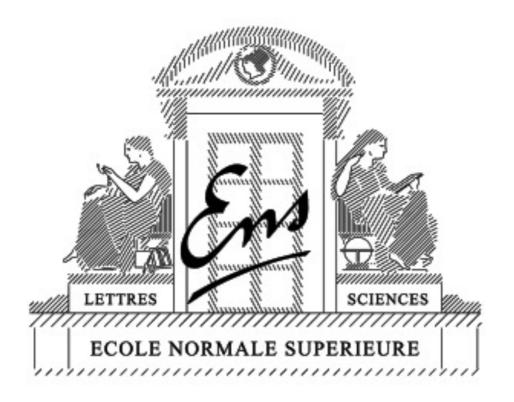
Computational Neuroscience Introduction Day

- 14.00 Introduction
- 14.30 Computational Neuroscience Groups in Paris
- 15.00 Discussion of papers in groups: Questions
- 15.45 Discussion of papers in groups: Answers
- 16.30 Presentation of Answers

A brief introduction to Computational Neuroscience

Christian Machens
Group for Neural Theory
Ecole normale supérieure Paris



Tree no neurons

Tree no neurons

C. elegans 302 neurons

brains generate motion (= behavior)

Tree no neurons

C. elegans 302 neurons

Fly I 000 000 more complex brains generate a greater variety of behaviors

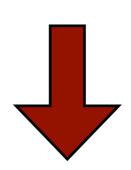
Tree no neurons

C. elegans 302 neurons

Fly I 000 000

Rat I 000 000 000

Human 100 000 000 000

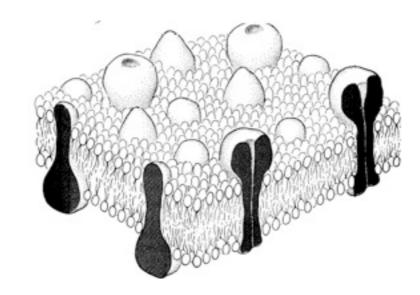


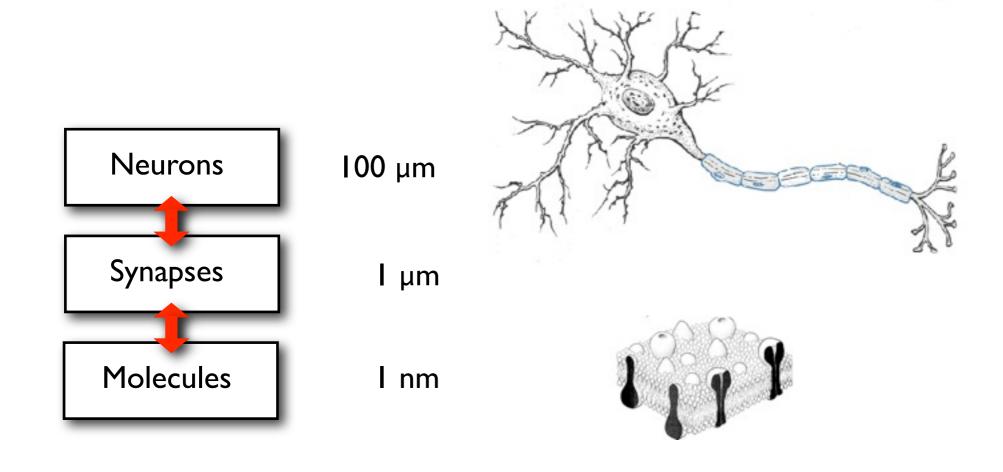
more complex brains generate a greater variety of behaviors

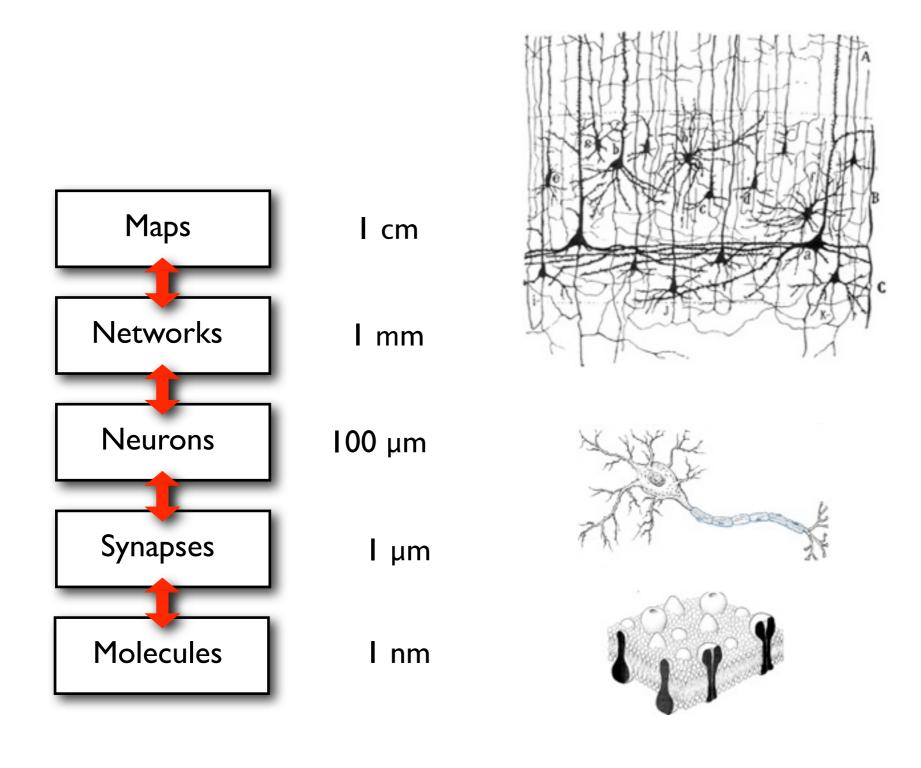
more complex brains can learn more behaviors

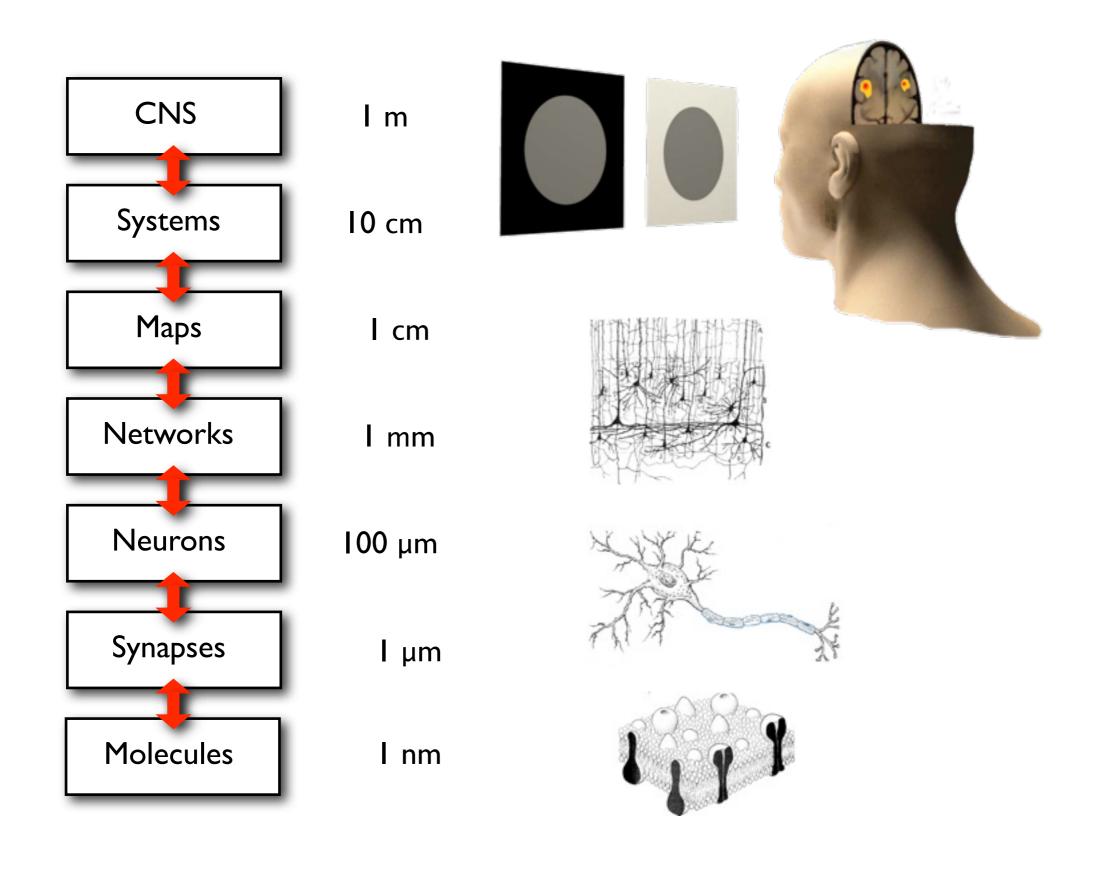
Molecules

I nm







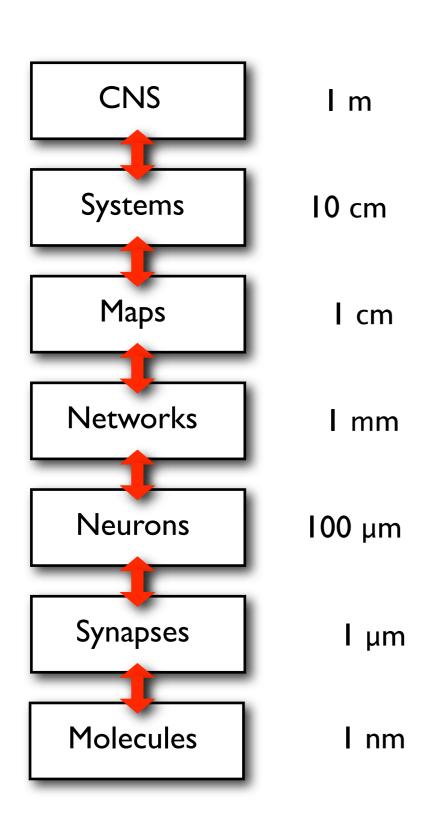


How does the brain work?

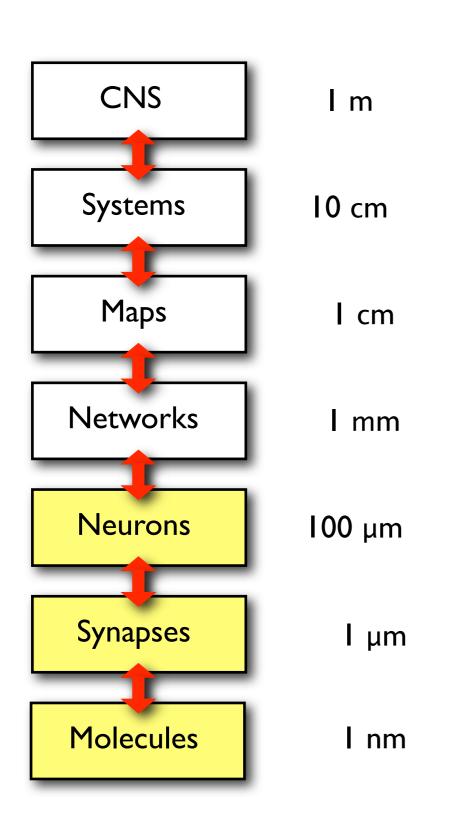
A physics/engineering approach

Just rebuild the whole thing

The quest for mechanisms: Constructing systems from parts

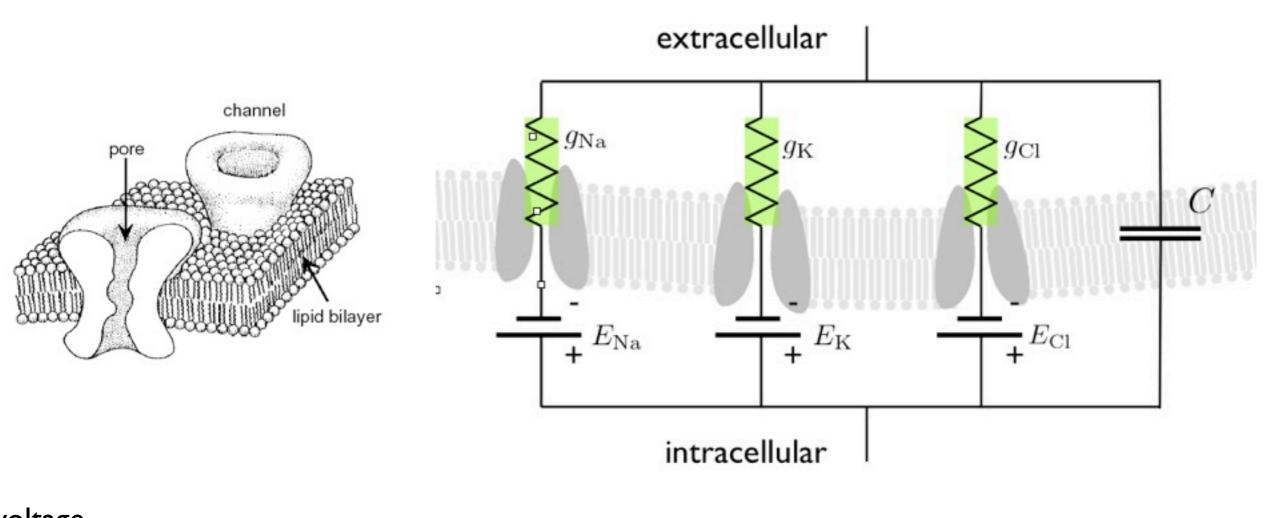


The quest for mechanisms: Constructing systems from parts



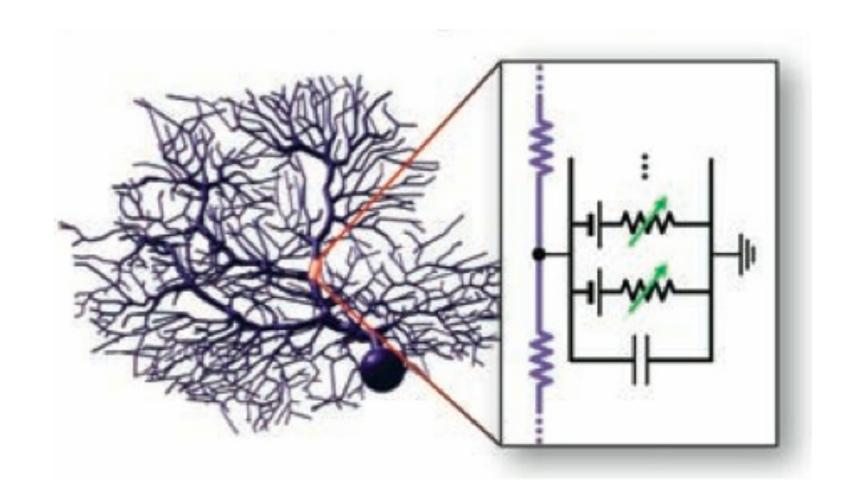
Biophysics of the membrane voltage:

The Hodgkin-Huxley Model



Reconstructing neurons:

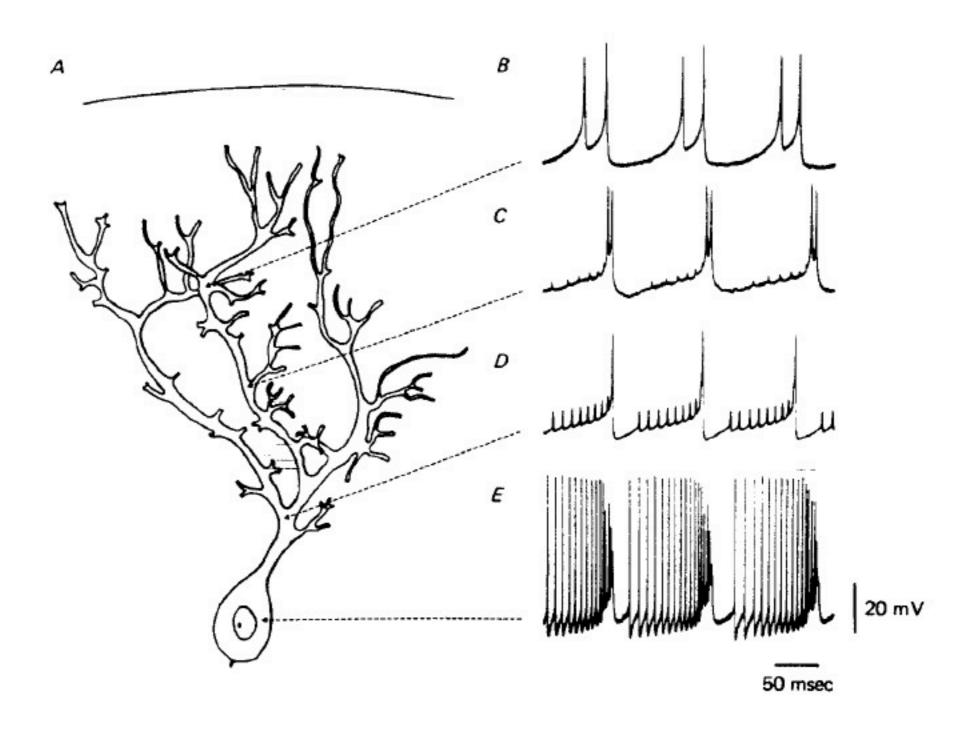
Ralls' cable theory and compartmental modeling



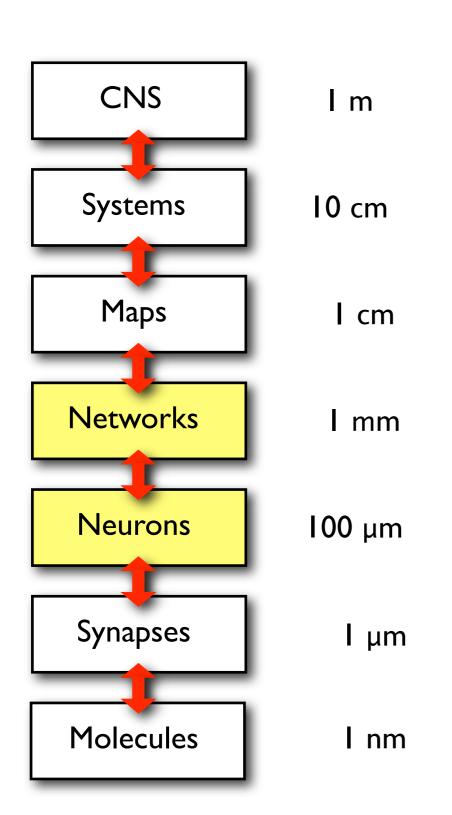
Detailed compartmental models of single neurons: Large-scale differential equation models

Reconstructing neurons

Simulating the membrane potential

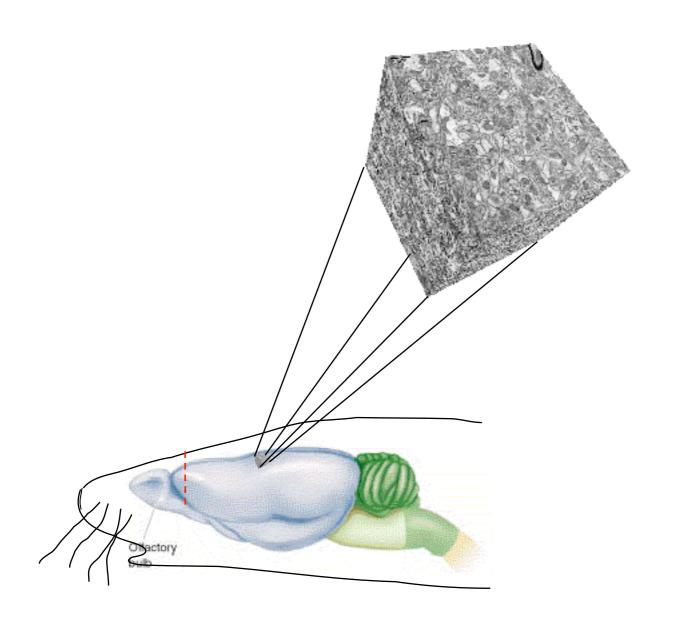


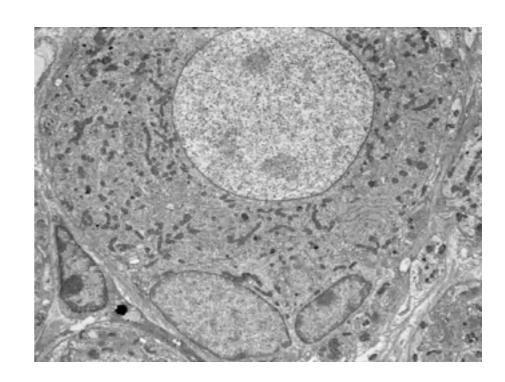
The quest for mechanisms: Constructing systems from parts



Reconstructing circuits

Serial Blockface Scanning Electron Microscopy



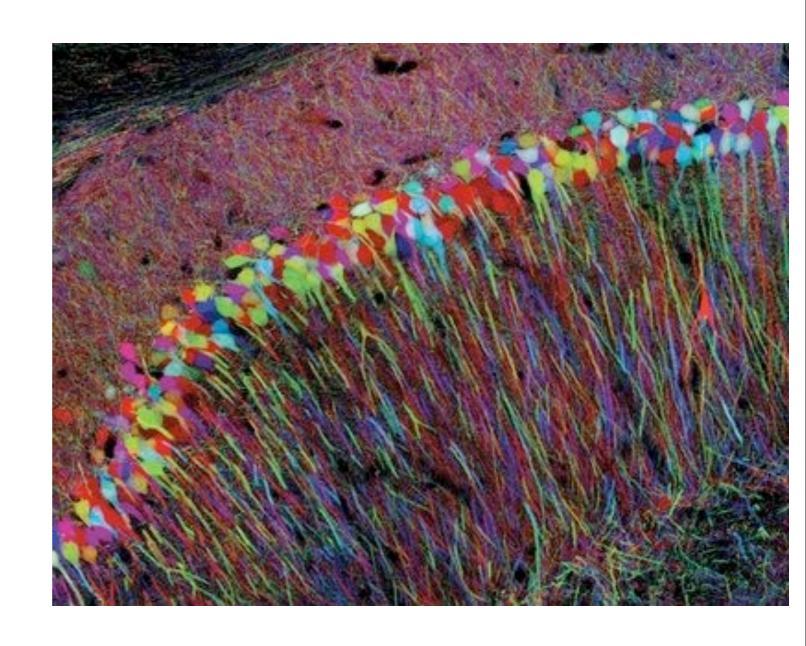


Reconstructing circuits

The connectome

Scan brain slices and reconstruct the circuit...

but: the devil is in the details and when it comes to connectivity, details matter!

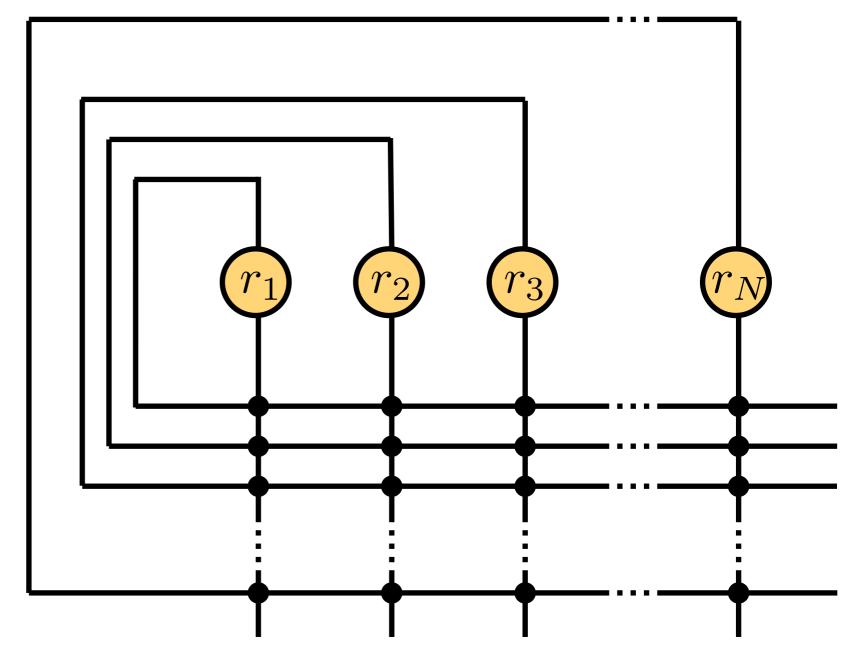


http://connectomes.org/

Theory of neural networks

Neurons, synapses network activity

$$\dot{r}_i = -r_i + f(\sum_{j=1}^{N} w_{ij} r_j + I_i)$$



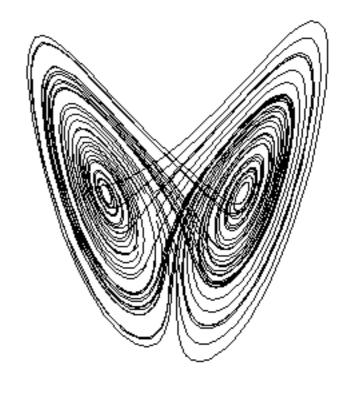
Network dynamics largely determined by connectivity

$$\dot{r}_i = -r_i + f(\sum_{j=1}^{N} w_{ij} r_j + I_i)$$

Possible dynamics:

- stable/ unstable fixed points
- limit cycles
- chaotic attractors

Note: different attractors can co-exist in different parts of the state space!

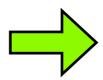


For
$$N \to \infty$$

- neural networks can compute anything

(Statistical) theory of neural networks

Neurons, synapses

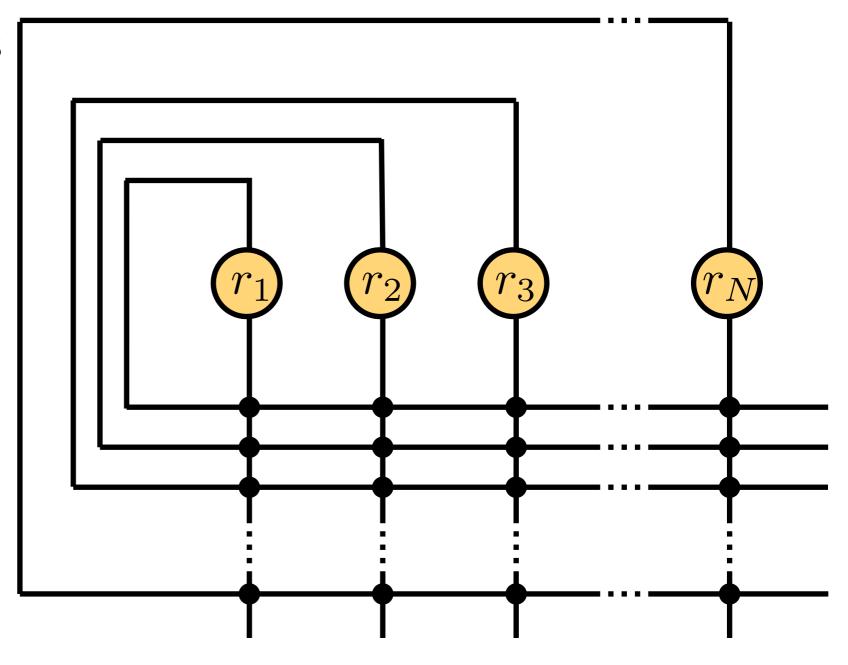


network activity

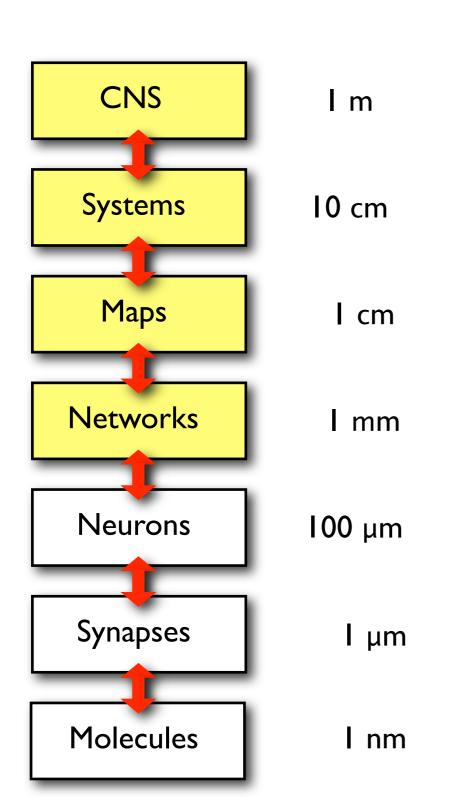
Under what conditions do you get

- only fixed points
- synchronous activity
- asynchronous activity
- Poisson spike trains
- oscillations
- spatial patterns

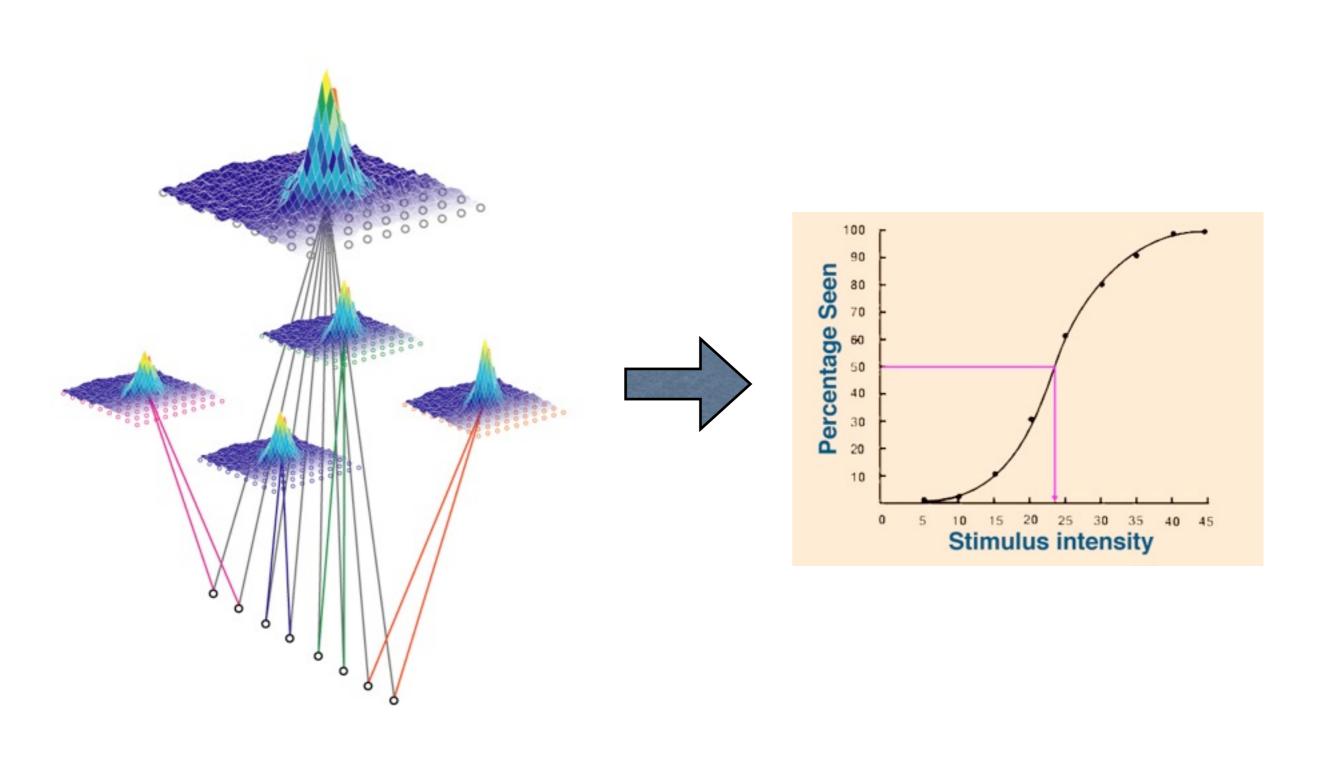
- ...



The quest for mechanisms: Constructing systems from parts



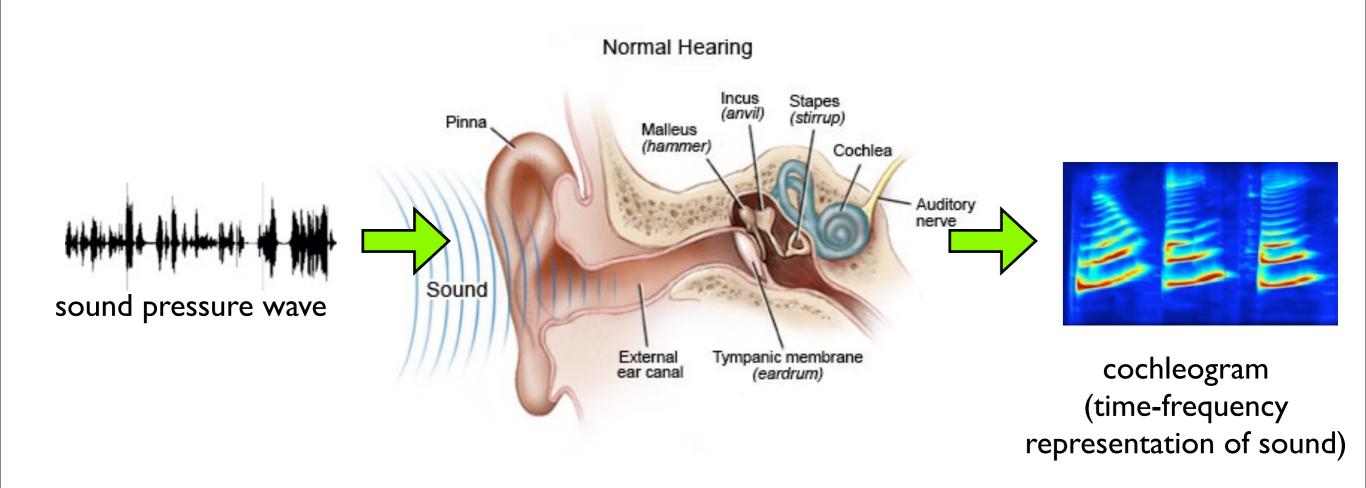
Connectionist models: From networks to behavior



A computer science approach

Study the computational problems

Computation: manipulating information



Representation of information, more or less lossy

Example music:

sheet notes

Sound

CD

Language

The other day, I heard this cool jazz CD with this drummer...

Why represent information differently?

Example numbers:

XXIII 23 00010111 Roman System

Decimal System

Binary System

Representations allow for easier algorithms

Example numbers:

in ...?

23 in multiples of 10

0001011 in multiples of 2

Representations allow for easier algorithms

Example numbers:

in ...?

23 in multiples of 10

0001011 in multiples of 2

Representations allow for easier algorithms

Example numbers:

in ...?

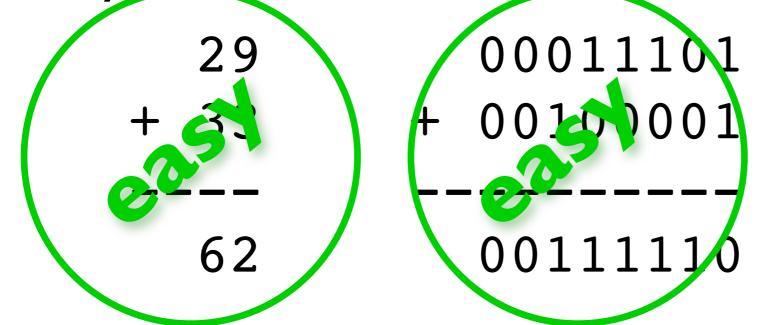
23 in multiples of 10

0001011 in multiples of 2

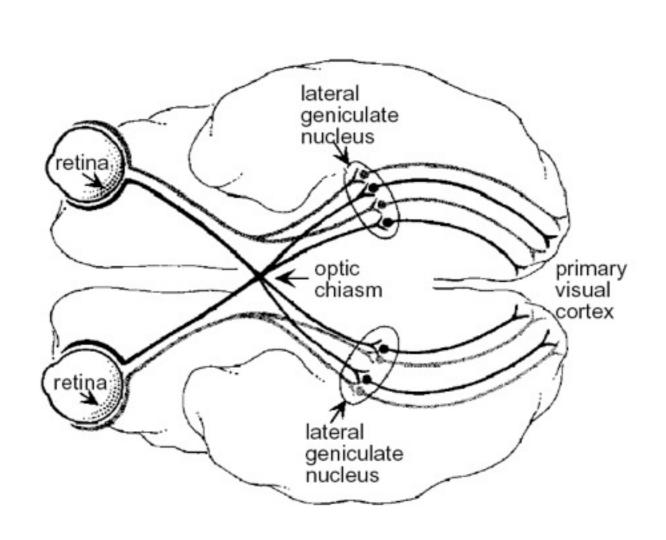
Representations can ease certain computations

Example numbers:

XXIII 23 00010111 in ...?
in multiples of 10
in multiples of 2

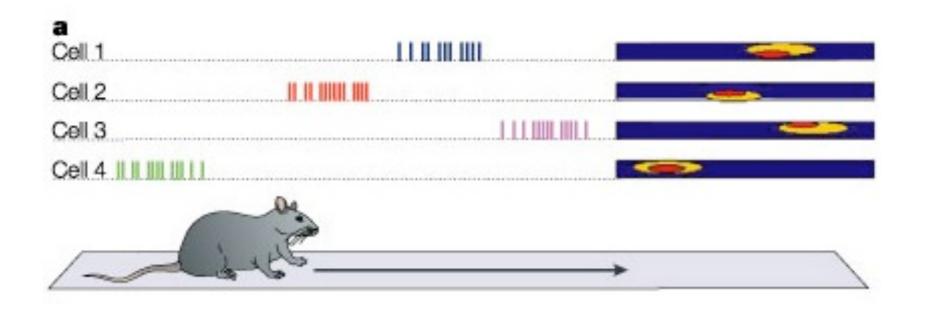


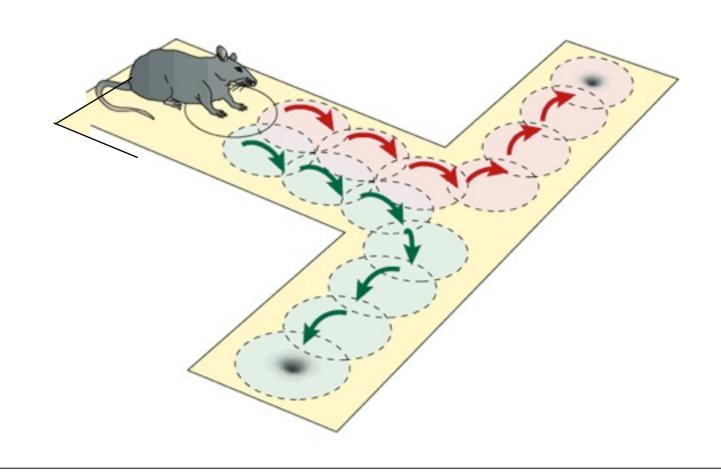
Most famous example: "edge detectors" in visual system



Activity of a neuron in VI

Another famous example: Place cells in the hippocampus





Studying representations in the brain

Experimental work

- perceptual representations: vision, audition, olfaction, etc.
- representation of motor variables
- "higher-order" representations: decisions short-term memory rewards dreams uncertainty ... you name it ...

Theoretical work

- Quantifying information content quest for the neural code, information theory, discriminability, ...
- Understanding the computational problems: object recognition, sound recognition, reward maximization

What we understand now

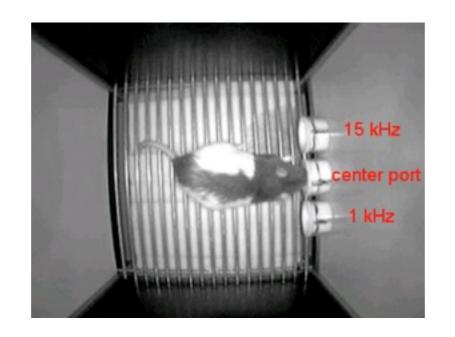
very little

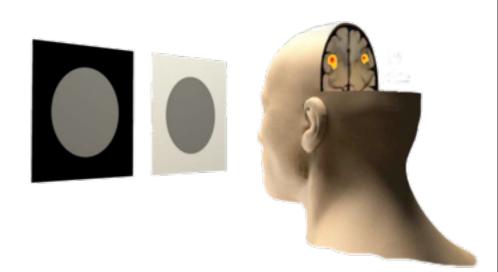
What we understand now

very little

What we need

- biologists
- psychologists

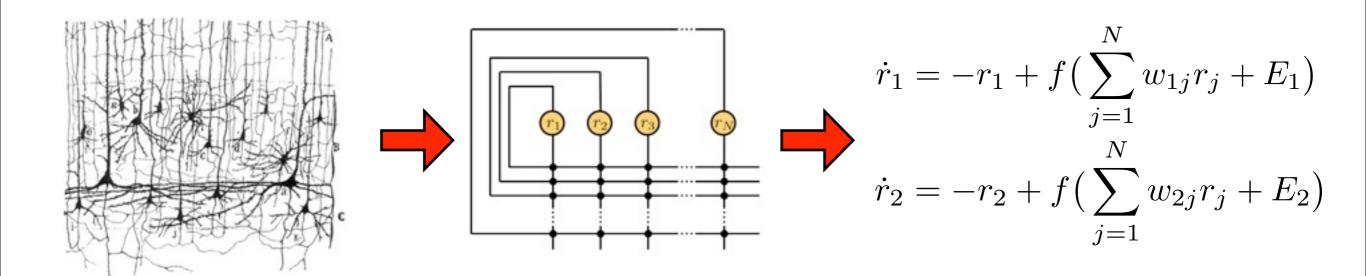




- to probe the brains of animals and humans
- to design and carry out clever experiments
- to investigate and quantify human and animal behavior

What we need

physicists, computer scientists, engineers, etc.



- to formulate mathematical theories of information processing
- to create biophysical models of neural networks

Teaching in the Cogmaster

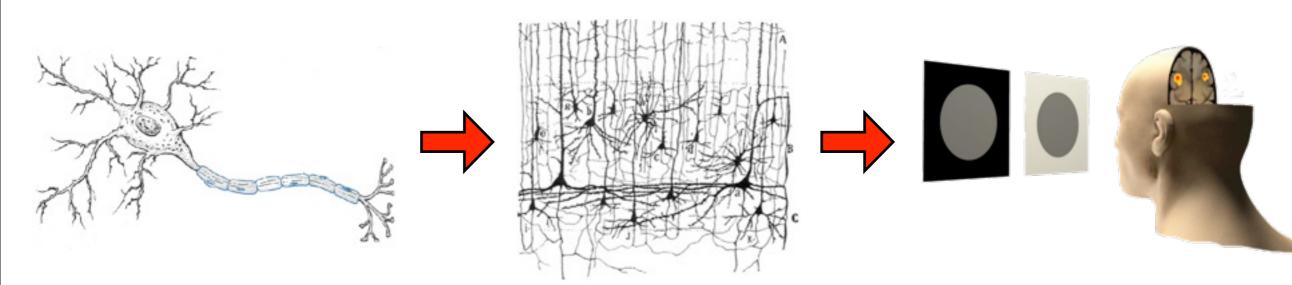
Computational Neuroscience

L3/MI

Introduction aux neurosciences computationnels

Christian Machens

S2, Wed, 17-19



Neurons

- Membrane voltage
- Action potentials
- Computations

Networks

- Attractors
- Associative memory
- Decision-making
- Sensory processing

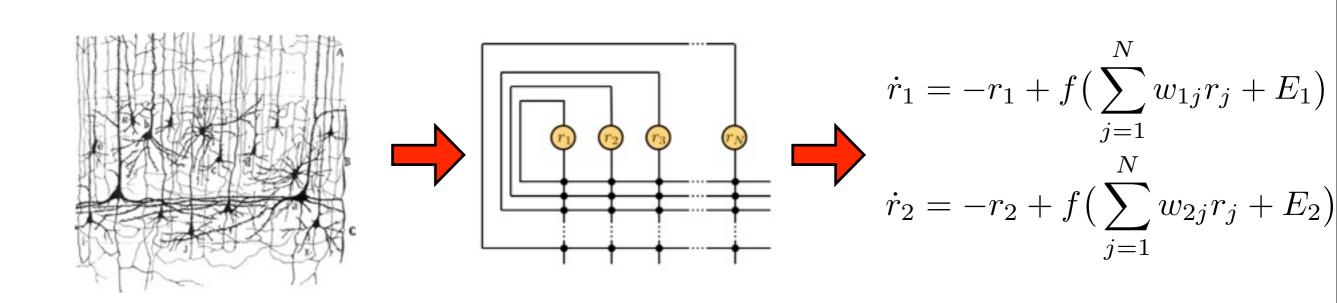
Behavior

- Psychophysics
- Reinforcement Learning
- Neuroeconomics

Introduction aux neurosciences computationnels

Christian Machens

S2, Wed, 17-19



What you need

Basic math skills,
 High-School Level
 (ask if you are uncertain!)

What you get

- Foundations of Comp Neurosci
- 4 ECTS

Validation

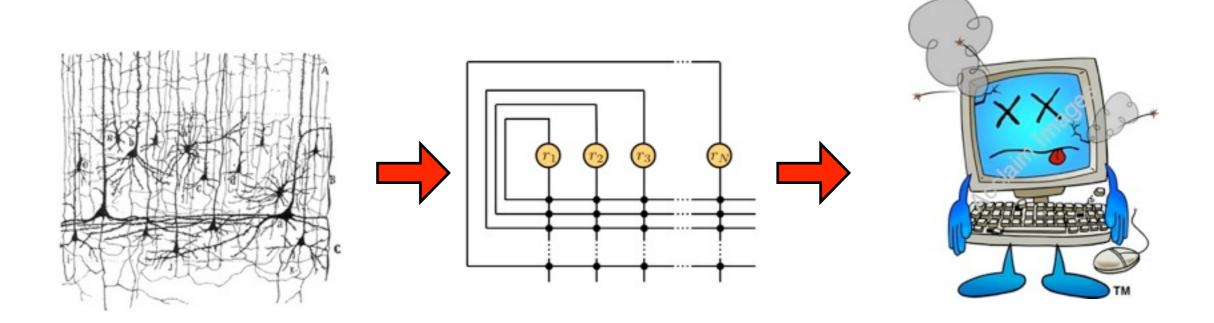
• 100% exam

L3/MI AT2

Atelier théorique neuromodélisation

Christian Machens

S2, Wed, 14-16



What you need

Basic math skillsHigh School Level

What you get

- Putting models into the computer!
- 4 ECTS

Validation

• 100% course exercises

MI/M2 CA6a

Theoretical Neuroscience

S3

Rava da Silveira, Vincent Hakim, Nicolas Brunel, Jean-Pierre Nadal

2 Classes: Single neurons, Hodgkin-Huxley, Integrate-and-Fire

3 Classes: Single Synapses: dynamics, plasticity, learning

2 Classes: Rate models of Neural Networks

3 Classes: Network anatomy, spiking networks

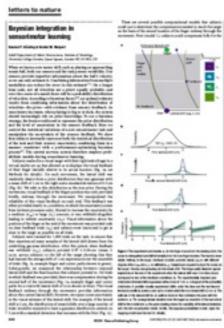
I Class: Learning and Memory in Neural Networks

2 Classes: Neural Coding, Population Coding

Start: October 1st Salle T15, physics

MI/M2 Seminar / Journal Club CA6b Quantitative Neuroscience

Rava da Silveira, Vincent Hakim, Christian Machens S3, Tue, 17.30-19



What you need

 Basic knowledge of computational neuroscience (ask if you are uncertain!)

What you get

- Learn about recent research
- Learn how to give a talk
- 3 ECTS

Validation

- 50% talk
- 50 % course participation

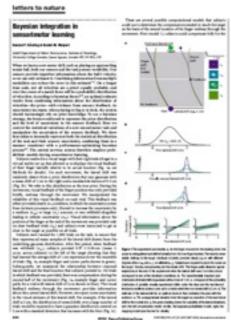
Talks in French or English

MI/M2 Seminar / Journal Club CA6b Quantitative Neuroscience

Rava da Silveira, Vincent Hakim,

Christian Machens

What you need



Start: Sep 29th
Salle 235b, 29, rue d'Ulm

Basic knowledge of computational neuroscience (ask if you are uncertain!)

- Learn about recent research
- Learn how to give a talk
- 3 ECTS

Validation

S3, Tue, 17.30-19

- 50% talk
- 50 % course participation

Talks in French or English

Many more classes available!!

see cogmaster website!! contact us!!

Computational Neuroscience Research in the Cogmaster and Beyond

```
ENS: Group for Neural Theory
    (Sophie Deneve, Christian Machens, ...)
ENS: Laboratoire de Physique Statistique
    (Jean-Pierre Nadal, Vincent Hakim ...)
Paris V: Laboratoire de Neurophysique et Physiologie
    (Nicolas Brunel, ...)
you can find more labs under:
     http://cogmaster.net
     http://neurocomp.risc.cnrs.fr
```

for internship / stages / Master's thesis: contact the faculty! (email etc.)

The articles you have read:

Neural coding

WT Newsome, KH Britten, JA Movshon Neuronal correlates of a perceptual decision

Reinforcement Learning

W Schultz, P Dayan, PR Montague
A neural substrate of prediction and reward

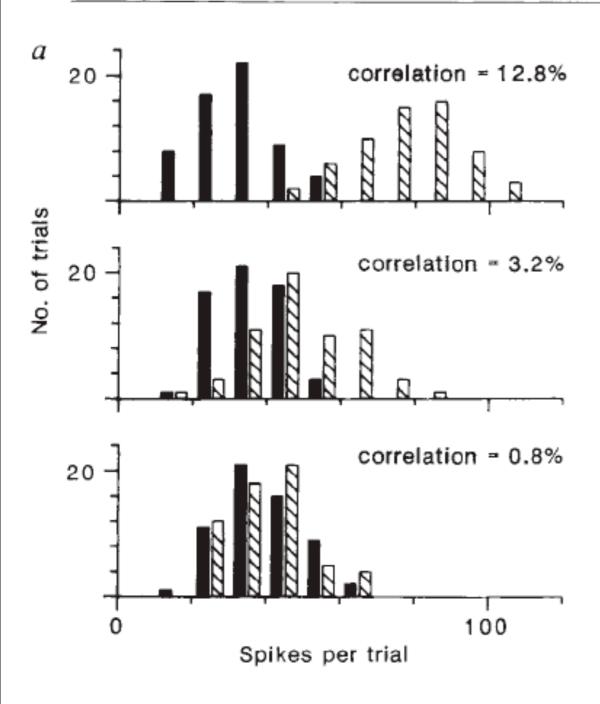
Computational Neuroscience Introduction Day

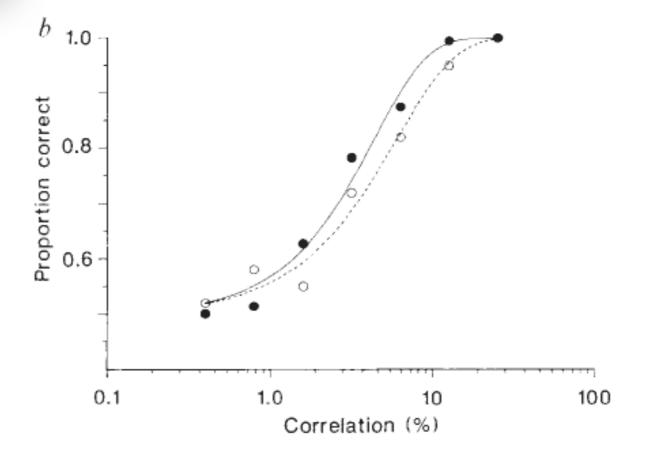
- 14.00 Introduction
- 14.30 Computational Neuroscience Groups in Paris
- 15.00 Discussion of papers in groups: Questions
- 15.45 Discussion of papers in groups: Answers
- 16.30 Presentation of Answers

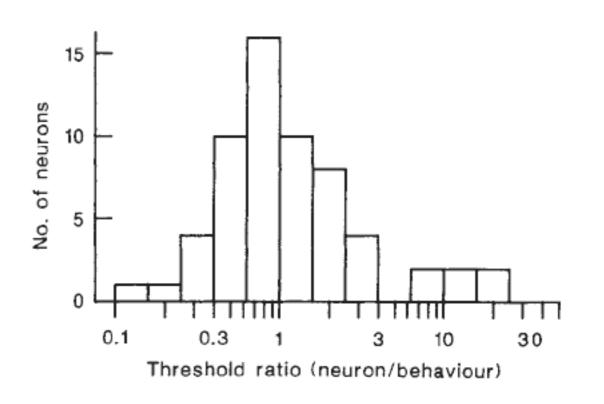
Neuronal correlates of a perceptual decision

William T. Newsome*†, Kenneth H. Britten*†
& J. Anthony Movshon‡

[‡] Department of Psychology and Center for Neural Science, New York University, New York 10003, USA







^{*} Department of Neurobiology and Behavior, State University of New York, Stony Brook, New York 11794, USA