The Rescorla-Wagner learning rule

Christian Machens
Group for Neural Theory
Ecole normale supérieure Paris
Classical conditioning a la Pavlov
Classical conditioning

1. food \rightarrow salivation

2. sound \rightarrow no salivation

3. sound \rightarrow food \rightarrow salivation

4. sound \rightarrow salivation
Extinction

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>sound</td>
<td>food</td>
</tr>
<tr>
<td>2.</td>
<td>sound</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>sound</td>
<td>no food</td>
</tr>
<tr>
<td>4.</td>
<td>sound</td>
<td></td>
</tr>
</tbody>
</table>
What does the dog want?

Assume: The dog wants to be able to predict the reward!

\[u_i \text{ stimulus in trial } i: \ u_i = 0 \ \text{ or } \ u_i = 1 \]
\[r_i \text{ reward in trial } i: \ r_i = 0 \ \text{ or } \ r_i = 1 \]
\[\nu_i \text{ reward that the dog expects in trial } i \]
What does the dog learn?

Assume: The dog wants to be able to predict the reward!

\[u_i \quad \text{stimulus in trial } i: \quad u_i = 0 \quad \text{or} \quad u_i = 1 \]

\[r_i \quad \text{reward in trial } i: \quad r_i = 0 \quad \text{or} \quad r_i = 1 \]

\[v_i \quad \text{reward that the dog expects in trial } i \]

Assume: The dog learns to minimize a “loss” function:

\[L = \sum_{i=1}^{N} (r_i - v_i)^2 \]
What does the dog learn?

Assume: The dog wants to be able to predict the reward!

- u_i: stimulus in trial i: $u_i = 0$ or $u_i = 1$
- r_i: reward in trial i: $r_i = 0$ or $r_i = 1$
- v_i: reward that the dog expects in trial i

Assume: The dog learns to minimize a “loss” function:

$$L = \sum_{i=1}^{N} (r_i - v_i)^2$$

Assume:

dog’s model of the world

$$v_i = w u_i$$
What does the dog learn?

Assume: The dog wants to be able to predict the reward!

- u_i stimulus in trial i: $u_i = 0$ or $u_i = 1$
- r_i reward in trial i: $r_i = 0$ or $r_i = 1$
- v_i reward that the dog expects in trial i

Assume: The dog learns to minimize a “loss” function:

$$L = \sum_{i=1}^{N} (r_i - v_i)^2$$

Assume: The dog’s model of the world parameter that the dog needs to learn from observations
What does the dog learn?

Assume: The dog wants to be able to predict the reward!

- stimulus in trial i: $u_i = 0$ or $u_i = 1$
- reward in trial i: $r_i = 0$ or $r_i = 1$
- reward that the dog expects in trial i: v_i

Assume: The dog learns to minimize a “loss” function:

$$ L = \sum_{i=1}^{N} (r_i - v_i)^2 $$

$v_i = wu_i$

“Loss” in the i-th trial:

$$ L_i = (r_i - wu_i)^2 $$
How should the dog adopt its world model?

“Loss” in the i-th trial:

\[L_i = (r_i - w u_i)^2 \]

Update parameter w to decrease loss!

\[w \rightarrow w - \epsilon \frac{d}{dw} L_i \]
How should the dog adopt its world model?

$$\frac{d}{dw} L_i = \frac{d}{dw} (r_i - w u_i)^2$$

Update parameter w to decrease loss!

$$w \rightarrow w - \epsilon \frac{d}{dw} L_i$$
How should the dog adopt its world model?

\[
\frac{d}{dw} L_i = \frac{d}{dw} (r_i - w u_i)^2 = -2 u_i (r_i - w u_i)
\]

Update parameter \(w \) to decrease loss!

\[
w \to w - \epsilon \frac{d}{dw} L_i
\]
How should the dog adopt its world model?

\[
\frac{d}{dw} L_i = \frac{d}{dw} (r_i - wu_i)^2
\]

\[
= -2u_i (r_i - wu_i)
\]

\[
= -2u_i \delta_i
\]

\[
\delta_i = r_i - uw_i = r_i - v_i
\]

“prediction error”

Update parameter \(w \) to decrease loss!

\[
w \rightarrow w - \epsilon \frac{d}{dw} L_i
\]
Minimizing the loss function

Minimize loss function (≈ maximize ability to predict reward)

\[
\frac{d}{dw} L_i = \frac{d}{dw} (r_i - wu_i)^2
\]

\[
= -2u_i(r_i - wu_i)
\]

\[
= -2u_i \delta_i
\]

“Rescorla-Wagner”-rule

\[
w \rightarrow w + \epsilon \delta_i u_i
\]

\[
\delta_i = r_i - uw_i = r_i - v_i
\]

“prediction error”
Rescorla-Wagner rule: Conditioning and extinction

stimulus + reward (CS + US)

\(u_i = 1 \quad r_i = 1 \)

stimulus (CS)

\(u_i = 1 \quad r_i = 0 \)

\(v_i = w u_i \)

\(v_i = w u_i \)
Rabbit eye blinking: Conditioning and extinction

Schneiderman et al, Science, 1962
Classical conditioning: blocking

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>training</td>
<td>sound</td>
<td>food</td>
<td>salivation</td>
<td>no salivation</td>
</tr>
<tr>
<td>clapping</td>
<td>sound</td>
<td>food</td>
<td>salivation</td>
<td>no salivation</td>
</tr>
<tr>
<td>sound</td>
<td>food</td>
<td>salivation</td>
<td>salivation</td>
<td>no salivation</td>
</tr>
</tbody>
</table>
Reward prediction with multiple stimuli: vectorized Rescorla-Wagner rule

Simple linear model (i-th trial)

\[v_i = w \cdot u_i \]

Expected reward
Weight vector
Stimulus vector

“Rescorla-Wagner”-rule

\[w \rightarrow w + \epsilon \delta u_i \]

\[\delta = r_i - v_i \]

“prediction error”
Classical conditioning: blocking

\[v_i = w \cdot u_i \]

\[w \rightarrow w + \epsilon \delta u_i \]
<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>sound → food → salivation</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>clapping → food → salivation</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>light, sound → salivation disappears</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>clapping → salivation</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>light, clapping → reduced salivation</td>
<td></td>
</tr>
</tbody>
</table>
Classical conditioning:
inhibitory conditioning
Secondary conditioning

1. sound \rightarrow food \rightarrow salivation
2. clapping \rightarrow sound \rightarrow food \rightarrow salivation
3. sound \rightarrow salivation
4. clapping \rightarrow salivation

\rightarrow cannot be explained by Rescorla-Wagner ...