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Abstract
UK Biobank participants do not have a high-quality measure of intelligence or polygenic scores (PGSs) of intelligence to 
simultaneously examine the genetic and neural underpinnings of intelligence. We created a standardized measure of general 
intelligence (g factor) relative to the UK population and estimated its quality. After running a GWAS of g on UK Biobank 
participants with a g factor of good quality and without neuroimaging data (N = 187,288), we derived a g PGS for UK 
Biobank participants with neuroimaging data. For individuals with at least one cognitive test, the g factor from eight cogni-
tive tests (N = 501,650) explained 29% of the variance in cognitive test performance. The PGS for British individuals with 
neuroimaging data (N = 27,174) explained 7.6% of the variance in g. We provided high-quality g factor estimates for most 
UK Biobank participants and g factor PGSs for UK Biobank participants with neuroimaging data.
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Introduction

Intelligence—our ability to learn, reason and solve problems 
(Arvey et al. 1994)—has been of great interest to researchers 
in epidemiology, neuroscience, and genetics as it predicts a 
wide array of educational, health, and social outcomes (e.g., 
Calvin et al. 2017; Deary et al. 2007; Strenze 2007). Given 
the numerous genetic, neural, and environmental factors that 
may contribute to intelligence, large-scale studies are needed 
to identify the respective contribution of these factors and 
their potential interactions on intelligence (for review see 
Deary et al. 2019, 2021).

The UK Biobank is an ideal database to study the causes 
and consequences of intelligence, with its cognitive, brain 
imaging, genetic, health, and environmental data on more 
than 500,000 British middle-aged and older adults. Yet, 
numerous factors make the use of cognitive tests in the UK 
Biobank difficult. First, not all participants completed the 
same number of tests and more recent tests have fewer par-
ticipants (e.g., word production) because only a subset of 
participants returned to the test centers or participated in 
the online follow-up questionnaire to complete more tests 
when asked. Second, those who completed the same number 
of tests did not necessarily complete the same combination 
of tests. Across 501,650 participants with data on at least 1 
of the 8 cognitive tests, we counted 80 different combina-
tions of tests, with only 30,471 participants having usable 
data on all 8 tests. Third, the age at which a test was com-
pleted varies by test and participant, with some participants 
completing a test as early as 38 years old and as late as 
82 years old. Fourth, some participants completed certain 
tests several times. Finally, some tests or similar tests with 
slight variations (e.g., 14 instead of 13 questions for fluid 
intelligence, FI) were completed at different locations: the 
assessment center on a touchscreen or autonomously online, 
with one’s device.

To maximize the number of participants included in their 
studies on intelligence in the UK Biobank, some research-
ers estimated intelligence with a single test, either a verbal 
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numerical reasoning (aka fluid intelligence, FI) score or a 
reaction time score (Davies et al. 2016; Kievit et al. 2018; 
Lee et al. 2018; Savage et al. 2018; Sniekers et al. 2017). 
Others created a general intelligence (g) factor from 3 to 
7 cognitive variables using principal component analysis 
(PCA) or confirmatory factor analysis (CFA; Cox et al. 
2019a, b; Hepsomali and Groeger 2021; Lyall et al. 2016; 
Navrady et al. 2017; de la Fuente et al. 2021). Furthermore, 
most studies used test scores that were neither adjusted for 
age nor standardized relative to a representative sample of 
the general population, despite the acknowledged lack of 
representativeness of the UK Biobank sample (Fry et al. 
2017). As the UK Biobank continues to accrue data and 
attract new researchers, access to a standardized general fac-
tor of intelligence for most UK Biobank participants will 
benefit future studies that consider intelligence as a variable 
of interest or as a confounder.

Intelligence is moderately to highly heritable (Davies 
et al. 2018; Polderman et al. 2015) and individual differences 
in intelligence are associated with a variety of brain meas-
ures (Basten et al. 2015; Deary et al. 2010; Jung and Haier 
2007). Because intelligence is highly polygenic, a person’s 
genetic liability to being more intelligent can be quantified 
with a polygenic score (PGS). PGSs are calculated using 
a person’s genotype profile and the association between 
each SNP and a trait quantified by genome-wide associa-
tion studies (GWASs). PGS of intelligence is thought to pre-
dict 4–10.6% of the variance in intelligence (Davies et al. 
2018; Hill et al. 2019; Lee et al. 2018). However, few studies 
examined the extent to which cerebral measures mediate 
the effects that intelligence PGS or the environment has on 
intelligence (Lett et al. 2020; Loughnan et al. 2021) because 
such analyses require rich datasets and GWAS results that 
exclude the target sample. Since the UK Biobank is consist-
ently included in GWASs of intelligence, researchers are 
unable to examine the associations between intelligence 
PGSs and neuroanatomical, environmental, and behavioral 
data in the UK Biobank.

Therefore, our first aim was to create a standardized gen-
eral intelligence (g factor) score for each UK Biobank par-
ticipant with at least one cognitive test that is relative to the 
UK population given the participant’s age, sex, and occupa-
tion. Our second aim was to create a general intelligence 
polygenic score (g PGS) for individuals with neuroimaging 
data in the UK Biobank, to be used by future studies aiming 
to link genes, brain, and intelligence.

We first standardized 8 cognitive test scores relative to 
the UK population and then extracted a g factor score with 
CFA from the cognitive tests for individuals that at least 
completed one cognitive test. We estimated the quality of 
the g factor scores of participants with missing data. We 
then conducted a GWAS of the g factor score on the UK 
Biobank participants with a g factor of good quality and 

without neuroimaging data (N = 187,288), and we assessed 
its predictive validity in the participants with neuroimaging 
data (N = 39,131). We assessed the external validity of our 
g factor by examining the correlation between our g factor 
and life outcomes.

This study provides cognitive measures that are partially 
adjusted for sampling bias in the UK Biobank and a PGS 
for future UK Biobank studies interested in examining the 
genetic associations of intelligence with neuroimaging, 
behavioral, and environmental measures.

Methods

All analyses were performed in R (R Core Team 2022). 
Supplemental Information, Supplemental Data, and Code 
are anonymously available on the Open Science Framework 
(OSF): https://​osf.​io/​49scv/?​view_​only=​29e0e​e6a14​20461​
d81d2​34d94​d5497​51.

The standardization of cognitive test and g factor scores 
relative to the UK population are summarized in Fig. 1.

Fig. 1   G factor creation pipeline. Cylinders represent datasets; inputs 
are UK Biobank and UK Census data (2001); blue cylinders are sub-
sets of data (standardization samples). Boxes represent produced 
norms and models. Arrows represent computations (Color figure 
online)

https://osf.io/49scv/?view_only=29e0ee6a1420461d81d234d94d549751
https://osf.io/49scv/?view_only=29e0ee6a1420461d81d234d94d549751
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UK Biobank dataset and participants

The UK Biobank is an open-access large prospective study 
with phenotypic, genotypic, and neuroimaging data from 
more than 500,000 participants. Participants were recruited 
between 2006 and 2010, from the vicinity of 22 assess-
ment centers in England, Wales, and Scotland, with an age 
range for inclusion of 40–69 years (Sudlow et al. 2015). 
Data collection continues up to date. All participants pro-
vided informed consent (“Resources tab” at https://​bioba​
nk.​ctsu.​ox.​ac.​uk/​cryst​al/​field.​cgi?​id=​200). The UK Biobank 
received ethical approval from the Research Ethics Com-
mittee (reference 11/NW/0382) and the present study was 
conducted based on application 46007.

Participants performed a variety of cognitive tests, either 
when visiting a UK Biobank assessment center, or online 
during the online follow-up. Participants who did not com-
plete any of the cognitive tests retained for this study were 
excluded, yielding 501,650 participants (excluded 843 
participants).

The UK Biobank participants differ from the general UK 
population: they tend to be healthier and to have a higher 
socioeconomic status (e.g., more likely to own property; Fry 
et al. 2017; Keyes and Westreich 2019), women are over-
represented and the distribution across ages differs from the 
general population (ages 50–59 in 2001 overrepresented, 
while 30–39 are underrepresented). Therefore, we used pub-
lic Census data to compensate for differences between UK 
Biobank participants and the UK population.

Census data

The UK 2001 census data (Office for National Statistics 
2011) was obtained from Casweb (casweb.mimas.ac.uk). We 
selected tables ST033 and ST034, which provide occupation 
categories for people currently in employment (ST033) and 
unemployed or economically inactive (ST034), between 16 
and 74 (ST033) or 64 (ST034) years of age by sex.

We adjusted for sampling bias using the Occupational 
Classification in the 2001 census because occupation is cor-
related with intelligence (Schmidt and Hunter 2004), the 
data was publicly available by age, sex, and country, and job 
codes were similar to the UK Biobank (Standard Occupa-
tional Classification 2000—SOC2000; Office for National 
Statistics 2000). We did not use the 2011 census because 
occupation was coded using SOC2010, which differs notably 
from SOC2000, with no easy correspondence. We matched 
participants to census characteristics using their age, coun-
try, and occupation on the day the census was conducted 
(April 29, 2001; Supplemental Sect. 1.1). We did not use the 
level of qualification because it was not publicly available by 
age, country, and sex in the 2001 or 2011 UK Census. We 
examined the distribution of standardized and age-adjusted 

test scores with cNorm (Sect. 2.3.4) at the center (Fig. S1) 
and online (Fig. S2) across job codes.

Cognitive tests

Test selection

UK Biobank participants could complete several cognitive 
tests every time they visited the UK Biobank assessment 
centers (category 100026) and during the online follow-up 
(category 116). We used eight cognitive tests to create the g 
factor (bolded tests in Table 1). Some participants completed 
some tests several times. We only considered the first occur-
rence of each test to best reflect the stable part of general 
intelligence, before aging and cognitive decline.

Obtaining raw scores

To obtain a raw score for each test, we had to select between 
variables when several measures were provided for a test 
and/or transform these measures. We excluded participants 
with abnormal results (e.g., too many errors in the Symbol 
digit substitution test, indicating non-compliance with the 
test instructions) or who did not finish the test. Retained 
measures, transformations, and exclusion criteria are 
described in Table 2.

Standardization of test scores

Standardization served two purposes: (1) to adjust for age 
effects (since intellectual performance varies with age), and 
(2) to provide a test score relative to the UK population 
(Fig. 1). We created a common norming model for males 
and females. We simultaneously performed two adjustments:

(1)	 An age adjustment by using the semiparametric contin-
uous norming method was proposed by Lenhard et al. 
(2016). With this method, raw scores are modeled as 
a function of both standard scores and an explanatory 
variable, age when taking the test in this case.

(2)	 A socio-demographic adjustment: by using stand-
ardization samples and computing weights to apply to 
participants, to compensate for the socio-demographic 
differences between the UK Biobank population and 
the complete UK population.

To do so, we first created standardization samples for 
each test and location (online/center), with about 32,000 to 
497,000 participants. Details regarding the standardization 
sample creation and the number of participants in each sam-
ple are in Supplemental Sect. 1.2.

We then used cell weighting to adjust measures from 
the standardization samples to reflect the UK population 

https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
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Table 1   UK Biobank cognitive tests considered for this study

Test (included tests in bold) UKB links 
(C: center, O: 
online)

Description Number of participants Included or excluded

FI: fluid intelligence C
O 118

Under a time limit of 2 min, 
answer a set of 13 (center) 
or 14 (online) numerical and 
verbal reasoning questions

C = 205,333
O = 123,613

Included

MAT: matrix pattern comple-
tion

C 501 Select the element that best 
completes matrix pattern 
blocks. 15 Puzzles

C = 33,657 Included

TWR: tower rearranging C 503 Looking at an illustration of 
three pegs (towers), on which 
three differently-colored 
hoops have been placed, find 
how many moves it would 
take to rearrange the hoops 
into another specific position. 
18 Puzzles

C = 33,381 Included

MEMN: numeric memory C 100029
O 120

Memorize 2 digits displayed 
on the screen. After they 
disappear for 3 s, enter them. 
Every time a sequence is cor-
rectly remembered, the next 
sequence is made one digit 
longer, up to a maximum of 
12 digits

C = 82,865
O = 111,062

Included

MEMS: pairs matching C 100030
O 117

Memorize the position of 
matching pairs of cards. Once 
the cards are turned face 
down, find as many pairs as 
possible in the fewest tries. Up 
to 3 rounds, with an increas-
ing number of pairs (3, 6, 8)

C = 498,730
O = 118,528

Included

MEMW: paired associate 
learning

C 506 Memorize 12 pairs of words 
shown for 30 s in total. After 
an interval (different test), see 
the first word of 10 of these 
pairs and select the matching 
second word from 4 alterna-
tives

C = 34,045 Excluded: ceiling effect

MEMP: prospective memory C 100031 Early in the test session, the 
participant is shown “At the 
end of the games we will 
show you four colored shapes 
and ask you to touch the Blue 
Square. However, to test 
your memory, we want you 
to touch the Orange Circle 
instead”

C = 211,952 Excluded: only 1 question

MEML: lights pattern memory C 100028 See pictures of houses which 
have some windows lit. After 
a 10-s delay, indicate which 
windows were lit

C = 3714 (pilot only) Excluded: too few participants

RT: reaction time C 100032 Watch two cards on the screen. 
If they are the same, press 
a button-box as quickly as 
possible

C = 496,829 Included

SDS: symbol digit substitution C 502
O 122

Identify the digits attached to 
each symbol in a grid, by 
using another grid linking 
symbols to digits as a key

C = 33,679
O = 118,466

Included
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The numbers of participants are taken from UK Biobank’s showcase, across all instances, and include uncompleted tests

Table 1   (continued)

Test (included tests in bold) UKB links 
(C: center, O: 
online)

Description Number of participants Included or excluded

TMT: trail making C 505
O 121

Click sequentially on a set of 
digits in circles scattered 
around the screen (numeric 
path), then on a set of digits/
letters (alphanumeric path)

C = 34,045
O = 104,028

Included

VOC: picture vocabulary C 504 Indicate which of 4 images is 
most closely related to a dis-
played word. Difficulty varies 
according to the correctness 
of the previous answers

C = 33,606 Excluded: view-only field. Data 
is currently not available in 
May 2022

WRD: word production C 100077 State as many words beginning 
with the letter ‘S’ as possible 
within 1 min

C = 3744 (pilot only) Excluded: too few participants

Table 2   Raw scores transformations for the included cognitive tests

Test Measures used Raw score computation

FI: fluid intelligence Number of correct answers [0–14]
Fields 20016 (center) and 20191 (online)

Measure unchanged

MAT: matrix pattern completion Number of correct answers [0–15]
Field 6373 (center only)

Measure unchanged

TWR: tower rearranging Number of correct answers [0–18]
Field 21004 (center only)

Measure unchanged

MEMN: numeric memory Maximum number of digits remembered correctly 
[0–12]

Fields 4282 (center) and 20240 (online)

Measure unchanged

MEMS: pairs matching Numbers of correct and incorrect matches in each 
round. The test has up to 3 rounds, with increas-
ing difficulty (more pairs to remember). Access to 
a round is subject to a high score in the previous 
round

Fields 10136/398 (center) and 20131 (online)
Fields 10137/399 (center) and 20132 (online)

Score computed as follows:
– Each correct pair earns 2 points in rounds 1 and 2, 1 

point in round 3
– Each incorrect pair loses 1 point
– Within each round, negative scores are brought back 

to zero

SDS: symbol digit substitution Number of correct matches and number of attempts
Fields 23324 (center) and 20159 (online) Fields 

23323 (center) and 20195 (online)

Score = the number of correct matches
Exclusion criteria: scores with more than 35 attempts 

and less than 65% correct matches (participants 
likely did not follow test instructions, for example 
by repeatedly entering the same digit). These outlier 
limits were computed as ± 3SD from the mean

RT: reaction time Mean time to correctly identify matches
Field 20023 (center only)

Score =  − log(mean time to correctly identify matches)
Higher scores represent better performance
No exclusion criteria because response times out of the 

50 ms to 2000 ms range were already excluded
TMT: trail making Duration to complete alphanumeric path trail

Fields 6350 (center) and 20157 (online)
Score =  − log(duration to complete alphanumeric path 

trail)
Higher scores represent better performance
This measure had higher correlations with other 

tests than a measure based on a combination of the 
numeric and alphanumeric trails
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characteristics: For each standardization sample, we com-
puted the proportion of participants for each possible com-
bination of country, sex, age range at census, occupation 
status, and occupation SOC group. We compared the pro-
portion of UK Biobank participants in each cell to the 2001 
census and created weights for each cell by dividing the 
census proportion by the UK Biobank proportion. See Sup-
plemental Sect. 1.3 for details and an example.

We used the cNorm package (Lenhard et al. 2018) to 
compute norming models on the standardization samples 
with census weights, using the semiparametric continuous 
norming method. We modeled raw scores as a function of 
standard scores (percentiles) and age at test completion. Age 
at test completion is provided in field 21003 for tests taken at 
the assessment center and in fields 20134 to 20138 for tests 
taken online. This age differs from the age used to compute 
census weighting factors, which is the participant’s age on 
the day of the 2001 census.

We applied the norming models to the whole dataset and 
obtained standardized test scores for all participants on the 
tests they took (Fig. 1).

G factor

We created a g factor score for all participants who com-
pleted at least one of the eight cognitive tests using CFA. 
The g factor was standardized relative to the UK population. 
We also evaluated the impact of missing test scores on the 
quality of the g factor.

CFA parameters

We performed a CFA with one-factor loading on the eight 
cognitive tests. We estimated the CFA model with the 
lavaan R package (Rosseel 2012). We used the full informa-
tion maximum likelihood (FIML) estimator to make use of 
all data points even for cases with missing values, estimated 
the mean structure, and set the variance of the latent vari-
able to 1 to estimate each observed variable loading. Model 
fit was assessed using commonly used model fit indices: the 
Tucker–Lewis index (TLI), the comparative fit index (CFI), 
standardized root mean square residual (SRMR), and the 
root mean square error of approximation (RMSEA). Good fit 
was established with a CFI and TLI > 0.95, a RMSEA < 0.06 
and a SRMR < 0.08 (Hu and Bentler 1999). See Supplemen-
tal Sect. 1.4 for a discussion on the choice of factor analysis.

G factor score standardization

We created a standardization sample with 496,990 partici-
pants who had data for the census variables: sex, age on 
census day, and occupation on census day (countries were 

merged, see Supplement Sect.  1.3), to compute census 
weighting factors for these participants (Fig. 1).

We computed factor scores using the regression estima-
tion method, which maximizes validity (DiStefano et al. 
2009). We then computed these scores' weighted mean and 
standard deviation, using the census weighting factors. We 
subtracted the weighted sample mean from the raw factor 
scores and divided the result by the weighted sample stand-
ard deviation, to obtain factor scores with a general popula-
tion mean of 0 and a standard deviation of 1.

Evaluation of the g factor score quality in the presence 
of missing data

We examined how well a g factor score computed using a 
subset of tests (called partial factor score) correlates with 
the factor score that would have been obtained from the full 
set of eight tests (called full factor score) by looking at the 
correlation between the full and the partial factor scores for 
each the 80 subsets of tests present in the data, in the 30,471 
participants who completed all the tests.

Analyses

In the following analyses, we included participants whose 
combination of cognitive tests allowed for a correlation with 
the complete g factor of 0.70 or higher (N = 261,701). This 
threshold was chosen to maximize the robustness of the fac-
tor as well as the number of participants for which we would 
generate a g factor.

Testing validity: correlations with alternative estimates of g 
and life outcomes

To examine the external validity of our g measure by exam-
ining correlations in complete cases between our g factor 
and FI, life and health outcomes expected to correlate with 
intelligence [e.g., educational attainment (EA), income, dep-
rivation indices, etc., life and health outcomes described in 
Supplemental Data S8]. In brief, we selected well-being, 
household income before taxes, highest qualification as well 
as the Townsend deprivation score—a deprivation score of 
an individual’s postal code from the census data—and the 
index of multiple deprivations that regroups several dep-
rivation indices which vary by country. The latter include 
subindices such as health, income, education, employment, 
and housing. The index of multiple deprivations and its sub-
indices come from a UK government qualitative study of 
deprived areas in British local councils and are calculated 
separately for England, Wales, and Scotland. Common mul-
tiple deprivation scores across countries were combined into 
a single variable for the correlation matrix (Supplemental 
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Data S8). We adjusted each measure for sex and age at which 
the measure was reported.

Genetic analyses

We conducted genetic analyses to create PGSs for individu-
als with neuroimaging data for future UK Biobank studies. 
A detailed overview of the genetic analyses in the main text 
and the supplements are available in Supplemental Sect. 1.6 
In the supplements, we compared our GWASs results to 
those from previous GWAS studies on intelligence, cog-
nitive performance, or EA with public data to ensure that 
the lead SNPs impacted genes previously associated with 
intelligence, cognitive performance, or EA. We additionally 
report genomic loci from the full GWAS that were not previ-
ously associated with cognition using functional mapping 
and annotation of GWASs (FUMA; http://​fuma.​ctglab.​nl/; 
Watanabe et al. 2017; Supplemental Sect. 1.6.4).

Main analyses  In brief, we conducted a g factor GWAS 
on 187,288 individuals without neuroimaging data or 
twins/siblings with neuroimaging data (No Neuroimaging 
GWAS). We removed participants with neuroimaging data 
and their siblings to maintain the independence of predic-
tions and prevent overfitting. We controlled for sex, center, 
chip, birth year, and the first 40 principal components (PCs) 
of the genotyped data. All GWASs were conducted on 
5,319,661 variants with a linear mixed model-based asso-
ciation analysis using a sparse genetic relationship matrix 
to control for relatedness (fastGWA; Jiang et al. 2019) from 
the genome-wide complex trait analysis (GCTA) package 
(Yang et al. 2016).

Using sBayesR (Lloyd-Jones et al. 2019), we created 
PGSs from the summary statistics of the No Neuroimaging 
GWAS for individuals with either neuroimaging data or sib-
lings with neuroimaging data to assess the predictive power 
of genetic variance from the No Neuroimaging GWAS on 
the g factor (for details see Supplemental Sect. 1.6.5.1). 
After excluding individuals from non-British ancestry, 
first or second-degree cousins, and parent–offsprings, we 
adjusted the g factor PGS for sex, birth year, and the first 40 
PCs and then examined its association with g.

Additional analyses  We conducted additional analyses to 
answer the following questions.

(1)	 Does the g factor PGS explain more variance in g 
than the Fluid Intelligence (FI) PGS? Using the 
GWAS and PGS procedures described above, we ran 
a GWAS of FI on 180,722 individuals without neuro-
imaging data or twins/siblings with neuroimaging data 
(FI GWAS) and calculated FI PGS for individuals with 
neuroimaging data with the GWAS and PGS param-

eters described above. After excluding individuals from 
non-British ancestry, first or second-degree cousins, 
and parent–offsprings and adjusting the FI PGS for sex, 
birth year, and the first 40 PCs, we examined the per-
centage of variance explained in g and FI, separately.

(2)	 Once you control for between-family factors, what 
proportion of variance in g does the g PGS predict? 
To quantify to what extent the polygenic signal cap-
tures genetic effects that pass through the environment 
(indirect genetic effects or genetic nurture; Howe et al. 
2021), we conducted family fixed-effects analyses. To 
do so, we first ran a g factor GWAS on the sample from 
the No Neuroimaging GWAS without siblings (no fam-
ily, No Neuroimaging GWAS). We used the summary 
statistics from this GWAS to create PGSs for individu-
als with siblings. After excluding individuals from 
non-British ancestry, first or second-degree cousins, 
we adjusted the PGS for sex, birth year, and the first 40 
PCs. Finally, we ran the family fixed effects model with 
and without including sibship as a random effect and 
reported the change in explained variance of the PGS 
on the g factor when adjusting or not for sibling pairs 
(for details see Supplemental Sect. 1.6.5.2).

(3)	 Do our g factor and FI measures have similar genetic 
correlations and heritabilities as the Cognitive Per-
formance and Educational Attainment (EA) meas-
ures from Lee et al. (2018)? We examined whether 
the genetic influences underlying our g factor and FI 
measure were similar to the genetic influences underly-
ing the EA (i.e., years of education, or achieved educa-
tional level) and cognitive performance (i.e., measured 
as FI in the UK Biobank and with a g factor in the 
COGENT and CHARGE consortiums) reported by 
Lee et al. (2018). We compared our findings to the Lee 
et al. (2018) results because this is the largest genetic 
study of cognition to date and results are publicly avail-
able. To do so, we calculated the genetic correlations 
between our g-factor GWAS summary statistics, our FI 
GWAS summary statistics, and the publicly available 
EA and g factor summary statistics. We additionally 
calculated the heritability estimates of each summary 
statistics file to examine whether our g factor was more 
heritable than our FI measure, previous g factor meas-
ures, and EA. These analyses were conducted with link-
age disequilibrium score regression using the ldsc func-
tion from the GSEM package (Grotzinger et al. 2019).

(4)	 If we include participants with a poor g factor meas-
ure (r < 0.7), are the genetic correlation and herit-
abilities similar? Using the GWAS described above, 
we conducted a GWAS on 307,009 individuals with 
a g factor measure and without neuroimaging data or 
twins/siblings with neuroimaging data (low quality No 
Neuroimaging g factor GWAS). If the genetic correla-

http://fuma.ctglab.nl/
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tion and heritabilities were similar or better for this low 
g quality GWAS compared to the No Neuroimaging 
GWAS, we should be able to use this larger sample size 
to obtain more lead SNPs and better polygenic predic-
tions.

Testing validity: correlations with alternative estimates 
of g, life outcomes, neuroimaging, and genetic measures

We conducted additional correlational analyses on a sub-
set of participants that had neuroimaging data and PGSs. 
We examined correlations on complete cases between our 
g factor and alternative measures of intelligence for the UK 
Biobank (FI alone and g factors with a subset of the tests we 
used), life and health outcomes expected to correlate with 
intelligence (e.g., EA, income, deprivation indices, etc., life 
and health outcomes in Supplemental Data S8 on OSF), total 
brain volume (TBV; Williams et al. 2021), and the FI and g 
factor PGS in individuals with neuroimaging data.

We compared our g factor score to alternate measures 
of intelligence by transforming the cognitive variables and 
extracting the g factor as done by Cox et al. (2019a, b) and 
de Nooij et al. (2020), which used a different combination of 
cognitive tests and factoring methods with a similar sample 
to the one we used to calculate PGSs. The authors used cog-
nitive tests completed at the center during the neuroimaging 
visit (Instance 2) and included tests that were not initially 
available at the first center visit. Cox et al. (2019a, b) cre-
ated a latent factor using CFA from the MAT, the SDS, the 
FI, and the TMTB cognitive tests, and de Nooij et al. (2020) 
extracted the first PC of the numerical memory, the FI, the 
SDS, the TMTB, the MAT, and the TWR cognitive tests.

Since our g factor is adjusted for age, we created alterna-
tive g factors that are adjusted for age in the CFA or after 
extracting the first PC. We additionally similarly controlled 
for sex to examine whether differences between our g factor 
and the g alternatives could be explained by sex differences.

Results

Cognitive tests

We compared the distribution of the standard test scores 
before and after adjusting for the difference between the UK 
Biobank population and the general UK population (Fig. 2). 
After adjusting for age and census weights, the distribution 
of the scores shifted to the right, indicating a relatively 
higher score in the UK Biobank relative to the UK norm 
(Supplemental Sect. 2.1.1). In some cases, the distribu-
tion was not normal because of its categorical nature (e.g., 
MEMN) or because of threshold effects (e.g., MEMS). Cor-
relations between standard scores ranged from 0.07 (MEMN 

and RT) to 0.50 (TMT and SDS). TMT and FI had the high-
est correlation coefficients with other cognitive tests (Fig. 
S3; Supplemental Sect. 2.1.2).

CFA results

Model fit

The CFA model fit on 501,650 participants (30,307 with 
complete data; N Women = 272,955; N Men = 228,695) 
was good (CFI = 0.955, TLI = 0.938, RMSEA = 0.024, 
SRMR = 0.028). The g factor accounted for 29% of the vari-
ance across cognitive tests and the loadings ranged from 0.77 
(TMT) to 0.277 (RT) (Fig. 3; Supplemental Sect. 2.1.3). Sex 
differences in cognitive and g factor scores are available in 
Supplemental Sect. 2.1.4.

Distribution of the g factor before and after census 
correction

We compared the distribution of the g factor scores before 
(M =  − 0.004, SD = 0.993) and after (M = 0.086, SD = 1.001) 
adjusting for the difference between the UK Biobank popula-
tion and the general UK population (d = 0.09). After adjust-
ing, the factor score distribution shifted to the right, indi-
cating a relatively higher score in the UK Biobank relative 
to the UK norm (Fig. 4; g distribution by job category in 
Supplemental Sect. 2.1.5).

G factor quality

The quality of the g factor and the number of individuals 
for each possible combination of completed tests are avail-
able in Supplemental Sect. 2.1.6. For example, if we select 
participants with any of the first 73 cognitive test combina-
tions observed in the UK Biobank, the worst factor scores 
of these participants would have a correlation of 0.70 with 
the ideal, 8-tests factor scores, and the number of available 
participants will be over 261,701.

Analysis of individuals with a g factor quality 
over 0.70

Correlations: alternative g factors and life outcomes

We examined the external validity of our g measure by 
examining the association in complete cases between our 
g factor measure, FI (which is often used as a proxy of g in 
most studies), and life outcomes collected at the first center 
visit or online to estimate correlation coefficients on a larger 
number of participants (Fig. 5).
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Genetic analyses

Main results  We identified 150 approximately lead SNPs 
attaining genome-wide significance in the full sample 

GWAS (h2 = 0.201, SE = 0.008) and 100 in the No Neu-
roimaging Sample GWAS (h2 = 0.197, SE = 0.008). There 
were 127 genomic risk loci associated with the g factor in 
the full GWAS and 84 genomic risk loci with the g factor in 

Fig. 2   The distribution of cognitive tests before (blue) and after 
(orange) correcting for sociodemographic differences between the 
UK Biobank population and the UK population (2001 census). FI 
fluid intelligence, RT reaction time, MAT matrix pattern comple-

tion, TWR​ tower rearranging, MEMN numeric memory, MEMS pair 
matching, SDS symbol digit substitution, TMT trail making (Color 
figure online)
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the No Neuroimaging GWAS (P < 5 × 10−8; Supplemental 
Data S1–S2 on OSF). See Fig. S5 for the Manhattan and 
QQ-plots. Sixty-three lead SNPs from the full GWAS were 
previously associated with genes known to impact intelli-
gence, cognitive performance, or EA (Supplemental Sects. 
2.2.3. and 2.2.4). A highly similar polygenic signal was cap-
tured by the g-factor from the No Neuroimaging GWAS, 
the full GWAS, and the publicly available GWASs of intel-
ligence (rg = 0.90–1; Fig. S10; Lee et al. 2018; Savage et al. 
2018).

From the No Neuroimaging GWAS, we created g factor 
PGS for 38,866 individuals and a FI PGS for 38,642 indi-
viduals who either had neuroimaging data or siblings with 
neuroimaging data and g factor quality greater than r ≥ 0.70. 
Of the 39,866 individuals with neuroimaging data, 23,689 
had a g factor quality of r = 1 (Table S9).

After excluding individuals from non-British ancestry 
and first or second-degree cousins and parent–offspring, 
we adjusted the g and FI values for sex, year of birth, and 
the first 40 genetic PCs. The g factor PGS created from the 
No Neuroimaging GWAS explained 7.6% of the variance 
in the g factor of 26,082 individuals with neuroimaging 
data and 1092 twins or siblings without neuroimaging data 
(N = 27,174). The FI created from the No Neuroimaging 
GWAS explained 6.6% of the variance in FI of individuals 
with either neuroimaging data or siblings with neuroimaging 
data (N = 26,360; Supplemental Sect. 2.2.5).

Additional analyses 

(1)	 Does the g factor PGS explain more variance in g 
than the FI PGS? The g factor PGS created from the 
No Neuroimaging GWAS explained 1.6% more vari-

Fig. 3   Confirmatory factor analysis of UK Biobank cognitive tests. 
Analyses were conducted with full information maximum likelihood 
with the lavaan package (Rosseel 2012). Explained variance 29%. FI 
fluid intelligence, MAT matrix pattern completion, TWR​ tower rear-

ranging, MEMN numeric memory, MEMS pair matching, SDS sym-
bol digit substitution, TMT trail making. Loadings from completely 
standardized solutions (i.e., standardized observed and latent vari-
ables)

Fig. 4   The distribution of the g factor scores before and after cen-
sus correction for all participants (left) and a subset of participants 
(right). The subset of participants had a g factor score from a com-

bination of subtests that allowed for a minimum correlation of 0.70 
between the partial g factor score and the full g factor score
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ance in g than the FI PGS created from the No Neuro-
imaging GWAS, which explained 6.0% of the variance 
in the g factor (N = 26,360). The g factor PGS created 
from the No Neuroimaging GWAS explained 5.8% of 
the variance in FI (N = 26,360).

(2)	 Once you control for between-family factors, what 
proportion of variance in g does the g PGS predict? 
After excluding individuals from non-British ances-
try and first or second-degree cousins and correcting 
for sex, year of birth, and the first 40 genetic PCs, the 
family fixed-effect analysis on the g factor PGS from 
the No Family GWAS summary statistics showed a 
decrease in explained variance 7.5% from to 4.2% and 
a reduction of 10% in the effect size (N = 14,601). See 
Supplemental Sect. 2.2.4 for additional PGS analyses.

(3)	 Do our g factor and FI measures have similar genetic 
correlations and heritabilities as the g factor and 
Educational Attainment (EA) measures from Lee 
et al. (2018)? The SNP heritability of the present g 
factor was similar to the heritability of Lee's g factor 

(h2 = 0.199, SE = 0.008) and greater than Lee’s EA 
(h2 = 0.151, SE = 0.004; Tables S10, S11). Lee’s g 
factor was highly correlated to our various estimates 
of the g factor 0.92–0.93, suggesting that they capture 
common genetic influences (Fig. S10).

(4)	 Do participants with a low-quality g factor estimate 
(r < 0.7) impact the results? We found that the herit-
ability of the Low-Quality No Neuroimaging GWAS 
(h2 = 0.127, SE = 0.005) was much lower than the her-
itability of the No Neuroimaging GWAS (h2 = 0.197, 
SE = 0.008; Table S10) and that the genetic correlation 
between the Low-Quality No Neuroimaging GWAS and 
the No Neuroimaging GWAS was of 0.98 (Fig. S10), 
suggesting that although both GWASs are measuring 
overlapping genetic effects, the Low-Quality No Neu-
roimaging GWAS has more measurement error. The 
genetic correlations of the Low-Quality No Neuroim-
aging GWAS were lower with Lee's g factor (0.87 vs. 
0.93) and EA (0.5 vs. 0.55), suggesting that doubling 

Fig. 5   Correlation between age 
and sex-adjusted g factor Scores 
and health and life outcomes. 
Pearson correlation coefficients 
were estimated on 181,327 indi-
viduals without missing data. 
All measures are adjusted for 
age at which the measure was 
taken and sex. G corresponds to 
the g factor of individuals with 
a combination of cognitive tests 
that allowed for a correlation 
of 0.70 or higher between their 
actual g factor and what their g 
factor would have been if they 
had completed all tests. FI fluid 
intelligence
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the sample size by including g factor estimates of lower 
quality is counterproductive for the GWAS.

Correlations: alternative g factors, life outcomes, 
neuroimaging, and genetic measures

We conducted separate correlation analyses on our g fac-
tor with the alternative g factors, neuroimaging, and PGSs 
because these data were only available for participants who 
visited the center for the neuroimaging visit.

The alternative g factors were created from cognitive 
test scores from their neuroimaging visit and cognitive tests 
that were only available at the second visit. The correlation 
between our study’s g factor (adjusted for age, not sex) and 
the cognitive tests ranged from 0.25 (RT) to 0.84 (TMT), 
whereas the age-adjusted g factors from previous studies 
ranged from about 0.16 (RT) to 0.71 (MAT; Fig. S13).

Correlation coefficients between our study’s g factor 
and alternative g factors were high (0.85 to 0.89; Fig. S13). 
The alternative g factor measures were more correlated to 
the highest qualification achieved (r = 0.26–0.29 vs. 0.24) 
and income (r = 0.18–0.19 vs. 0.16) than the present g fac-
tor because the cognitive tests included in the alternative 
g factors were the cognitive tests with the highest correla-
tions with highest qualification and income (Fig. S15).

The g factor from the present study and the g factors 
calculated as done by previous studies were highly corre-
lated after adjusting for the age of test completion and sex. 
The g factors positively correlated with the PGS, highest 
qualifications, income before tax, overall health, and TBV, 
and negatively with the deprivation indices (Fig. 6). We 
also looked at the correlation coefficients of the g factors 
with well-being and additional deprivation indices, which 
reflect the degree of housing, employment, education, etc. 
deprivation in an area. However, these correlations were 
small and therefore reported in Fig. S16.

Fig. 6   Correlation between 
age and sex-adjusted G factor 
scores, selected life and health 
outcomes, total brain volume 
(TBV), and sex and year of 
birth adjusted polygenic scores 
(PGSs). Pearson correlation 
coefficients were estimated on 
13,085 British individuals with-
out missing data without first- 
or second-degree cousins and 
parent–offspring. We included 
all life and health variables with 
an r > or = 0.1 with g except 
for the Townsend deprivation 
index. CFA confirmatory factor 
analysis, PC1 1st principal 
component, G general factor for 
intelligence. G corresponds to 
the g factor of individuals with 
a combination of cognitive tests 
that allowed for a correlation 
of 0.70 or higher between their 
actual g factor and what their g 
factor would have been if they 
had completed all tests. FI fluid 
intelligence, Income income 
before tax. PGSs were adjusted 
for sex and birth year (year 
birth)
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Discussion

We aimed to create an age-standardized g factor measure 
that is relative to the UK population and provide a PGS for 
UK Biobank participants with neuroimaging data. Unlike 
previous studies on the g factor in the UK Biobank, we 
partially adjust for sampling bias on the g factor in the UK 
Biobank, we provide an estimation of the g factor’s quality 
for each participant with missing data, and we perform a 
g factor GWAS excluding participants with neuroimaging 
data to allow future studies on the genetic, environmental, 
and neural correlates of intelligence in the UK Biobank. 
Our g factor was highly correlated with alternative g factor 
measures of intelligence in the UK Biobank and their cor-
relations with life and health outcomes were similar. The g 
factor PGS of 26,082 UK Biobank individuals with neuro-
imaging data and 1092 siblings without neuroimaging data 
explained 7.6% of the variance in the intelligence score.

The g factor from the present study and alternative 
g factor measures were similarly correlated to life out-
comes, such as household income before tax or highest 
qualification (i.e., level of education) when adjusting for 
age and sex. The slightly higher correlations between the 
alternative g factor measures and the highest qualification 
achieved compared to our g factor could be explained by 
the tests used to create the alternative g factors, which cor-
related the most with the highest qualification. Therefore, 
some outcomes, such as the highest qualification, may not 
be as highly correlated to general intelligence as previ-
ously thought but may be more correlated with specific 
cognitive tests.

We report a negative correlation between our g factor 
and the Townsend index, an SES measure that reflects a 
person’s material deprivation based on unemployment rates, 
non-car ownership, non-homeownership, and household 
overcrowding in their postal code. This negative correlation 
coincides with the negative correlation between neighbor-
hood deprivation and EA (Garner and Raudenbush 1991), 
as well as previous findings that childhood IQ remains stable 
across old age (Deary et al. 2000), predicts later SES out-
comes (Deary et al. 2005). We additionally found a negative 
correlation between our g factor and the index of multiple 
deprivation of the area where a person resides, which was 
largely explained by the negative correlation between the g 
factor and the education deprivation index of the area where 
a person resides. The education deprivation index was meas-
ured by a score reflecting child and adolescent school per-
formance (e.g., English, math, and science exams Stage 3 
exams) and adult skills (e.g., the proportion of adults with no 
or low qualifications) in a given geographical area.

The g PGS created from the No Neuroimaging GWAS 
summary statistics explained 7.7% of the variance in the 

g factor of individuals with neuroimaging data and sib-
lings with neuroimaging data. The largest GWAS study 
of cognition to date (Lee et al. 2018) similarly found that 
their Cognitive Performance PGS explained 7% of the 
variance in Cognitive Performance for individuals in the 
Wisconsin Longitudinal Study, a study that used cognitive 
tests with similar properties to their discovery GWAS. The 
g-factor in our study captured the same polygenic signal as 
the g-factor of Lee et al. (2018; rg = 0.92). However, they 
found that the Cognitive Performance PGS from the sum-
mary statistics of their multi-trait analysis GWAS (MTAG) 
of CP yielded more significant SNPs and thus, explained 
9.7% of the variance in CP for individuals in the Wiscon-
sin Longitudinal Study. Although the MTAG summary 
statistics may explain more variance in g, these summary 
statistics cannot be applied to the UK Biobank individuals 
with neuroimaging data because they were included in the 
discovery GWAS.

The FI PGS explained 1.6% less variance in g than the 
PGS of the g factor, suggesting that the g PGS is a better 
genetic predictor of g. The genetic correlations between FI 
and the g factor were high, suggesting that FI and g have 
very similar genetic influences. The g factor and FI PGSs 
also similarly correlated with TBV, the most correlated brain 
measure to intelligence (Deary et al. 2021). Taken together, 
our findings suggest that a common genetic component to FI 
and the g factor may explain the genetic association between 
intelligence and TBV. Although the FI PGS may be suffi-
cient when investigating global brain size associations with 
intelligence, the g factor PGS still explains a larger range of 
variance in general intelligence than FI and its use should 
be favored when controlling for the genetic components of 
intelligence.

The present study has several limitations. First, the selec-
tion of cognitive tests currently available in the UK Biobank 
severely underrepresents verbal ability. Only two of the eight 
cognitive tests included in this study were verbal: the FI test 
(verbal-numerical reasoning) and the numeric memory test 
(digit span). The UK Biobank is currently in the process of 
adding verbal tests to the cognitive assessment (e.g., picture 
vocabulary and word production), which would justify the 
calculation of a new g factor once they are completed by a 
sufficient number of participants.

The underrepresentation of verbal skills may partly 
explain why women had a slightly lower g factor than men 
(d =  − 0.13). Another non-exclusive explanation may be that 
male and female UK populations are unequally sampled in 
the UK Biobank, with women representing 54.4% of the 
entire sample. Thus, women with lower general intelligence 
may have been oversampled compared to men with lower 
intelligence. Finally, participants were born between 1934 
and 1971 (median 1950), a period when women in the UK 
may have had inferior educational opportunities, preventing 
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them from reaching their intellectual potential. The UK 
Biobank may thus not be suitable to reliably estimate sex 
differences in cognitive abilities and other phenotypes asso-
ciated with cognitive ability.

Second, although the loadings of the present study cor-
respond to those previously reported by UK Biobank studies 
(Cox et al. 2019a, b; de la Fuente et al. 2021), the highest 
loadings on the g factor in the UK Biobank differ from those 
reported across studies using psychometric tests to measure 
intelligence. Specifically, the Raven’s progressive matri-
ces test is expected to have the highest loading on g across 
psychometric tests around 0.7 (Gignac 2015; Gignac and 
Watkins 2013). And yet, we and other UK Biobank studies 
report the highest loading for trail-making and FI (Cox et al. 
2019a, b; de la Fuente et al. 2021) and a loading of around 
0.5 for the matrices. One study examined the concurrent 
validity of each UK Biobank cognitive test by reporting the 
correlation between each UK Biobank cognitive test and 
one to several well-validated standard cognitive tests of the 
same cognitive domain (reference tests). The authors found 
that the UK Biobank TMT B strongly correlated at 0.66 with 
the reference TMT B test and that the UK Biobank matrices 
correlated at 0.57 with the reference matrices test. Over-
all, they concluded that the UK Biobank tests load strongly 
on general cognitive ability. They additionally measured 
test–retest reliability after a mean of 28 days and report that 
the test–retest reliability was greater than 0.5 but that the 
mean performance on some tests, such as FI increased at 
Time 2. Considering that we took the first instance of test 
completion, our g factor should not be prone to repeat testing 
effects (Fawns-Ritchie and Deary 2020).

We were limited when correcting for the socio-demo-
graphic imbalance in the UK Biobank. Due to occupation 
coding constraints, we had to use the 2001 census data, 
instead of the 2011 census data, and we only determined the 
occupation on census day of 71.5% of participants. Moreo-
ver, we were limited by the number of variables on which we 
adjusted the UK Biobank sample as we did not have access 
to the qualification data by age, sex, and country. Although 
further variables should be adjusted to provide a g factor that 
is perfectly relative to the UK population, we nonetheless 
provide cognitive test scores and a g factor measure that are 
age-standardized and, to some extent, adjusted for sampling 
bias in the UK Biobank.

Finally, the g factor score was calculated from different 
subsets of tests and although we took the first instance of 
a test, some tests were taken at different ages. Therefore, 
although we attempted to provide a g factor measure that 
most resembles pre-aging adult intelligence, some test scores 
may already be influenced by cognitive decline. However, 
one study examining test–retest reliability over a period of 
4 years, which may reflect cognitive decline, reported that 
most UK Biobank cognitive tests show reasonable stability 

except for the visual memory task (pairs-matching; Lyall 
et al. 2016) and another study found declines in cognitive 
abilities before 65 years of age were small (Cornelis et al. 
2019). Therefore, considering that the majority of partici-
pants were 64 years or younger and that the median age was 
60, our g factor measure likely reflects pre-cognitive-decline 
intelligence scores.

The present study provides cognitive test scores and a g 
factor score for UK Biobank participants that are adjusted 
for age and partially adjusted for sampling bias as well as 
a g PGS for UK Biobank individuals with neuroimaging 
data that explained 7.6% of the variance in the g factor. The 
behavioral and genetic scores from this study will enable 
the simultaneous investigation of the associations between 
the brain, genes, and intelligence, which are currently rare 
in the present literature (Deary et al. 2021). Taken together, 
the present study offers robust measures of intelligence that 
will foster homogeneity in intelligence research within the 
UK Biobank and provides summary statistics and PGSs for 
future studies interested in examining the genetic associa-
tions of intelligence with neuroimaging, behavioral, and 
environmental measures.
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