Neurogenetics and auditory processing in developmental dyslexia
Anne-Lise Giraud1,2 and Franck Ramus3

Dyslexia is a polygenic developmental reading disorder characterized by an auditory/phonological deficit. Based on the latest genetic and neurophysiological studies, we propose a tentative model in which phonological deficits could arise from genetic anomalies of the cortical micro-architecture in the temporal lobe.

Addresses
1 Inserm U960, Département d’Etudes Cognitives, Ecole Normale Supérieure, 29 rue d’Ulm, 75005 Paris, France
2 Department of Neuroscience, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland
3 Laboratoire de Sciences Cognitives et Psycholinguistique, Ecole Normale Supérieure, EHESS, CNRS, 29 rue d’Ulm, 75005 Paris, France

Corresponding author: Giraud, Anne-Lise (annelise.giraud@gmail.com)

Current Opinion in Neurobiology 2013, 23:37–42
This review comes from a themed issue on Neurogenetics
Edited by Ralph Greenspan and Christine Petit
For a complete overview see the Issue and the Editorial
Available online 3rd October 2012
0959-4388/$ – see front matter, © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.conb.2012.09.003

Introduction
Dyslexia is a reading disorder of polygenic origin affecting 3–7% of school children, defined by marked difficulties in the acquisition of reading despite normal intelligence, perception and educational opportunities [1]. In most cases, dyslexia is accompanied with a phonological deficit, for example, difficulties in tasks involving speech sounds and dysfunctions of the left perisylvian language network [2] and/or subcortical auditory relays [3,4]. Understanding how diverse genetic variations can cause a cognitive disorder as specific as dyslexia is the challenge we are currently facing. Animals in which dyslexia genes have been knocked out exhibit both disturbed neuronal migration in auditory cortex and impaired auditory processing. We review the current literature and describe a putative mechanistic model linking neuronal micro-architecture of the auditory cortex to specific alterations of phonological processing.

Molecular genetics of dyslexia and related cognitive and brain phenotypes
Between 2003 and 2006, a first series of genes (DYSX1C1, ROBO1, KIAA0319 and DCDC2) were found to be associated with dyslexia [5]. Since then, additional candidate genes have been proposed, raising the number to about 15 [6,7].

Several of the identified susceptibility alleles have recently been associated not only with the diagnosis of dyslexia but also with reading or spelling phenotypic variability within the general population. A few studies showed KIAA0319, DYSX1C1, DCDC2 and CMIP to be associated with normal variations in reading ability [8–12]. These studies remain to be replicated, as there are statistical issues and inverted effects on some alleles [13].

Beyond reading and spelling, other cognitive phenotypes relevant to dyslexia seem to be influenced by dyslexia candidate genes. For instance, verbal short-term memory, that is, the ability to store and recall a series of verbal items, has also been associated with DYSX1C1, ROBO1 and DCDC2 in both dyslexic children and their siblings [14–17]. One study further suggested linkage between rapid automatised naming, that is, the ability to rapidly name a series of pictures, and region 6p21, neighbouring the loci of KIAA0319 and DCDC2 [18].

At the macroscopic level, dyslexia is associated with alterations of human cortical neuroanatomy [19,20]. Broadly speaking, the alterations are suggestive of a disconnection syndrome as they affect the white and grey matter sitting in the fronto-temporo-parietal network that is involved in reading. Recently, dyslexia candidate genes have been shown to be associated with such neuroanatomical variations. DCDC2 deletion is associated in healthy adults with increased grey matter volumes across a large network of cortical regions [21], which might in part overlap with the location of ectopias that have been observed post-mortem in dyslexic individuals [22] (Figure 1a). White matter volume is also affected by variations of KIAA0319, DYSX1C1 and DCDC2, particularly so in the posterior fibre tracts that lie within the superior longitudinal fasciculus and the corpus callosum, and those linking the left medial temporal gyrus with angular and supramarginal gyri [23**] (Figure 1b). The location of these structural differences is consistent both with previous neuroanatomical (VBM and diffusion) studies [24*] as well as with functional neuroimaging studies of reading and dyslexia [25,26].

A haplotype composed of dyslexia-susceptibility alleles within the KIAA0319 region has recently been associated with the left–right asymmetry of brain activations for reading in temporal cortex using fMRI (Figure 1c). Adult, healthy carriers of the susceptibility haplotype show less leftward functional asymmetry than controls, hence...
displaying a phenotype closer to that of dyslexic readers than to that of controls [27**]. The same study further showed that variations of FOXP2 are associated with activations of the left inferior frontal gyrus and the left precentral cortex [27**]. This gene was previously associated with developmental verbal dyspraxia [28,29], but also recently with dyslexia [30].

Dyslexia-susceptibility alleles have been related to neurofunctional phenotypes, for instance with electrophysiological responses to speech sounds. The auditory mismatch negativity (MMN) to minimally different syllables seems reduced in carriers of susceptibility alleles. MMN is a pre-attentive electrophysiological component that reflects change detection in the sensory environment. It corresponds to an increase in evoked responses when a stimulus does not conform to expectations generated by previous repetitions, for example, in an oddball paradigm. Using a whole-genome association study, the variability of MMN in dyslexia was associated with an intergenic marker on Chr. 4 that was related to the transcription of SLC2A3 on Chr 12, a DNA region coding for the main cerebral glucose transporter in neurons, which had not previously been associated with dyslexia [31]. Another study found abnormal MMN in two individuals carrying three rare variants within DCDC2 and between DCDC2 and KIAA0319 in dyslexia-linked region 6p22 [32]. Consistent with earlier findings [33,34], both studies found the genetic effects to affect the late (300–700 ms) MMN component, but not the early one (100–200 ms). This presumably reflects intact auditory discrimination ability, but alterations at later stages of auditory/phonological processing.

Dyslexia candidate genes influence cortical neuronal migration and microcircuits

The neural effects of the genetic markers identified in humans are now being explored in non-human animals. Candidate genes can be artificially inactivated and the neural consequences followed up from microscopic to functional levels. RNA interference experiments in rodent models suggest that all four primarily identified genes (DYX1C1, ROBO1, DCDC2, KIAA0319) appear to regulate neocortical development, in particular neuronal migration [7,35–37], which provides a nice connection with earlier post-mortem studies that indicated disrupted cortical architecture in the brains of dyslexic individuals, in particular over the temporal lobe [38].

The inactivation of DYX1C1, DCDC2 and KIAA0319 produces a clustering of neurons in the ventricular zone. Some neurons seem trapped and have difficulty migrating to their cortical target (Figure 2a), while other neurons seem to move beyond their target in superficial layers and produce ectopias [37] (Figure 2b). Many different cell types, not normally present in superficial layers, can be observed in ectopias. These neurons and interneurons establish abnormal vertical and horizontal connectivity, and hence disrupt local microcircuits [37].

In the long term, the distribution of neurons within the cortex seems to be skewed, with an over-representation in layers 1, 5 and 6 and in the underlying white matter, at the expense of layers 3 and 4 [39]. Rodent models additionally provide interesting functional information. Auditory and learning functions, but not working memory, appear impaired in a KIAA0319 RNAi mouse model [40]. When DYX1C1 is inactivated, both auditory function [41] and working memory appear impaired, whereas when DCDC2 is mutated, only memory deficits arise independent of detectable cortical architecture anomaly [42]. Cortical disruptions associated with KIAA0319 and DYX1C1 seem to consistently induce auditory dysfunctions, yet their expression pattern is not wholly consistent with auditory impairments [43]. The cortical anomalies observed in mouse models rather loosely fit with the location of ectopias in humans over the temporal and inferior prefrontal lobes (Figure 1a), reflecting the limits of animal models in dyslexia research.

Many more details are needed to complete the picture, but it seems reasonable to assume that firstly cortical micro-circuitry is disrupted in regions that present
anomalies of neuronal migration (temporal and inferior prefrontal lobes in humans), whether ectopias, heterotopias, or other alterations of neurons’ distribution, and secondly that these cortical anomalies somehow affect auditory function. Yet, how do anatomical anomalies impact on auditory function, and translate into a reading deficit, are issues that remain open.

A mechanistic hypothesis for linking genetic cortical anomalies and the phonological impairment in dyslexia

Further exploring the specific functional consequence of cortical microcircuitry anomalies could represent a promising research avenue. Migration anomalies likely disrupt the physiology of neuronal interactions within and across cortical layers and columns [44], and subsequently impair synchronous neuronal activity emerging from specific interactions across neurons and interneurons [45,46**] (Figure 3a). In auditory cortices, synchronous bursts of neural activity occur at specific frequencies in the delta/theta (1–7 Hz) and the low-gamma (20–40 Hz) ranges. This ensemble activity appears as so-called *neural oscillations* in intra-cortical or scalp encephalographic recordings (multunit neuronal activity, ECoG, EEG, MEG, etc). In auditory cortex theta- and low-gamma activity are detected in superficial cortical layers [47–49] (Figure 3b). Because neurons in temporal cortex ectopias establish abnormal connectivity with the cortical layers situated underneath, they likely disrupt the generation of delta/theta and gamma oscillations [37,50].

Anomalies in delta/theta and gamma oscillation generation could have important consequences on phonological processing. The most relevant acoustic modulation in speech signals is the syllabic rate, which falls within the delta/theta range. In addition, psycholinguistics shows that the brain segments speech into phonemes, which occur in natural speech at a rate of about 20–30 Hz, that is, within the low-gamma range. In sum, the theta and
gamma frequencies that the auditory cortex tends to spontaneously generate coincide with the two major phonological rates. This is so because the articulation system has presumably adapted to auditory sensitivity during the evolution of spoken language [51]. While the auditory system is capable of detecting modulations at rates much higher than 20–40 Hz [52,53], high frequency modulations do not yield temporally distinct cortical neural events (synchronous neural activity), which could be individually referred to and mentally manipulated as ‘auditory representations’. Short phonemes (e.g. stop-consonants) occurring over about 20 ms might be the shortest linguistic element that the cortex can represent and manipulate in a stable way, even though subphonemic elements can be detected and discriminated. Alterations in oscillation rates in auditory cortex might therefore directly translate into abnormal syllabic and phonemic representations, and constitute an interesting potential endophenotype of dyslexia, bridging the expression of genetic anomalies with impairments in the phonological domain.

Dyslexic individuals produce abnormal auditory cortical responses in the delta range [54]. Functionally, this disruption translates in a reduced ability to detect acoustic rise-times, a cue relevant to phonological processing [54–56]. Dyslexic individuals also show abnormal auditory responses to sounds that carry modulations in the low gamma range (20–35 Hz) [46**,56]. They lack a specific low-gamma steady state response in left auditory cortex, and present bilateral abnormal responses at a higher rate (near 60 Hz), which could indicate that they have finer-grained phonemic representations than controls (or infraphonemic representations). A direct consequence could be that they perceive, store and mentally manipulate subphonemes. This hypothesis is seductive as it could also account for verbal working memory deficits [46**]. Assuming that dyslexics can memorise an equivalent number of items as controls, they might appear impaired in auditory memory tasks simply because for a given acoustic stream, the amount of auditory representations that are attempted to be manipulated is higher than in controls.

Disruptions of neuronal migration occur in utero, and are therefore assumed to disrupt auditory cortical organisation very early on. Accordingly, auditory functional anomalies have been observed well before dyslexia manifests as a reading disorder [57,58], as well as in siblings of dyslexic children, thus reflecting shared endophenotypes [34]. Why auditory cortical anomalies would prevent some children from learning to read and not others remains unclear. The genetic background, as well as other sources of variability, may all play a role in accounting for individual differences. There likely exists a high variability in the capacity to compensate for disrupted phonological processing, which could further contribute to the heterogeneity of the symptoms. Accordingly phonological performance in dyslexics parallels the amount of functional compensation by the right hemisphere [46**].

While these deficits in speech-relevant neural oscillations may seem to imply that dyslexic individuals’ phonological representations are fundamentally disrupted or in an inadequate format, this is not necessarily so. Indeed, careful analysis of the psycholinguistic evidence suggests that dyslexics’ phonological representations may be normal, but less available for some purposes [59]. Neuronal oscillations may reflect the parsing of phonological representations equally well, making certain units more readily available for the purpose of later stages of processing and more difficult tasks. These more difficult, later stages may include phonological awareness and verbal short-term memory, on which dyslexic individuals show notorious difficulties. They may also include the learning of associations with visually stored symbols, which is the basis of reading acquisition.

Conclusion
Despite new trails in pinpointing the determinants of dyslexia, no direct causal relationship between genetic markers and auditory oscillations is definitely established. The next step should target experiments in animals involving genetic manipulations and dedicated neurophysiological recordings targeting neural oscillations. Finally, the neural oscillation hypothesis is not incompatible with other hypotheses, and the emergence of symptoms during reading acquisition naturally also point to the visual modality [60]. It appears obvious that irrespective of whether the primary endophenotype lies in the visual or auditory modality, we need to understand whether and how the two modalities interact in symptom development when there is a common genetic background.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:
- of special interest
- **of outstanding interest

40. Szalkowski CE, Fiondella CG, Galaburda AM, Rosen GD, Loturco JJ, Fitch RH: Neocortical disruption and behavioral...
impaired in rats following in utero RNAi of candidate
dyslexia risk gene Kiaa0319. Int J Dev Neurosci 2012,
30:293-302.

41. Threlkeld SW, McClure MM, Bai J, Wang Y, LoTurco JJ,
Rosen GD, Fitch RH: Developmental disruptions and behavioral
impairments in rats following in utero RNAi of Dxy1c1. Brain

42. Gabel LA, Marin I, LoTurco JJ, Che A, Murphy C, Mangiani M,
Kass S: Mutation of the dyslexia-associated gene Ddc2
impairs LTM and visuo-spatial performance in mice. Genes
Brain Behav 2011, 10:868-875.

43. Poon MW, Tsang WH, Waye MM, Chan SO: Distribution of
Kiaa0319-like immunoreactivity in the adult mouse brain — a
novel protein encoded by the putative dyslexia susceptibility

44. Perin R, Berger TK, Markram H: A synaptic organizing principle
for cortical neuronal groups. Proc Natl Acad Sci U S A 2011,
108:5419-5424.

45. Borgers C, Epstein S, Kopell NJ: Background gamma
rhythmicity and attention in cortical local circuits: a
computational study. Proc Natl Acad Sci U S A 2005,
102:7002-7007.

46. Lehongre K, Ramus F, Villiermet N, Schwartz D, Giraud AL:
**Altered low-gamma sampling in auditory cortex accounts for

47. Ainsworth M, Lee S, Cunningham MO, Roopun AK, Traub RD,
Kopell NJ, Whittington MA: Dual gamma rhythm generators
control interlaminar synchrony in auditory cortex. J Neurosci

48. Traub RD, Bibbig A, LeBeau FE, Cunningham MO, Whittington MA:
Persistent gamma oscillations in superficial layers of rat
auditory neocortex: experiment and model. J Physiol 2005,
562(Pt 1):3-8.

49. Giraud AL, Poeppel D: Cortical oscillations and speech
processing: emerging computational principles and

and theta rhythms in biophysical models of hippocampal
circuits. In Hippocampal Microcircuit: A Computations
Modeller's Resource Book. Edited by Cuturudis V, Graham BP,

51. Morillon B, Lehongre K, Frackowiak RS, Ducorps A,
Kleinschmidt A, Poeppel D, Giraud AL: Neurophysiological origin
of human brain asymmetry for speech and language. Proc Natl

52. Ehilali M, Fritz JB, Klein DJ, Simon JZ, Shammi SA: Dynamics of
precise spike timing in primary auditory cortex. J Neurosci
2004, 24:1159-1172.

timing predicts cerebral asymmetry for speech. J Neurosci
2006, 26:11131-11137.

54. Hamalainen JA, Rupp A, Soltesz F, Szucs D, Goswami U:
Reduced phase locking to slow amplitude modulation in
adults with dyslexia: an MEG study. Neuroimage 2012,
59:2952-2961.

55. Goswami U: A temporal sampling framework for

56. Poelmans H, Luts H, Vandermosten M, Boets B, Ghesquiere P,
Wouters J: Reduced sensitivity to slow-rate dynamic auditory
information in children with dyslexia. Res Dev Disabil 2011,
32:2810-2819.

57. Lyttinen P, Eklund K, Lyttinen H: Language development and
literacy skills in late-talking toddlers with and without familial

Ghesquiere P: Preschool impairments in auditory processing
and speech perception uniquely predict future reading

60. Vidyasagar TR, Pammer K: Dyslexia: a deficit in visuo-spatial
attention, not in phonological processing. Trends Cogn Sci
2010, 14:57-63.

61. Ramus F: Neurobiology of dyslexia: a reinterpretation of the