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Although genetic and environmental factors influence general intelligence (g-factor), few studies examined the neuroanatomical
measures mediating environmental and genetic effects on intelligence. Here, we investigate the brain volumes, cortical mean
thicknesses, and cortical surface areas mediating the effects of the g-factor polygenic score (gPGS) and childhood adversity on the
g-factor in the UK Biobank. We first examined the global and regional brain measures that contribute to the g-factor. Most regions
contributed to the g-factor through global brain size. Parieto-frontal integration theory (P-FIT) regions were not more associated
with the g-factor than non-PFIT regions. After adjusting for global brain size and regional associations, only a few regions predicted
intelligence and were included in the mediation analyses. We conducted mediation analyses on global measures, regional volumes,
mean thicknesses, and surface areas, separately. Total brain volume mediated 7.04% of the gPGS’ effect on the g-factor and 2.50% of
childhood adversity’s effect on the g-factor. In comparison, the fraction of the gPGS and childhood adversity’s effects mediated by
individual regional volumes, surfaces, and mean thicknesses was 10–15 times smaller. Therefore, genetic and environmental effects on
intelligence may be mediated to a larger extent by other brain properties.
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Introduction
The positive correlation in performance across cognitive tests
can be reduced to a single dimension: the general intelligence
factor (g-factor), which reflects a person’s general cognitive per-
formance. A number of studies suggest that individual differences
in brain structure are associated with individual differences in
intelligence (for review Deary et al. 2010, 2021) and that genes
and early environmental factors, such as childhood adversity,
be responsible for interindividual variability in brain structure
(Enlow et al. 2012; McGuire and Jackson 2020). Although several
studies examined the genetic and neurological basis of intelli-
gence separately, there are relatively few studies investigating
how genetic, environmental, and neurological factors simultane-
ously influence intelligence due to the lack of sufficiently rich
and large datasets (for review Deary et al. 2021). Thus, this paper
aims to capitalize on the richness of the UK Biobank—a large-
scale prospective study with neural, genetic, environmental, and
behavioral data—to identify the neuroanatomical measures (e.g.
brain volumes) mediating the genetic and environmental effects
on intelligence.

Intelligence is heritable, with genetic differences accounting
for about 50% of the differences in intelligence (Haworth et al.
2010; Polderman et al. 2015). Genome-wide association studies
(GWASs) identify genetic differences linked to variations in intelli-
gence by pinpointing the single-nucleotide polymorphisms (SNPs)
that contribute to differences in intelligence. SNPs that vary with

intelligence scores are typically associated with brain-expressed
genes (Johnson et al. 2016; Lee et al. 2018) that are linked to a
range of neuronal classes and processes, such as synaptic and
neuron differentiation (Hill et al. 2019). SNP variations are there-
fore thought to be associated with differences at the macroscopic
cerebral level.

SNP variations related to a trait can be summarized into a
single score: a polygenic score (PGS), which reflects an individual’s
genetic predisposition to a given phenotype. A PGS is derived from
the sum of the effect allele at each SNP that is weighted by the
SNP’s effect on a trait (estimated in a GWAS). The PGS of cognitive
performance (i.e. measured by a verbal numerical score in the
UK Biobank and a g-factor in Cognitive Genomics and Cohorts for
Heart and Aging Research in Genomic Epidemiology consortiums)
predicted up to 10.6% of the variance in cognitive performance
in an independent sample (Lee et al. 2018). Although PGSs do
not currently explain enough variance in intelligence to accu-
rately predict individual intelligence scores (Morris et al. 2020),
PGSs are valuable measures of genetic factors at the population
level. Educational attainment and cognitive performance PGSs
are increasingly used to disentangle environmental from genetic
effects on educational and life outcomes (e.g. Bates et al. 2018;
Rimfeld et al. 2018; von Stumm et al. 2020; Saarentaus et al. 2021).

Since genetic and environmental effects act on intelligence via
the brain, numerous studies investigated the neural correlates of
intelligence. The most well-replicated association is the positive
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correlation of total brain volume (TBV) with intelligence scores,
ranging from r = 0.24 to 0.31 (Pietschnig et al. 2015; Gignac and
Bates 2017; Cox et al. 2019). Beyond overall brain size, the parieto-
frontal integration theory (P-FIT; Jung and Haier 2007) is the
most supported theory on the regional correlates of intelligence.
Although studies report additional regional associations with the
g-factor that go beyond those predicted by the P-FIT, structural
(gray and white matter volumes), diffusion, and functional imag-
ing studies find that intelligence scores are associated with the
lateral and medial frontal, parietal, lateral temporal, and lateral
occipital cortices and their underlying white matter connectivity
(e.g. arcuate fasciculus; e.g. Cox et al. 2019; Deary et al. 2021; Gur
et al. 2021).

Previous UK Biobank studies examined the brain correlates of
intelligence (Cox et al. 2016, 2019). The authors reported consis-
tent associations with the P-FIT theory, such as stronger asso-
ciations in the frontal pole, and the paracingulate, as well as
less consistent associations with the P-FIT theory, such as weak
associations in inferior frontal and superior parietal areas. They
also found associations in the insula and precuneus/posterior
cingulate volumes (Cox et al. 2019), which were more recently
implicated in general intelligence (Basten et al. 2015). As for sub-
cortical volumes, the UK Biobank study found that the thalamic
volumes were most associated with verbal numerical reasoning
(β = 0.23). Finally, the authors reported that many of these regions
still predicted intelligence when adjusting for TBV, suggesting that
some regions make a unique contribution to intelligence that goes
beyond TBV.

Although genetic and brain correlates of general intelligence
(g-factor) have largely been studied, only 2 studies, to our knowl-
edge, examined the extent to which neural measures mediate
the effect of the g-factor polygenic score (gPGS) on the pheno-
typic g-factor. One study using vertex-wise mediation analyses
of cortical thickness and cortical surface areas reported that the
association between the gPGS and the phenotypic g-factor was
mediated by the cortical thicknesses and surface areas of the
anterior cingulate cortex, the prefrontal cortex, the insula, the
medial temporal cortex, and inferior parietal cortex up to 0.75%
in IMAGEN (N = 1,651) and 0.77% in IntegraMooDS (N = 742; Lett
et al. 2020). In other words, these regions explained 20%–40% of
the variance explained by the gPGS on the g-factor (3%–5%). A
preprint on 550 adults, which used the same summary statistics
of intelligence (Savage et al. 2018) as the above study to create
their gPGSs, found that 2 intraparietal areas and the posterior
temporal cortex surface areas mediated the effect of the gPGS
on the g-factor (Gençet al. 2022). These mediation studies suggest
that specific cortical regions mediate the effect of the gPGS on the
phenotypic g-factor.

However, the extent to which additional regions, such as sub-
cortical and cerebellar volumes, mediate the effect of the gPGS
on intelligence has yet to be investigated. Moreover, the associa-
tions between cortical regions, genetics, and intelligence warrant
further support and have not been investigated using the finer-
grained segmentations of the Destrieux atlas. Therefore, our first
aim was to examine whether subcortical volumes, cerebellar vol-
umes, cortical volumes, cortical thicknesses, and cortical surface
areas mediate the effects of the gPGS and the phenotypic g-factor
with a more predictive gPGS in the UK Biobank.

Since early adversity is associated with a decrease in intel-
ligence and cognitive function later in life (Enlow et al. 2012;
McGuire and Jackson 2020) and may have lasting biological and
cerebral effects changes in childhood and adulthood (Lupien et al.
2009; Dye 2018), our second aim was to examine whether the

regions that mediate the gPGS’ effect on the g-factor also mediate
childhood adversity’s effect on the g-factor. Taken together, this
paper contributes to our understanding of the neuroanatomi-
cal measures mediating genetic (gPGS) and early environmental
(childhood adversity) effects on intelligence (g-factor).

Materials and methods
Analyses were run on R (R Core Team 2022) and preregistered
here: https://osf.io/ec97u/?view_only=4b366bd7ed2442a1a9f64
bfcc2fe0946

Participants
The UK Biobank is a large prospective study with phenotypic,
genotypic, and neuroimaging data from more than 500,000 par-
ticipants. Participants were recruited between 2006 and 2010,
from the vicinity of 22 assessment centers in England, Wales, and
Scotland, with an age range for inclusion of 40–69 years. Data
collection continues up to date.

All participants provided informed consent (“Resources tab”
at https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). The UK
Biobank received ethical approval from the Research Ethics Com-
mittee (reference 11/NW/0382) and the present study was con-
ducted based on application 46007.

We used the g-factor and the g-factor PGS derived in a previous
paper (Williams et al. 2022). In brief, we included participants
whose combination of cognitive tests allowed for a correlation
with the complete g-factor of 0.70 or higher (N = 261,701). This
threshold was used to maximize the robustness of the factor and
the number of participants with a g-factor. The g-factor PGSs
were created using sBayesR (Lloyd-Jones et al. 2019), from g-factor
GWAS summary statistics that were obtained from UK Biobank
participants that did not have neuroimaging data. In the present
paper, we used the PGSs of individuals of British ancestry who
did not have first or second-degree cousins, siblings, and parent
offsprings in the discovery of GWAS. We residualized the gPGS for
birth year and the first 40 principal components (PCs) prior to its
inclusion in the mediation models.

In a previous paper (Williams et al. 2021), we analyzed the
image-derived phenotypes from the first magnetic imaging res-
onance (MRI) visit generated by an image-processing pipeline
developed and run by the UK Biobank Imaging team (Miller et al.
2016; Alfaro-Almagro et al. 2018) and reported 40,028 individuals
with sex, age at MRI, and TBV data after excluding outliers. From
here on, age at the first MRI visit will be referred to as age. From
the 40,028 individuals with neuroimaging data, there were 39,131
participants with a g-factor of good quality (Table 1).

Image-derived phenotypes
We used the 10 global and 620 regional imaging phenotypes pre-
viously examined by Williams et al. (2021). The global phenotypes
include TBV, total mean cortical thickness (MCT), total surface
area (TSA), subcortical gray matter volume (GMV), cortical GMV,
cerebral white matter volume (WMV), cerebellar GMV, cerebellar
WMV, the brainstem volume, and cerebral spinal fluid (CSF),
whereas the regional phenotypes include 444 cortical regions
(148 volumes, 148 surface areas, and 148 cortical thicknesses)
from the Freesurfer a2009s segmentations (Destrieux Atlas, data-
field 197); 116 whole segmentations and subsegmentations of
the amygdala, hippocampus, and thalamus and subsegmenta-
tions of the brainstem (Freesurfer subsegmentations, data-field
191); 28 cerebellum GMV segmentations from the FAST segmen-
tations (data-field 1101); and 32 subcortical, white matter, and
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Table 1. Descriptive statistics of the variables included in each analysis.

Analyses Max N Variable Mean SD Median

Regressions 39,131 Age (years) 64.05 7.52 64.50
g-factor 0.00 1.00 −0.01

Mediation models
with g-factor PGS

28,917 Age (years) 64.04 7.46 64.50
g-factor PGS 0.00 1.00 −0.05
g-factor 0.20 1.05 0.18

Mediation models
with g-factor PGS and
childhood adversity

19,956 Age (years) 64.08 7.42 64.58
g-factor PGS 0.03 0.99 0.02
g-factor 0.27 1.03 0.26
Childhood adversity −0.03 1.39 −0.50

g-factor: general intelligence score. g-factor is scaled for the regressions. PGS: polygenic score. PGS is scaled before being residualized for birth year and the
first 40 principal components of the genotyped data. Childhood adversity was scaled on the sample (N about 150,000) from which it was created. Max N:
Maximum number of participants included in the analyses. Corresponds to N for TBV but will be reduced when including other brain measures when data for
a region are missing.

Table 2. PC loadings of childhood abuse and stressor variables.

Variable PC1 PC2 PC3 PC4 PC5

Felt hated by a family member as a child 0.528 −0.070 0.328 −0.114 0.772
Felt loved as a child 0.511 0.228 0.081 −0.682 −0.464
Someone to take to the doctor when needed as a child 0.351 0.620 −0.616 0.313 0.124
Physically abused by family as a child 0.491 −0.141 0.383 0.648 −0.416
Sexually molested as a child 0.310 −0.734 −0.600 −0.062 −0.033
Cumulative proportion of explained variance 0.419 0.599 0.772 0.896 1.000

PC: principal component of principal component analysis. Statements were rated on a 5 point scale from “never true” to “very often true”. “Felt loved...” and
“someone to take to the doctor...” we’re reverse coded.

ventricle volumes from the Freesurfer ASEG segmentations (data-
field 190). Freesurfer subcortical segmentations for the caudate,
putamen, accumbens, and pallidum were used instead of the
preregistered FIRST volumes, for segmentation consistency with
the other subcortical and cortical volumes that were segmented
from Freesurfer.

Although we did not preregister that we would examine the
effects of the left and right measures of the whole thalamus,
hippocampus, and amygdala because we focused on the associ-
ation of their subsegmentations with the g-factor, we ran these
exploratory analyses to facilitate result comparison with previous
studies and examine whether associations at the subcortical
subsegmentation level manifested at the global level.

Childhood adversity score
A childhood adversity score was created from questions in the UK
Biobank on childhood abuse and social stressors. Childhood abuse
was measured with data fields 20488 “When I was growing up...
People in my family hit me so hard that it left me with bruises or
marks”) and 20490 (“When I was growing up... Someone molested
me (sexually)”) and childhood stressors were measured with data
fields 20487 (“When I was growing up... I felt that someone in my
family hated me”), 20489 (“When I was growing up... I felt loved”),
and 20491 (“When I was growing up... There was someone to take
me to the doctor if I needed it”). All questions are rated from 0
(Never True) to 4 (Very Often True). So that all indicators are in
the same direction, we subtracted data field 20489 and data field
20491 responses from 4 (reverse coding). We conducted a PCA
(prcomp function, R Core Team 2022) on the scores from these
questions and extracted the first principal component (PC1) as
our measure of childhood adversity, which captured 42% of the
variance across questions (Table 2).

Statistical analyses
We refer to the phenotypic g-factor as the g-factor and the g-factor
PGS as the gPGS. A residualized gPGS was created by adjusting the

gPGS for birth year and the first 40 principal components of the
genotyped data and is referred to as the gPGS from here on out.

In the regression analyses, all continuous variables were mean-
centered and divided by 1 SD. Females were coded 0.5 and males—
0.5. Linear regressions were conducted using the lm function.

Mediation models were conducted within the SEM framework
with lavaan (Rosseel 2012). For all mediation models described
in the present study, indirect effects were calculated using the
product method and we estimated all possible correlations
between mediators (see Supplemental Tables D and E). We
estimated direct paths (exposure to an outcome) and indirect
paths (exposure to mediators to outcomes) and adjusted the
mediators and outcome for age (linear and quadratic), sex, and
their interactions in the lavaan framework. Sex was coded 0
for males and 1 for females. By default, correlations between
exogenous variables (i.e. gPGS and childhood adversity) are fixed
at their sample values in lavaan. We report the Monte Carlo CIs
with 20,000 iterations for the mediation effects using the semTools
package (Jorgensen et al. 2022) in Supplemental Tables D and E.

What global measures predict the phenotypic g-factor?
We first estimated the effect of TBV and the CSF on the phenotypic
g-factor, while adjusting for sex, age (quadratic and linear), their
interactions, and scanner site (Equation 1, where i refers to an
individual).

g − factori = Intercept + TBVi + CSFi + Sexi + Agei

+Age2
i + Age ∗ Sexi + Age2 ∗ Sexi + e (1)

To identify the global measures driving the predictive effect
of TBV on the g-factor, we simultaneously estimated the effect
of total MCT, TSA, subcortical GMV cortical GMV, cerebral WMV,
cerebellar GMV, cerebellar WMV, the brainstem volume, and CSF
on the phenotypic g-factor, while adjusting for sex, age (quadratic
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and linear), their interactions, and scanner site (Equation 2, where
i refers to an individual).

g − factori = Intercept + Total Mean Cortical Thicknessi

+Total Surface Areai + Cerebral WMVi + Cerebellar GMVi

+Cerebellar WMVi+
Subcortical Volumesi + Brainstemi + CSFi + Sexi + Agei

+Age2
i + Age ∗ Sexi + Age2 ∗ Sexi + e

(2)

We applied a Bonferroni correction to correct for multiple
comparisons: we considered that a regional measure significantly
predicts the g-factor when P < 0.05/N, N: the number of coeffi-
cients of interest, which was 2 for Equation (1) and 8 for Equation
(2).

What global measures mediate the gPGS’ effects on the
g-factor?
We ran 2 mediation models using the sem function in the lavaan
package (Rosseel 2012): one with the significant predictors of the
g-factor from Equation (1) and one with those from Equation (2).
The gPGS was the exposure, global volume(s) the mediator(s), and
the g-factor served as the outcome.

We set a lenient P-value threshold to 0.05 and a stricter one
to P < 0.05/N (N: the number of regional and global measures
included in the model of interest) as a Bonferroni correction to
correct for multiple comparisons. Good fit was established with
a comparative fit index (CFI) > 0.95, a root mean square error
approximation (RMSEA) < 0.06, and a standardized root mean
square residual (SRMR) < 0.08 (Hu and Bentler 1999).

Do global measures mediate the gPGS’ and childhood
adversity’s effects on the g-factor?
We applied the same mediation models as in What global mea-
sures mediate the gPGS’ effects on the g-factor? section except
that we added childhood adversity as additional exposure and
estimated its direct and indirect paths through the global mea-
sure(s) to the g-factor. Lavaan considers correlations between
predictors without estimating them. We set a lenient P-value
threshold to 0.05 and a stricter one to P < 0.05/N (N: the number
of regional and global measures included in the model of interest)
as a Bonferroni correction to correct for multiple comparisons.

What regional measures predict the g-factor?
The aim was to identify the regions that contribute more to the
g-factor than what is predicted given their size: This includes (i)
regions that significantly predict the g-factor after adjusting for
brain size and are positive with or without adjusting for global
brain size and (ii) regions that significantly predict the g-factor
after adjusting for brain size and are negative with or without
adjusting for global brain size.

To do so, we ran Equations (3) and (4) (i refers to an individual,
the regional measure N corresponds to a regional volume, thick-
ness, or surface, and the global measure to TBV for volumes, total
MCT for mean thicknesses, and TSA for surface areas). We applied
a Bonferroni correction to correct for multiple comparisons: The
significance threshold was set to P < 0.05/N (N: the number of
coefficients of interest, which was 148 for surfaces, 148 for thick-
nesses, and 311 for volumes).

g − factori = Intercept + Regional MeasureN
i + Sexi + Agei

+Age2
i + Age ∗ Sexi + Age2 ∗ Sexi + e (3)

g − factori = Intercept + Regional MeasureN
i

+Global MeasureN
i + Sexi + Agei + Age2

i + Age ∗ Sexi

+Age2 ∗ Sexi + e (4)

Although this was not preregistered, we tested whether the P-
FIT theory accurately predicted the neuroanatomical measures
most associated with the g-factor. We mapped Brodmann areas
from the P-FIT (Jung and Haier 2007; Colom et al. 2010; Haier and
Jung 2018) to the regions of the Destrieux Atlas based on the region
names and the description of their location. The 14 Brodmann
areas that predict g according to the P-FIT were mapped to 62 of
the 148 Destrieux segmentations. Several Destrieux regions were
matched to the same Brodmann area and several Brodmann areas
were matched to a single Destrieux region. Therefore, 12 Destrieux
regions were matched twice to the Brodmann areas, yielding 74 P-
FIT Destrieux regions out of 160 Destrieux regions (Supplemental
Table F1)

We then examined (i) whether P-FIT regions had a larger effect
on the g-factor than non-P-FIT regions, by comparing the distri-
bution of effect sizes of the 2 sets of regions with a t-test; and (ii)
whether P-FIT regions were overrepresented among the top 20 or
30 regions with the largest associations with the g-factor, using
a chi-square test. We ran these analyses twice, for raw regional
volumes, surfaces, and thicknesses, and for those adjusted on
global brain measures. For the analysis of unadjusted regional
volumes and surface areas, given that they were all significantly
associated with the g-factor, we restricted the analysis to the
regions showing the top N associations.

Do the regional measures that predict the g-factor
independently from brain size still predict the g-factor
when entered in the same model?
Based on Equations (3) and (4), we selected the regions that still
significantly and positively or negatively predicted the g-factor
after adjusting for brain size. Because brain regions are corre-
lated, their effect on the g-factor may be shared across regions
even if they are independent of global brain size. Therefore, to
avoid redundancy, we examined whether these regions still pre-
dicted the g-factor when simultaneously entered into a regression
model predicting the g-factor (Equation 5, where N refers to a
region, i to an individual, and the global measure to TBV for
volumes, total MCT for mean thicknesses, and TSA for surface
areas). We applied a Bonferroni correction to correct for multiple
comparisons: The significance threshold was set to P < 0.05/N
(N: the number of regional measures included in the model of
interest).

g − factori = Intercept + Regional Measure1
i

+ Regional Measure2
i

. . . .
+Regional MeasureN

i

+ Global MeasureN
i + Sexi + Agei + Age2

i

+Age ∗ Sexi + Age2 ∗ Sexi + e
(5)

Do regional measures mediate the gPGS’ effects on the
g-factor?
For volumes, thicknesses, and surface areas separately, we exam-
ined the simultaneous mediation of the global measure and the
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Fig. 1. Meditating effect of global cerebral measures on the g-factor PGS’s effect on the g-factor with and without including childhood adversity. g-factor,
general intelligence factor; PGS, polygenic scores. Coefficients correspond to direct effects. Fit of TBV models: CFI = 1.00, SRMR = 0.00, RMSEA = 0.00.
Fit of global measures model: CFI = 1.00, SRMR = 0.01, RMSEA = 0.03. The PGS is adjusted for birth year and the first 40 principal components of the
genotyped data. Cerebral measures and the g-factor are adjusted for sex, age, age2, age by sex, age2 by sex, and scanner site. By default, correlations
between exogenous variables are fixed at their sample values in lavaan (Rosseel 2012). For simplicity, the error variance of each variable and correlations
between mediators are not specified in the figure (Supplemental Tables D and E).

significant regional measures from Equation (5) with the sem
function from the lavaan package (Rosseel 2012). The gPGS was
the exposure, global and regional measures were the mediators,
and the g-factor served as the outcome. We set a lenient P-value
threshold to 0.05 and a stricter one to P < 0.05/N (N: the number
of regional and global measures included in the model of interest)
as a Bonferroni correction to correct for multiple comparisons.

Do regional measures mediate the gPGS’ and childhood
adversity’s effects on the g-factor?
We applied the same mediation models as in Do regional mea-
sures mediate the gPGS’ effects on the g-factor? section except
that we added childhood adversity as additional exposure and
estimated its direct and indirect paths through regional and global
measures to g-factor. We set a lenient P-value threshold to 0.05
and a stricter one to P < 0.05/N (N: the number of regional and
global measures included in the model of interest) as a Bonferroni
correction to correct for multiple comparisons.

Results
What global measures predict the phenotypic
g-factor?
Greater TBV was associated with a greater g-factor (β = 0.24,
SE = 0.006, P = 6.99e-297) and CSF did not predict the g-factor (Sup-
plemental Table B1). When dividing TBV into its subcomponents,
we found that greater TSA (β = 0.14, SE = 0.012, P = 2.96e−31),
total MCT (β = 0.04, SE = 0.006, P = 7.11e−12), cerebellar GMV
(β = 0.08, SE = 0.008, P = 2.38e−26), and cerebral WMV (β = 0.05,
SE = 0.013, P = 1.03e−04) were associated with an increase in the
g-factor (Fig. 1; Supplemental Table B2). TBV explained 3.4% of the
variance in the g-factor, whereas the global measures explained
3.6% of the variance in the g-factor.

What global measures mediate the gPGS’ effect
on the g-factor?
In the mediation model with TBV as the sole global mediator, TBV
mediated 5.70% of the gPGS’ effect on the g-factor (Supplemental
Table D1).

In the mediation model with several global measures as medi-
ators, TSA mediates 3.32%, cerebellar GMV 1.01%, and cerebral

WMV 1.28% of the gPGS’ effect on the g-factor (Fig. 1; Supplemen-
tal Table D2).

What global measures mediate the gPGS’ and
childhood adversity’s effect on the g-factor?
In the mediation model with TBV as the sole global mediator,
TBV mediated 7.03% of the gPGS’ effect on the g-factor and
mediated 2.49% of childhood adversity’s effect on the g-factor
(Supplemental Table E1).

In the mediation model with several global measures as medi-
ators, TSA mediates 3.68%, cerebellar GMV 1.88%, and cerebral
WMV 1.47% of the gPGS’ effect on the g-factor and TSA mediates
1.19%, cerebellar GMV 0.56%, and cerebral WMV 0.96% of child-
hood adversity’s effect on the g-factor (Fig. 1; Supplemental Table
E2).

What regional measures predict the g-factor?
Regression results are available in Supplemental Table B (full
models) and Supplemental Table C (regional estimates). Figure 2
shows the g-factor estimate by volume, surface area, or thickness
estimate when including or excluding the global measure in the
regression model (see Supplemental Files S8–S10 for brain maps).
Figures of the estimate by region for each type of possible change
in significance or estimate (Table 3) are available in Supplemental
Files S1–3.

There were 242 out of 311 volumes, 130 out of 148 surface areas,
and 6 out of 148 mean thicknesses, which were no longer signif-
icant after adjusting for global brain size (Table 3; Supplemental
B3–4 and C1–3; Supplemental Files S1–3). We found that the size
of volumes and surface areas was significantly and positively
correlated with the magnitude of its association with the g-factor
without adjusting for global measures and that this association
was no longer significant after adjusting for global brain size
(Supplemental File S4). Therefore, regional volumes and surfaces
mainly contributed to the g-factor through global brain size.

There were 40 volumes (mainly cerebellar GMVs, subcortical
thalamic and hippocampal nuclei, and a few cortical volumes),
12 cortical surface areas (mostly frontal), and 21 cortical mean
thicknesses (mostly temporal; Table 3; Supplemental B5–6 and
C1–3; Supplemental Files S1–3) that were significant and had
positive estimates after adjusting for brain size, suggesting that
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Fig. 2. Standardized estimate (Std Beta) of a region’s association with the g-factor with (black) and without (light grey) adjusting for a global measure.
Each point corresponds to a region. Region names are not shown for clarity. Global measure: TBV for volumes, total surface area for surface areas, and
total mean cortical thickness for thicknesses.

Table 3. Number of volumes, surface areas, and mean thicknesses by types of change in significance and estimate between models
without and with global brain size.

Volumes Surface areas Mean thicknesses

Type of change between models N % N % N %

No longer significant 242 77.81 130 87.84 6 4.05
Still significant positive 40 12.86 12 8.11 21 14.19
Still significant negative 2 0.64 0 0.00 7 4.73
Still not significant 5 1.61 0 0.00 104 70.27
Still significant, positive to negative 18 5.79 6 4.05 0 0.00
Becomes significant and Negative 4 1.29 0 0.00 10 6.76
Total 311 100.00 148 100.00 148 100.00

Global brain size: total brain volume for volumes, total mean cortical thickness for thicknesses, and total surface areas for surface areas.

they contribute more (positively) to the g-factor than what is
expected given their size.

There were 2 ventricular volumes and 7 cortical mean thick-
nesses (the left and right pericallosal sulci, the left and right ante-
rior cingulate gyri and sulci, right occipital pole, left suborbital
sulcus, and the right frontal marginal gyrus and sulcus; Table 3;
Supplemental B5–6 and C1–3; Supplemental Files S1–3) that were
significant and had negative estimates after adjusting for brain
size, suggesting that they contribute more (negative) to the g-
factor than what is expected given their size.

There were 18 volumes and 6 surface areas that were still sig-
nificant but had their estimates switch from positive to negative,
suggesting that they contribute less to the g-factor than what is
expected given their contribution to global brain size. For volumes,
these regions included the right and left caudate, the right and left
lingual gyrus, left and right pericallosal sulci, the right posterior-
ventral part of the cingulate gyrus (isthmus), the right occipital
pole, the right superior parietal gyrus, the hippocampal tail, and
several subthalamic nuclei. As for surfaces, these regions included
the left and right postcentral sulci, the left paracentral gyrus and

sulcus, the middle anterior cingulate gyrus sand sulcus, the left
lingual gyrus, and the left posterior-ventral part of the cingulate
gyrus (isthmus).

Finally, there were 10 mean thicknesses, 3 ventricular volumes,
and 1 subthalamic nucleus volume that became significant
and negative after adjusting for brain size, suggesting that
they contribute less to the g-factor than what is expected
given their size. For mean thicknesses, regions include left and
right transverse frontopolar gyri and sulci, the right lingual
gyrus, right suborbital sulcus, the right superior frontal gyrus,
the right cuneus gyrus, the right occipital superior gyrus, the
right posterior-ventral part of the cingulate gyrus (isthmus),
and left occipital pole and left posterior transverse collateral
sulcus.

Across adjusted and unadjusted volumes, surface areas and
thicknesses, and the different variants of our analyses, P-FIT
regions were never overrepresented among the 20 or 30 regions
that were most associated with g (Files S5–6) and they did not
show larger associations with g than non-PFIT regions overall
(Supplemental File S7).
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Fig. 3. Meditating effect of regional cerebral measures on the g-factor PGS’s effect on the g-factor with and without including childhood adversity. g-
factor, general intelligence factor; PGS, polygenic scores. Coefficients correspond to direct effects. Fit of volume and surface area models: CFI = 1.00,
SRMR = 0.00, RMSEA = 0.00. Fit of mean thickness model without childhood adversity: CFI = 0.95, SRMR = 0.05, RMSEA = 0.15, and with CFI = 0.95,
SRMR = 0.05, RMSEA = 0.14. The PGS is adjusted for birth year and the first 40 principal components of the genotyped data. Cerebral measures and
the g-factor are adjusted for sex, age, age2, age by sex, age2 by sex, and scanner site. By default, correlations between exogenous variables are fixed at
their sample values in lavaan (Rosseel 2012). For simplicity, the error variance of each variable and correlations between mediators are not specified in
the figure (Supplemental Tables D and E).

Do the regional measures that predict the
g-factor independently from brain size still
predict the g-factor when entered in the same
model?
We then examined whether regions that significantly and posi-
tively or negatively predicted the g-factor after adjusting for brain
size do so independently from each other. We found that there
were 4 volumes, 3 surface areas, and 12 mean thicknesses that
still significantly predicted the g-factor independently from each
other and global brain size (Supplemental B9–11).

Do regional measures mediate the gPGS’ effects
on the g-factor?
Volumes
Based on the previous analyses in Do the regional measures that
predict the g-factor independently from brain size still predict the
g-factor when entered in the same model? section, we included
the right olfactory bulb, the left subcallosal gyrus, and the right
mediodorsal medial magnocellular thalamic nuclei volumes in
the regional and global volumetric mediation model. We did
not include the third ventricle volume even if it was significant
because we do not expect ventricular volumes to mediate genetic
effects on intelligence.

The indirect path from the gPGS to the g-factor was significant
for TBV and the right olfactory bulb volume after multiple com-
parison corrections and for the left subcallosal gyrus volume at
the P < 0.05 threshold. TBV mediated 5.07% of the gPGS’ effect on
the g-factor, whereas the right olfactory bulb volume mediated
0.46% and left subcallosal gyrus volume 0.31% of the gPGS’ effect
on the g-factor (Fig. 3; Supplemental Table D3).

Surface areas
Based on the previous analyses in Do the regional measures that
predict the g-factor independently from brain size still predict the
g-factor when entered in the same model? section, we included
TSA, the right orbital part of the inferior frontal gyrus surface
area, the left subcallosal gyrus surface area, and the left anterior
transverse collateral sulcus surface area in the regional and global
surface area mediation model.

Total surface area mediated 3.99%, the left anterior transverse
collateral sulcus surface area 0.41%, the left subcallosal gyrus
0.30%, and the right orbital part of the inferior frontal gyrus
surface area 0.35% of the effect of the gPGS on the g-factor at the
P < 0.05/4 threshold (Fig. 3; Supplemental Table D4).

Mean thicknesses
Based on the previous analyses in Do the regional measures that
predict the g-factor independently from brain size still predict the
g-factor when entered in the same model? section, we included
total MCT, the right anterior part of the cingulate gyrus and sulcus,
the left anterior part of the cingulate gyrus and sulcus, the left
planum polare of the superior temporal gyrus, the left inferior
segment of the circular sulcus of the insula, the right pericallosal
sulcus, the left short insular gyrus, the right postcentral sulcus,
the right superior segment of circular insula sulcus, the right
superior temporal sulcus, the right precentral gyrus, the left sub-
callosal gyrus, and the left pericallosal sulcus mean thicknesses
in the regional and global mean thickness mediation model.

Total MCT did not mediate the effects of the gPGS or childhood
adversity on the g-factor. The right anterior part of the cingulate
gyrus and sulcus mean thickness mediated 0.27% of the effect of
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the gPGS on the g-factor at P < 0.05. The left anterior part of the
cingulate gyrus mediated 0.14%, the left short insular gyrus mean
thickness 0.18%, the left planum polare of the superior temporal
gyrus mean thickness 0.16%, the right pericallosal sulcus mean
thickness mediated 0.12%, the left inferior segment of the circular
sulcus of the insula mean thickness mediated 0.18%, and the right
pericallosal sulcus mediated 0.27% of the effect of the gPGS on the
g-factor at P < 0.05 (Fig. 3; Supplemental Table D5).

Do regional measures mediate the gPGS’ and
childhood adversity’s effects on the g-factor?
Volumes
In the volumetric mediation models, TBV mediated 4.15% of the
gPGS’ effect on the g-factor and the right olfactory bulb volume
mediated 0.37% of the gPGS’ effect on the g-factor at P < 0.05/4,
whereas the right mediodorsal medial magnocellular thalamic
nuclei volume meditated 0.32% of the gPGS’ effect on the g-
factor at P < 0.05. Therefore, the left subcallosal gyrus volume
was no longer significant when adding childhood adversity in
the mediation model and the indirect path through the right
mediodorsal medial magnocellular thalamic nuclei became sig-
nificant at P < 0.05. TBV mediated 1.41% of childhood adversity’s
effect on the g-factor, whereas the right olfactory bulb volume
mediated 0.14% of childhood adversity’s effect on the g-factor at
P < 0.05 (Fig. 3; Supplemental Table E3).

Surface areas
Total surface area mediated 3.37%, the left anterior transverse
collateral sulcus 0.34%, and the right orbital part of the inferior
frontal gyrus surface area 0.29% of the effect of the gPGS on
the g-factor at the P < 0.05/4 threshold (Supplemental Table D4).
Total surface area mediated 1.11% and the left anterior transverse
collateral sulcus surface area 0.16% of childhood adversity’s effect
on the g-factor (Fig. 3; Supplemental Table E4).

Mean thicknesses
Total MCT did not mediate the effects of the gPGS or childhood
adversity on the g-factor. The right anterior part of the cingulate
gyrus and sulcus mean thickness still mediated 0.27% of the
effect of the gPGS on the g-factor at P < 0.05. The right pericallosal
sulcus mean thickness mediated 0.12%, the left short insular
gyrus mean thickness 13%, and the left planum polare of the
superior temporal gyrus mean thickness 0.15% of the effect of the
gPGS on the g-factor at P < 0.05. However, the left inferior segment
of the circular sulcus of the insula mean thickness and the left
anterior part of the cingulate gyrus and sulcus mean thickness
no longer mediated the gPGS’ effect on the g-factor. Instead, a
new region mediated the gPGS’ effect on the g-factor: the mean
thickness of left subcallosal gyrus (0.17%), which also mediated
the effect of childhood adversity on the g-factor (0.10%; Fig. 3;
Supplemental Table C5).

Discussion
This paper examined the neuroanatomical measures (e.g. brain
volumes) mediating the effect of genes and childhood adversity
on intelligence. Both genetic and environmental components were
associated with intelligence and exerted their influence on the
brain at the macro-structural level. Our first analyses on the
neural correlates of intelligence revealed that (i) some regions are
correlated with intelligence beyond their association with global
brain size and their associations with other brain regions and
that (ii), while functional studies may support the P-FIT theory,

our structural findings do not support the P-FIT. When examining
whether global measures and regions that uniquely contribute to
the g-factor mediate the gPGS’ and childhood adversity’s effects
on the g-factor, we found that (i) both environmental and genetic
effects were uniquely associated with intelligence, (ii) the effect
of genes and childhood adversity were mostly mediated by global
effects, and (iii) the effects of childhood adversity and genes on
the g-factor were mediated by similar regions. However, TBV,
the largest mediator, mediated about 2.5% and 10% of child-
hood adversity and the gPGS’ effects on the g-factor, respectively,
suggesting that mediation by neuroanatomical measures only
explains a small fraction of the total effect of the gPGS and
childhood adversity on the g-factor.

Most associations between the g-factor and volumes (78%)
or surface areas (88%) disappeared after adjusting for global
brain size, suggesting that the majority of volumes and sur-
faces contribute to intelligence through global cerebral effects.
In contrast, only 4% of mean thicknesses were no longer sig-
nificant after adjusting for global brain size and 26% of mean
thicknesses still predicted the g-factor after adjusting for total
MCT. Therefore, mean thicknesses appear to influence the g-
factor through region-specific effects rather than global effects.
This can be explained by the small associations between regional
mean thicknesses and total MCT (mean β = 0.03) compared to
those of regional volumes with TBV (mean β = 0.30) as well as the
small association between total MCT and the g-factor (β = 0.04).
Adjusting for total MCT thus captures little variance between
regional mean cortical thicknesses and the g-factor.

Regions that contributed the most to the g-factor not only
corresponded to regions that significantly predicted the g-factor
after adjusting for brain size but also maintained the direc-
tion of their effect with and without adjusting for global mea-
sures. We found that cerebellar volumes, subcortical nuclei vol-
umes, a few cortical volumes, frontal surface areas, and tem-
poral mean thicknesses contributed more positively to the g-
factor than what was expected given their size. In contrast, a
few distributed mean thicknesses and ventricular volumes con-
tributed more negatively to the g-factor than what was expected
given their size. Negative and positive associations between cor-
tical thickness and intelligence have been reported across the
cortex (Karama et al. 2014) and are thought to depend on the
measure of the intelligence (Goriounova and Mansvelder 2019):
Greater crystallized intelligence is associated with cortical thin-
ning, whereas fluid intelligence does not appear to be related
with cortical thickness (Tadayon et al. 2020). Studies looking at
age-related changes in performance on the cognitive tests of
the UK Biobank found that performance on the verbal numer-
ical UK Biobank test (also known as the fluid intelligence test)
does not decrease as expected with age (Hagenaars et al. 2016).
Instead, the performance stagnates as would be expected with
crystallized intelligence (Cavanaugh and Blanchard-Fields 2018).
Therefore, our g-factor measure, on which the fluid intelligence
test loads highly (0.62), likely captures both crystallized and fluid
intelligence and may explain why we find distributed positive
and negative associations between mean thicknesses and intel-
ligence. Future studies should explore the associations between
brain regions and subdomains of intelligence to obtain a better
understanding of the associations between general intelligence,
cognitive abilities, and the cortex (Jung and Haier 2007).

When approximately matching the Destrieux segmentations
to the P-FIT Brodmann areas, the proportion of P-FIT and non-
P-FIT regions associated with the g-factor was generally similar
across cortical volumes, surface areas, and mean thicknesses
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and the magnitude of the association was not larger for P-
FIT regions. Therefore, although we report associations with
frontal and temporal–parietal regions that are concordant with
the P-FIT, our findings do not support this theory with regard
to volumes, thicknesses, and surface areas. However, the P-FIT
may nonetheless accurately predict functional brain activations
associated with general intelligence (Haier and Jung 2018;
Gur et al. 2021).

Concerning other regions of interest, we did not replicate the
significant associations between the g-factor and the whole hip-
pocampal or thalamic volumes after adjusting for brain size
previously reported by a UK Biobank study (Cox et al. 2019).
Instead, we report associations between the g-factor and subcorti-
cal subsegmentations as well as cerebellar subsegmentations. For
instance, we find a positive association between the g-factor and
the right mediodorsal thalamic nucleus volume, a region known
to critically contribute to cognitive functions (Ouhaz et al. 2018),
and positive associations between the g-factor and most of the
crus lobules of the cerebellum, which are functionally connected
to regions of the default mode network (Buckner et al. 2011), a
network of higher-level cognition (Smallwood et al. 2021).

We find that regional measures independently explained a
small portion of the effect of the gPGS on the g-factor and that the
gPGS’ effect on the g-factor is mediated by several cortical surface
areas, volumes, and mean thickness. Although we used different
segmentations and samples from Lett et al. (2020), we similarly
find that the gPGS’ effect on the g-factor is mediated by the ante-
rior cingulate cortex, prefrontal, insular, medial temporal, and
inferior parietal mean thicknesses and surface areas. However, we
find that our regional measures mediate a smaller percentage of
the gPGS’ effect on the g-factor (around 0.30% instead of 0.75%),
which may be due to the difference in age between cohorts or to
their larger segmentations. We additionally report volumes that
mediate the gPGS’ effect, and most notably the right mediodor-
sal medial magnocellular thalamic nuclei, a region thought to
be implicated in executive functions (e.g. cognitive control and
decision-making; Ouhaz et al. 2018).

When adding childhood adversity to the model, the percentage
mediated by regional and global effects decreased to various
extents across regions. For instance, adding childhood adversity
to the mediation models did not impact the percentage mediated
by the mean thickness of the right anterior part of the cingulate
gyrus and sulcus. However, the surface area and volume of the
left subcallosal gyrus and the mean thicknesses of the left inferior
segment of the circular sulcus of the insula and the left anterior
part of the cingulate gyrus and sulcus no longer mediated the
gPGS’ effect on the g-factor when adding childhood adversity
to the model. Considering that childhood adversity significantly
and negatively predicted these regions, the association between
these non-longer mediating regions may be due to the correlation
between childhood adversity and the gPGS: Part of the variance
previously attributed to the gPGS may have shifted from the gPGS
to childhood adversity. Finally, when adding childhood adversity
to the mean thickness mediation model, a new region mediated
both the gPGS effect and childhood adversity’s effect on the
g-factor: the left subcallosal gyrus mean thickness. The latter
highlights the importance of including environmental measures
to better understand the complex relationship between environ-
mental and genetic effects on general intelligence.

Although we find that specific regions mediate the g-factor and
childhood adversity’s effects independently from global brain size
and regional associations, the mediation of global brain size was
10–20 times larger than the mediation of specific regions when

examining volumes and surface areas. TBV explained 2.3% and
the regional volumes included in the mediation models explained
0.3% of the variance in the g-factor, whereas TSA explained
1.8% and the regional surface areas included in the mediation
models explained 0.2% of the variance in the g-factor. These
findings are consistent with previous studies suggesting that
general intelligence may be more related to global than region-
specific differences in the gray matter volume (Hilger et al. 2020)
and that adding regional effects on the g-factor does not sub-
stantially predict more variance in the g-factor than TBV alone
(Cox et al. 2019). However, TBV only mediated 7.04% of the gPGS’
effect on the g-factor and 2.50% of childhood adversity’s effect
on the g-factor, leaving 93% of the gPGS’ effect on the g-factor,
and 97.5% of childhood adversity’s effect on the g-factor to be
explained by other cerebral measures. Therefore, future research
should include additional cerebral measures, such as microstruc-
tural properties, white matter measures, dynamic connectivity, or
resting-state or task-based functional activation, to better under-
stand the extent to which cerebral measures mediate the environ-
mental and genetic factors on the g-factor.

The present study is limited in its ability to make causal
claims regarding the mediation of neuroanatomical structures on
intelligence. Although the mediation model assumes that brain
measures cause intelligence scores, intelligence scores may influ-
ence the investigated brain measures because such measures
are to some extent plastic, and both are measured around the
same time in older adulthood. Therefore, whereas the effects
of the gPGS and childhood adversity on brain measures and
intelligence during older adulthood may be causal, associations
between brain measures and intelligence scores are correlational
in nature. Future studies may be able to address this caveat by
using brain measures that are taken after measures of childhood
adversity but before measures of intelligence.

The paper is also limited in its ability to generalize to all
UK Biobank participants: Individuals with neuroimaging data are
different from UK Biobank participants without neuroimaging
data (Lyall et al. 2022) and the UK population (Fry et al. 2017).
Our analyses were restrained to individuals of British ancestry,
suggesting that further research is needed to examine whether
genetic factors on intelligence are mediated by the same cerebral
regions and to the same degree across ancestries. The PGS also
only predicted 7.9% of the variance in the g-factor, suggesting that
additional regions may be found when using a more predictive
PGS. Finally, not including the most important environmental
predictor of intelligence, parental or childhood socioeconomic
status (SES; Flensborg-Madsen et al. 2020; Flensborg-Madsen and
Mortensen 2017), is a major limitation of our study. Since child-
hood SES was not available in the UK Biobank, we focused on
childhood adversity, which is strongly associated with intelli-
gence (but less so than parental SES; McGuire and Jackson 2020).
Although we could have used adult SES, as done in previous
studies (e.g. Kweon et al. 2022) to serve as a proxy of childhood SES,
the bidirectional influences between adult SES and intelligence
would have compromised the interpretation of the mediation
model.

The present paper provides the first large-scale study examin-
ing the neuroanatomical measures mediating genetic (gPGS) and
early environmental (childhood adversity) effects on intelligence
(g-factor). We replicate and extend previous findings and highlight
the importance of adding environmental data to better under-
stand how genetic and environmental factors act on the brain
to influence general intelligence. In light of the strong evidence
for genetic and environmental factors contributing to individual
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differences in intelligence (for review Deary et al. 2021; Harden
2021), we urge future studies to simultaneously investigate the
genetic, environmental, and cerebral effects on intelligence by
examining a variety of cerebral properties, from the macro to
the micro, to understand discrepancies in intelligence (for review
Deary et al. 2021) and, in turn, later health, educational, and social
outcomes (Schmidt and Hunter 2004; Strenze 2007; Calvin et al.
2017; Twig et al. 2018).
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