The Rescorla-Wagner learning rule

Christian Machens Group for Neural Theory Ecole normale supérieure Paris

Classical conditioning a la Pavlov

Classical conditioning

Extinction

What does the dog want?

Assume: The dog wants to be able to predict the reward!

- u_i stimulus in trial i: $u_i = 0$ or $u_i = 1$
- r_i reward in trial i: $r_i = 0$ or $r_i = 1$
- v_i reward that the dog expects in trial i

Assume: The dog wants to be able to predict the reward!

 u_i stimulus in trial i: $u_i = 0$ or $u_i = 1$

 r_i reward in trial i: $r_i = 0$ or $r_i = 1$

 v_i reward that the dog expects in trial i

Assume: The dog learns to minimize a "loss" function: $L = \sum_{i=1}^{N} (r_i - v_i)^2$

i=1

Assume: The dog wants to be able to predict the reward!

 u_i stimulus in trial i: $u_i = 0$ or $u_i = 1$

 r_i reward in trial i: $r_i = 0$ or $r_i = 1$

 v_i reward that the dog expects in trial i

Assume: The dog learns to minimize a "loss" function:

$$L = \sum_{i=1}^{N} (r_i - v_i)^2$$

 \mathcal{N}

Assume: dog's model $v_i = wu_i$ of the world

Assume: The dog wants to be able to predict the reward!

 u_i stimulus in trial i: $u_i = 0$ or $u_i = 1$

- r_i reward in trial i: $r_i = 0$ or $r_i = 1$
- v_i reward that the dog expects in trial i

Assume: The dog learns to minimize a "loss" function:

$$L = \sum_{i=1}^{N} (r_i - v_i)^2$$

 \mathcal{N}

 $v_i = w_i$

Assume: dog's model of the world

parameter that the dog needs to learn from observations

Assume: The dog wants to be able to predict the reward!

 u_i stimulus in trial i: $u_i = 0$ or $u_i = 1$

 r_i reward in trial i: $r_i = 0$ or $r_i = 1$

 v_i reward that the dog expects in trial i

Assume: The dog learns to minimize a "loss" function:

$$L = \sum_{i=1}^{N} (r_i - v_i)^2$$

$$v_i = wu_i$$
"Loss" in the i-th trial:

$$L_i = (r_i - wu_i)^2$$

$$\int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \int_{0}^{1}$$

How should the dog adopt its world model?

"Loss" in the i-th trial:

 $L_i = (r_i - wu_i)^2$

Update parameter w to decrease loss!

How should the dog adopt its world model?

How should the dog adopt its world model?

$$\frac{d}{dw}L_i = \frac{d}{dw}(r_i - wu_i)^2$$
$$= -2u_i(r_i - wu_i)$$

Update parameter w to decrease loss!

How should the dog adopt its world model?

$$\begin{aligned} \frac{d}{dw}L_i &= \frac{d}{dw}(r_i - wu_i)^2 \\ &= -2u_i(r_i - wu_i) \\ &= -2u_i\delta_i \\ & \delta_i = r_i - uw_i = r_i - v_i \\ & \text{``prediction error''} \end{aligned}$$

Update parameter w to decrease loss!

7

Minimizing the loss function

Minimize loss function (= maximize ability to predict reward)

$$\frac{d}{dw}L_{i} = \frac{d}{dw}(r_{i} - wu_{i})^{2}$$

$$= -2u_{i}(r_{i} - wu_{i})$$

$$= -2u_{i}\delta_{i}$$

$$\delta_{i} = r_{i} - uw_{i} = r_{i} - v_{i}$$
"prediction error"
$$b_{i} = v_{i} - v_{i}$$
"prediction error"
$$\int_{0}^{1} \frac{d}{dw}L_{i}$$
weight w

Rescorla-Wagner rule: Conditioning and extinction

Rabbit eye blinking: Conditioning and extinction

Schneiderman et al, Science, 1962

Classical conditioning: blocking

Reward prediction with multiple stimuli: vectorized Rescorla-Wagner rule

"Rescorla-Wagner"-rule $\mathbf{w} \rightarrow \mathbf{w} + \epsilon \delta \mathbf{u}_i$

$$\begin{split} \delta &= r_i - v_i \\ \text{``prediction error''} \end{split}$$

Classical conditioning: blocking

 $v_i = \mathbf{w} \cdot \mathbf{u}_i \qquad \mathbf{w} \to \mathbf{w} + \epsilon \delta \mathbf{u}_i$

Inhibitory conditioning

Classical conditioning: inhibitory conditioning

Secondary conditioning

cannot be explained by Rescorla-Wagner ...