira,Vincent Hakim, Nicolas Brunel, Jean-Pierre Nadal

If you are looking for more classes with a computational twist, contact us!

- CO8 Rational Decision Theory
- Computational Neuroscience
(Single Cell Modeling) Romain Brette
- Statistical Learning Theory (Gerard Dreyfus)
etc. etc.

Computational Neuroscience Research in the Cogmaster and Beyond

ENS: Group for Neural Theory
(Sophie Deneve, Christian Machens, ...)
ENS: Laboratoire de Physique Statistique
(Jean-Pierre Nadal,Vincent Hakim ...)
Paris V: Laboratoire de Neurophysique et Physiologie
(Nicolas Brunel, ...)
you can find more labs under:
http://cogmaster.net http://neurocomp.risc.cnrs.fr
for internship / stages / Master's thesis: contact the faculty! (email etc.)

