Computational Neuroscience Introduction Day

- 9.30am Introduction (C.Machens)
- I0am MI (C.Machens)
- 10.15am M2 (V. Hakim)
- 10.40 break
- 11.00 Matching Law (S. Deneve)
- 11.20 Rescorla-Wagner Learning (C. Machens)
- II.40 Reinforcement Learning (J.-P. Nadal)
- 12.00-14.00 Lunch break + paper reading
- 14.00 Student presentations

Computational Neuroscience: How does the brain work?

Christian Machens Group for Neural Theory Ecole normale supérieure Paris

Tree no neurons

Tree no neurons

C. elegans 302 neurons

brains generate motion (= behavior)

	Iree	
no	neurons	

Fly

000 000

£.	
	no neurons
	C. elegans
	302 neurons
	Fly I 000 000
	Rat
F	1 000 000 000
	Human
	100 000 000 000

Tree

more complex brains can learn more behaviors

A physics/engineering approach

Just rebuild the whole thing

The quest for mechanisms: Constructing systems from parts

The quest for mechanisms: Constructing systems from parts

Biophysics of the membrane voltage: The Hodgkin-Huxley Model

Ralls' cable theory and compartmental modeling

Detailed compartmental models of single neurons: Large-scale differential equation models

Reconstructing neurons

Simulating the membrane potential

Llinas & Sugimori (1980)

The quest for mechanisms: Constructing systems from parts

Reconstructing circuits Electron microscopy and brute-force simulations

courtesy of W.Denk

Reconstructing circuits Electron microscopy and brute-force simulations

Scan brain slices and reconstruct the circuit... "connectonomics"

H. Markram (Lausanne):"blue-brain project"B. Sakmann/ W. Denk (Heidelberg)J. Lichtman (Harvard)H.S. Seung (MIT)

but: the devil is in the details and when it comes to connectivity, details matter!

Theory of neural networks

Neurons, synapses hetwork activity

$$\dot{r}_i = -r_i + f(\sum_{j=1}^N w_{ij}r_j + I_i)$$

Network dynamics largely determined by connectivity $\dot{r}_i = -r_i + f(\sum_{j=1}^N w_{ij}r_j + I_i)$

Possible dynamics:

- stable/ unstable fixed points
- limit cycles
- chaotic attractors

Note: different attractors can co-exist in different parts of the state space!

For $N \to \infty$

- neural networks can compute anything

(Statistical) theory of neural networks

Neurons, synapses

network activity

Under what conditions do you get

- only fixed points
- synchronous activity
- asynchronous activity
- Poisson spike trains
- oscillations
- spatial patterns
- ...

The quest for mechanisms: Constructing systems from parts

Connectionist models: From networks to behavior

A computer science approach

Study the computational problems

Computation: manipulating information

Representation of information, more or less lossy

Language

The other day, I heard this cool jazz CD with this drummer...

Why represent information differently?

Example numbers:

XXIII 23 00010111 Roman System Decimal System Binary System Representations make information explicit

Example numbers:

XXIII	mixed decomposition
23	powers of 10
00010111	powers of 2

Can you divide this number by 10?

100 Decimal System

Representations make information explicit

Example numbers:

XXIII	mixed decomposition
23	powers of 10
00010111	powers of 2

Can you divide this number by 10? C Roman System 100 Decimal System 01100100 Binary System Representations allow for easier algorithms

Example numbers:

XXIIIin ...?23in multiples of 1000010111in multiples of 2

Can you add these numbers?

29	00011101	XXIX
+ 33	+ 00100001	+ XXXIII

Representations allow for easier algorithms

Example numbers:

XXIIIin ...?23in multiples of 1000010111in multiples of 2

Can you add these numbers?

XXIX	00011101	29
+ XXXIII	+ 00100001	+ 33
		62

Representations allow for easier algorithms

Example numbers:

XXIIIin ...?23in multiples of 1000010111in multiples of 2

Can you add these numbers?

XXIX	00011101	29
+ XXXIII	+ 00100001	+ 33
	00111110	62

Representations can ease certain computations

Example numbers:

XXIII	in?
23	in multiples of 10
00010111	in multiples of 2

Most famous example: "edge detectors" in visual system

black bar

Activity of a neuron in VI

В

Another famous example: Place cells in the hippocampus

Studying representations in the brain

Experimental work

- perceptual representations: vision, audition, olfaction, etc.
- representation of motor variables
- "higher-order" representations: decisions
 - short-term memory
 - rewards
 - dreams
 - uncertainty
 - ... you name it ...

Theoretical work

- Quantifying information content quest for the neural code, information theory, discriminability, ...
- Understanding the computational problems: object recognition, sound recognition, reward maximization

What we understand now

very little

What we understand now

very little

What we need

- biologists
- psychologists

- to probe the brains of animals and humans
- to design and carry out clever experiments
- to investigate and quantify human and animal behavior

What we need

• physicists, computer scientists, engineers, etc.

- to formulate mathematical theories of information processing
- to create biophysical models of neural networks

Teaching in the Cogmaster

Computational Neuroscience

Core Classes

MI/SI

MI/S2 <u>CO6</u> Introduction to Comput. Neuroscience <u>AT2</u> Atelier Comput. Neuroscience

M2/SI <u>CA6</u> Theoretical Neuroscience <u>XXX</u> Seminar in Quantitative Neuroscience

M2/S2 YYY Research Seminar

L3/MI Introduction aux CO6 neurosciences computationnels

Christian Machens

S2, Wed, 17-19

Neurons

- Membrane voltage
- Action potentials
- Computations

Networks

- Attractors
- Associative memory
- Decision-making
- Sensory processing

Behavior

- Psychophysics
- Reinforcement Learning
- Neuroeconomics

L3/MI Introduction aux CO6 neurosciences computationnels

Christian Machens

S2, Wed, 17-19

What you need

Basic math skills,
 High-School Level

 (ask if you are uncertain!)

What you get Validation

- Foundations of Comp Neurosci 100% exam
- 4 ECTS

L3/MI AT2

Atelier théorique neuromodélisation

Christian Machens

S2, Tue, 10-12

What you need

Basic math skills High School Level

What you get

Validation

- Putting models into the computer!
 I00% course exercises
- 4 ECTS

MI/M2 Seminar / Journal Club Quantitative Neuroscience

Rava da Silveira, Vincent Hakim, Christian Machens

<section-header><section-header>

S3, Tue, 15.30-17 Start: Sep 30th

What you need

 Basic knowledge of computational neuroscience (ask if you are uncertain!)

What you get

- Learn about recent research
- Learn how to give a talk
- 3 ECTS

Validation

- 50% talk
- 50 % course participation

Talks in French or English

MI/M2 CA6 Theoretical Neuroscience

Rava da Silveira, Vincent Hakim, Nicolas Brunel, Jean-Pierre Nadal

If you are looking for more classes with a computational twist, contact us!

- CO8 Rational Decision Theory
- Computational Neuroscience (Single Cell Modeling) Romain Brette
- Statistical Learning Theory (Gerard Dreyfus)

etc. etc.

Computational Neuroscience Research in the Cogmaster and Beyond

ENS: Group for Neural Theory (Sophie Deneve, Christian Machens, ...)
ENS: Laboratoire de Physique Statistique (Jean-Pierre Nadal, Vincent Hakim ...)
Paris V: Laboratoire de Neurophysique et Physiologie (Nicolas Brunel, ...)

you can find more labs under:

http://cogmaster.net http://neurocomp.risc.cnrs.fr

for internship / stages / Master's thesis: contact the faculty! (email etc.)