A brief introduction to
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Computational Neuroscience
Introduction Day

® |4.00 Introduction

® |4.30 Computational Neuroscience Groups in Paris
® |5.00 Discussion of papers in groups: Questions

® |5.45 Break

® |6.00 Discussion of papers in groups: Answers

® |6.45 Presentation of Answers

® |/.30 Concluding comments

Tuesday, September 14, 2010



What’s the brain good for?

Tree
NO heurons
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What’s the brain good for?
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What’s the brain good for?

Tree
NO heurons
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C. elegans
302 neurons
more complex brains
Fly
00c 000 l gen.erate a great.er
variety of behaviors

Rat
| 000 000 000

more complex brains

Human can learn more
100 000 000 000 .
behaviors
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What'’s the brain made of?
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How does the brain
work!?



A physics/engineering approach

Just rebuild the whole thing



The quest for mechanisms:
Constructing systems from parts
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Biophysics of the membrane voltage:
The Hodgkin-Huxley Model
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Reconstructing neurons:

Ralls’ cable theory and compartmental modeling

Detailed compartmental models of single neurons:
Large-scale differential equation models

Tuesday, September 14, 2010



Reconstructing neurons

Simulating the membrane potential

Llinas & Sugimori (1980)

Tuesday, September 14, 2010



The quest for mechanisms:
Constructing systems from parts
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Reconstructing circuits

Serial Blockface Scanning Electron Microscopy

courtesy of W.Denk
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Reconstructing circuits

The connectome

Scan brain slices and
reconstruct the circuit...

but: the devil is in the
details and when it comes
to connectivity, details
matter!

http://connectomes.org/
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Theory of neural networks

Neurons, synapses ::> network activity

N
Ty = —T + f(z wisTj + L)
j=1




Network dynamics
largely determined by connectivity

N
r; = —T; +f(zwz'j7“j + 1;)
=1

Possible dynamics:
- stable/ unstable fixed points
- limit cycles
- chaotic attractors

Note: different attractors can co-exist
in different parts of the state space!

For N — o0
- neural networks can compute anything
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(Statistical) theory of neural
networks

Neurons, synapses _:> network activity

Under what conditions
do you get

- only fixed points

- synchronous activity
- asynchronous activity
- Poisson spike trains

- oscillations

- spatial patterns
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The quest for mechanisms:
Constructing systems from parts
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The quest for mechanisms:
Constructing systems from parts

EELEES



The quest for mechanisms:
Constructing systems from parts

REREEE



A computer science approach

Study the computational problems



Computation:
manipulating information

Normal Hearing

Incus Stapes

Pinna A (anvil)  (stirrup)

(hammer) Cochlea

ol et f 1

sound pressure wave

External Tympanic membrane

( ear canal (eardrum) cochleogram
\ " 4 (time-frequency
representation of sound)
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Representation of information,
more or less lossy

Example music:

0 |J,bJ

sheet notes #

Sound

CD

Language The other day, | heard this cool jazz CD with this drummer...



Why represent information differently?

Example numbers:

XXITIT Roman System
23 Decimal System

00010111 Binary System
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Representations allow for easier algorithms

Example numbers:

XXTIT in ...7
23 in multiples of 10
00010111 in multiples of 2

Can you add these numbers?

29 00011101 XXTIX
+ 33 + 00100001 + XXXTIIT
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Representations allow for easier algorithms

Example numbers:

XXTIT in ...7
23 in multiples of 10
00010111 in multiples of 2

Can you add these numbers?

29 00011101 XXTIX
+ 33 + 00100001 + XXXTIIT

62
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Representations allow for easier algorithms

Example numbers:

XXTIT in ...7
23 in multiples of 10
00010111 in multiples of 2

Can you add these numbers?

29 00011101 XXTIX
+ 33 + 00100001 + XXXTIIT

62 00111110
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Representations can ease certain
computations

Example numbers:

XXITI in ...J
23 in multiples of 10

00010111 in multiples of 2

Tuesday, September 14, 2010



Most famous example:

“edge detectors” in visual system
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Another famous example:
Place cells in the hippocampus

a
Cell 1 NIRRT

Cell 2 001 O L _aammah
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Understanding cognition. What is the problem?

Prior

l

Nervous system
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Understanding cognition. What is the problem?

Prior

l

Perception

Prediction | ——

T I
New observation

Machine learning



Example: integrating information from multiple sources

Visual and haptic
scene

Noise:
3 cm equals 100%



Studying representations in
the brain

Experimental work Theoretical work

- perceptual representations: - Quantifying information content
vision, audition, olfaction, etc. quest for the neural code,

- representation of motor variables information theory, discriminability, ...

- “higher-order” representations: - Understanding the computational
decisions problems: object recognition, sound
short-term memory recognition, reward maximization
rewards
dreams

uncertainty
... You name it ...
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VWhat we understand now

very little



VWhat we understand now

very little
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What we need

e biologists
e psychologists

- to probe the brains of animals and humans
- to design and carry out clever experiments
- to investigate and quantify human and animal behavior

Tuesday, September 14, 2010



What we need

e physicists, computer scientists, engineers, etc.

N
r = —7“1+f(zw1j7“j-|-E1)

©) ®, » 9;\71
— i o i 7°“2:—7“2Jrf(z:wzj?“j+Ez)
1+ j=1

- to formulate mathematical theories of information processing
- to create biophysical models of neural networks
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Teaching in the Cogmaster

Computational Neuroscience
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CUIC UiIdooTo

AT2: Atelier Comput. Neuroscience- v Benichoux. S2

COG6: Introduction to Comput. Neuroscience —r
Brette, B Gutkin, S Deneve. 52

CA6(a): Theoretical Neuroscience- jp Nadal, N Brunel, R
Brette, G Mongillo. S1

CA6(b): Seminar in Quantitative Neuroscience- s
Deneve, B Gutkin. Sl
CA6(c): Machine learning applied to cognition- r

Bach, S Deneve. SZ



Many more classes available!!

see cogmaster website!!
contact us!!



M| Atelier theorique

$
AT2 neuromodeélisation 4

What you need = What you get Validation

® Basic math skills ® Education in an exciting field! ® |100% course exercises

(ask if you are uncertain!) e 4 ECTS



Introduction aux neuroscience:

C O 6 computationnelles

Boris Gutkin/Sophie Deneve/Romain Brette

Neurons Networks Behavior
® Membrane voltage ® Attractors ® Psychophysics
e Action potentials ® Associative memory ® Reinforcement Learning
e Computations ® Decision-making ® Neuroeconomics

® Sensory processing



Introduction aux neuroscience:

C O 6 computationnelles

Boris Gutkin/Sophie Deneve/Romain Brette

N
7= —r1+f(Zw1jrj+E1)

EXX: ¢ = =

7.“2: —r2+f(Zw2jrj—l—E2)

t——t—— j=1

What you need = What you get Validation

® Basic math skills ® Education in an exciting field! ® 100% exam

(ask if you are uncertain!) e 6 ECTS



"I Seminar / Journal Club

CA6b Quantitative Neuroscience

Boris Gutkin/Vincent Hakim/Sophie Deneve/Romain Brette

What you need What you get Validation
® Basic math skills ® State-of-the-art science e 50% talk
(ask if you are uncertain!) ® Learn how to give a talk ® 50 % course participation

e 4 ECTS



Theoretical Neuroscience Course

Romain Brette, Nicolas Brunel, Gianluigi Mongillo, Jean-Pierre Nadal
TA: Alexis Dubreuil

1 Introduction

Lecture 1 (Sept 29) NB

0-0



2 Basic tools

2.1 Neurons
Lecture 2 (Oct 6) RB
e Spike trains: the Poisson process

e Neuronal electricity (electrodiffusion, equivalent electrical circuit, the membrane
equation).

e The integrate-and-fire model (definition, firing rate, reliability of spike timing).

e The Hodgkin-Huxley model (voltage-gated channels, HH model, threshold in a
1D approximation, refractory period)

e Variations around the IF model (perfect integrator, quadratic, exponential, I1zhike-
vich, adaptive exponential)

e Dendrites (linear cable theory, stationary response, Green function, cable equa-
tion on the dendritic tree)



2.2 Synapses

Lecture 3 (Oct 13) GM

e Basic physiological facts about chemical synaptic transmission.

— Neurotransmitter release and post-synaptic receptor machinery.
— The Katz synapse: quantal release, role of calcium, stochasticity.

— The binomial model.

e Short-term synaptic plasticity

— The Tsodyks-Markam (TM) model for STP
— Quantal interpretation of the TM model

Stochastic STP model

Statistics of post-synaptic response as a function of pre-synaptic activity
— Filtering properties of STP
® |ong-term synaptic plasticity

— Phenomenological models of STDP
— Role of post-synaptic calcium in STDP

— A simple phenomenological model of a bistable synapse



2.3 Learning

Lecture 4 (Oct 20) JPN
e Different types of learning : supervised, unsupervised, reinforcement learning
e Supervised learning : perceptron

e Hebbian unsupervised learning : the Oja model; link with neural coding



2.4 Coding

Lecture 5 (Oct 27) JPN
e Basic tools (Shannon information, Fisher information)
e Optimal tuning curve : Laughlin’s fly
e Population coding

e Decoding, decision-making: reaction times



2.5 Networks

Lecture 6 (Nov 10) NB (Rate models, Network architectures)

e large-scale anatomy
e Architecture of neuronal microcircuits

e Rate models

Lecture 7 (Nov 17) NB (Networks of spiking neurons)
e Local cortical networks: anatomy, physiology

e Low rate irregular activity

— Asynchronous states in networks of spiking neurons
— The balanced network model

— Networks of LIF neurons
e QOscillations

— Overview of oscillations in the nervous system
— Overview of mechanisms

— QOscillations in networks of LIF neurons



3 Models of specific systems

3.1 Retina

Lecture 8 (Nov 24)

3.2 Primary visual cortex

Lecture 9 (Dec 1)

3.3 Auditory system

Lecture 10 (Dec 15)

3.4 Association cortex

Lecture 10 (Dec 8)

3.5 Hippocampus

Lecture 11 (Jan 5)



3.6 Cerebellum

Lecture 13 (Jan 12)



CA6(c) Machine learning applied to cognition

Enseignants: Francis Bach, Sophie Deneve S2

1. Probabilistic methods.
Prior, posterior, likelihood, Generative models, maximum likelihood.
Application: Cue combination in behavior and cortical networks.

2. Representational learning (unsupervised learning)
Information maximization, Principle component analysis (PCA),
Independent component analysis (ICA), sparse coding.
Application: sensory receptive fields.

Methods: PCA, ICA, CCA, sparse coding

3. Supervised learning (classification/regression).

Linear classifiers, Gaussian mixtures, support vector machines (linear
and non-linear).

Applications: Reading out the mind. Object recognition.

Methods: SVM, logistic, k-NN, Cart, neural networks

4. Interpolation.

Gaussian processes, density estimation, Expectation/maximization.
Application: Unsupervised learning in humans and animals.
Methods: Parzen, k-means, GMM



A'V'Z \ Machine learning applied to
uAA\OL(C cognition
F Bach G Obozinski, N le Roux, S Deneve

Learning in Neural
machine Behavior implementation
e Bayesian networks e Unsupervised e Receptive fields
e Sparse coding e Supervised e Sensory representation
e SVM e Hierarchy e Neural code

e Internal models

ﬁ

Brain machine interface



Computational Neuroscience Research in
the Cogmaster and Beyond

ENS: Group for Neural Theory
(Sophie Deneve, Boris Gutkin, Christian Machens, ...)
ENS: Equipe Audition
(Romain Brette,Victor Benichoux; ...)
ENS: Laboratoire de Physique Statistique
(Jean-Pierre Nadal,Vincent Hakim, ...)
Paris V: Laboratoire de Neurophysique et Physiologie
(Nicolas Brunel, David Hansel, ...)

you can find more labs under:

http://cogmaster.net
http://neurocomp.risc.cnrs.fr

for internship / stages / Master’s thesis: contact the faculty! (email etc.)

Tuesday, September 14, 2010
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Computational Neuroscience
Groups, ENS

Group for Neural Theory, DEC
Boris Gutkin
Sophie Deneve
Srdjan Ostrojic

Neurocomputation, Equipe Audition, DEC
Romain Brette

Computational Neuroscience, LPS, Physics
Vincent Hakim
Jean-Pierre Nadal
Rava da Silveira

Frontal Lobe Function Group, LNC, DEC
Etienne Koechlin

Neuromathcomp, Dept of Computer Science, ENS
O Faugeras



Group for Neural Theory

 Boris Gutkin:

— Dynamics of Neuronal Activity, Addiction
Models, Oscillations in Speech Processing
and Memory

* Sophie Deneve: |
— Bayesian Theory of Sensory Processing, ,4,: !
Bayesian Theory of Neuronal Dynamics, it
Computational Psychiatry

L
e Srdjan Ostrojic: |
— Models of Oscillatory Dynamics, Models ;

of Sequence learning and decision
making

e



Neurocomputation, Equipe Audition

e Romain Brette

— spike-based computation in the

auditory system (especially sound
localization and pitch perception).

— spiking neuron models (including
threshold dynamics)

— simulation of spiking neural networks
(in particular the Brian simulator)



Frontal Lobe Function Group, LNC, DEC

e Etienne Koechlin

— Information value
learning in human
prefrontal cortex

— executive and
motivational control
during decision making



Laboratoire de Physique Statistique (LPS)
Ecole Normale Supérieure
24, rue Lhomond — 75005 Paris

Neurosciences computationnelles, biophysique théorique
Computational neuroscience, theoretical biology

Rava da Silveira theoretical neuroscience

Simona Cocco theoretical biophysics (DNA, neurons,...)
Vincent Hakim theoretical biology, theoretical neuroscience
Thierry Mora theoretical biophysics

Jean-Pierre Nadal theoretical neuroscience, complex systems
Jacques Ninio experimental psychophysics, theoretical biology

Team Complex networks and cognitive systems
http://www.lps.ens.fr/~risc/rescomp/
Contacts:

nadal@Ips.ens.fr

hakim@Ips.ens.fr



Computational Neuroscience, LPS,
Physics

Vincent Hakim

— Neuronal synchronization, dynamics of
neural ensembles

— Cerebellar processing

Jean-Pierre Nadal

— Information processing in biological
systems

— Complex systems in cognitive and
social sciences

Rava da Silveira

— computation and adaptation in
single neurons

— coding of information in the brain
— molecular machinery at synapses




Laboratory of Neurophysics and Physiology
CNRS - Université Paris Descartes

45 rue des Saints Peres, 75006 Paris



People

Carl van Vreeswijk

Claude Meunier

David Hansel

Gianluigi Mongillo

Nicolas Brunel



Research interests

e Single neuron dynamics: C. van Vreeswijk, N.Brunel, C.Meunier
e Network dynamics: C. van Vreeswijk, N.Brunel, D.Hansel, G.Mongillo

e Models of specific systems:
— Spinal cord (C.Meunier, collaboration with experimental group of D.Zytnicki)

— Visual cortex (D.Hansel and C.van Vreeswijk, collaboration with experimental group
of L.Nowak (Toulouse); N.Brunel, collaboration with experimental group of
N.Logothetis (Tubingen))

— Motor cortex (C.van Vreeswijk, collaboration with experimental group of C.Capaday
(Copenhagen))

— Cerebellum (N Brunel, collaboration with V Hakim, JP Nadal, and experimental
groups of B Barbour, S Dieudonné, C Léna (ENS)

— Basal ganglia (D Hansel, collaboration with experimental groups of T Boraud
(Bordeaux) and H Bergman (Jerusalem))



Laboratory for Computational Neuroscience
Unit de Neurosciences, Information and Complexit (UNIC)
CNRS

91198 Gif-sur-Yvette



People

Alain Destexhe

Michelle Rudolph



The articles you have reaa:

Neural coding

WT Newsome, KH Britten, JA Movshon
Neuronal correlates of a perceptual decision

Reinforcement Learning

A neural substrate of prediction and reward

Tuesday, September 14, 2010


http://www.nature.com/nature/journal/v341/n6237/abs/341052a0.html
http://www.nature.com/nature/journal/v341/n6237/abs/341052a0.html
http://www.sciencemag.org/cgi/content/abstract/sci;275/5306/1593
http://www.sciencemag.org/cgi/content/abstract/sci;275/5306/1593
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A Neural Substrate of
Prediction and Reward

Wolfram Schultz, Peter Dayan, P. Read Montague®

Do dopamine neurons report an error
in the prediction of reward?

No prediction
Reward occurs

Reward predicted
Reward occurs

Reward predicted
No reward occurs

Tuesday, September 14, 2010
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The Quest for the Neural Code

Neuronal correlates of a
perceptual decision

William T. Newsome*?, Kenneth H. Britten*t
& J. Anthony Movshoni

* Department of Neurobiology and Behavior, State University of New York,
Stony Brook, New York 11794, USA

t Department of Psychology and Center for Neural Science,

New York University, New York 10003, USA

how is information represented in the brain?

Maybe it’s the timing of spikes, rather than their average count (firing rate) that actually
carries the information!

Tuesday, September 14, 2010



The Quest for the Neural Code

Neuronal correlates of a
perceptual decision

William T. Newsome* i, Kenneth H. Britten*t
& ). Anthony Movshoni

* Department of Neurobiology and Behavior, State University of New York,
Stony Brook, New York 11794, USA

i Department of Psychology and Center for Neural Science,

New York University, New York 10003, USA

how is information represented in the brain?

Maybe it’s the timing of spikes, rather than their average count (firing rate) that actually
carries the information!

how much information does the population contain?

Population codes are complicated because you cannot just add the information from
different neurons if these are correlated (if they carry redundant information)

Tuesday, September 14, 2010



The Quest for the Neural Code

Neuronal correlates of a
perceptual decision

William T. Newsome*1, Kenneth H. Britten*t
& ). Anthony Movshoni

* Department of Neurobiology and Behavior, State University of New York,
Stony Brook, New York 11794, USA

i Department of Psychology and Center for Neural Science,

New York University, New York 10003, USA

how is information represented in the brain?

Maybe it’s the timing of spikes, rather than their average count (firing rate) that actually
carries the information!

how much information does the population contain?

Population codes are complicated because you cannot just add the information from
different neurons if these are correlated (if they carry redundant information)

on what time scales is information represented?

In the article, stimuli are 2 sec long! But monkeys (and humans) integrate motion
over much shorter time scales (100s of millisec) - then each neuron contributes less info!

Tuesday, September 14, 2010



A Neural Substrate of
Prediction and Reward

Wolfram Schultz, Peter Dayan, P. Read Montague®

A Visual input
g Reward (b) (9) Biased
o W, W, action
g g selection
2 r(t)
2
o

8(t)
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How behaviors are learned

A Neural Substrate of
Prediction and Reward
= .4\A Wolfram Schultz, Peter Dayan, P. Read Montague®

A Psychology of
3 . Animal Learning

Edward Thorndike
(1874-1949)

Tuesday, September 14, 2010



How behaviors are learned

> Psychology of Optimal Control
3 . Animal Learning Theory

Edward THorndike Richard Bellman
(1874-1949) (1920-1984)

Tuesday, September 14, 2010



How behaviors are learned

4

bt Psychology of Optimal Control
Animal Learning Theory

Edward Thorndike
(1874-1949)

e’

Marvin Minsky Harry Klopf

(1927-222) (1927-222)

Tuesday, September 14, 2010

Artificial Intelligence
(Machine Learning)

Richard Bellman
(1920-1984)



How behaviors are learned

Psychology of Optimal Control
Animal Learning Theory

Richard Bellman
(1920-1984)

Reinforcement

Edward Thorndike
(1874-1949)

Learning
| * Richard Sutton
%@z (1956-222)
s O~ - Andrew Barto
- Artificial Intelligence

(Machine Learning) (1948-227)

Marvin Minsky Harry Klopf

(1927-222) (1927-222)

Tuesday, September 14, 2010
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