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Abstract
A number of studies have shown an abnormal connectivity of certain white matter pathways in

developmental dyslexia, as well as correlations between these white matter pathways and

behavioral deficits. However, whether developmental dyslexia presents broader white matter

network connectivity disruption is currently unknown. The present study reconstructed white

matter networks for 26 dyslexic children (11.61 � 1.31 years) and 31 age-matched controls

(11.49 � 1.36 years) using constrained spherical deconvolution tractography. Network-based

statistics (NBS) analysis was performed to identify network connectivity deficits in dyslexic indi-

viduals. Network topological features were measured based on graph theory to examine

whether these parameters correlate with literacy skills, and whether they explain additional vari-

ance over previously established white matter connectivity abnormalities in dyslexic children.

The NBS analysis identified a network connecting the left-occipital-temporal cortex and

temporo-parietal cortex that had decreased streamlines in dyslexic children. Four network topo-

logical parameters (clustering coefficient, local efficiency, transitivity, and global efficiency) were

positively correlated with literacy skills of dyslexic children, and explained a substantial propor-

tion of additional variance in literacy skills beyond connectivity measures of white matter path-

ways. This study for the first time reports a disconnection in a local subnetwork in the left

hemisphere in dyslexia and shows that the global white matter network topological properties

contribute to reduced literacy skills in dyslexic children.
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1 | INTRODUCTION

Developmental dyslexia is characterized by difficulty in learning to

read that is independent from intelligence (Lyon, Shaywitz, & Shay-

witz, 2003). This disorder has a population prevalence of 5%–10%

(Shaywitz, Shaywitz, Fletcher, & Escobar, 1990; Siegel, 2006) and is

recognized to have a neurobiological origin (Fawcett & Nicolson,

2007). Developing a more comprehensive understanding of the

neurological basis of developmental dyslexia and establishing its clini-

cal relationship with reading deficits remains a primary aim of dyslexic

research (Giraud & Ramus, 2013).

It is widely accepted that reading involves multiple brain regions,

including the frontal lobe, parieto-temporal regions and occipito-

temporal regions (Epelbaum et al., 2008; Hoeft et al., 2006; Hoeft

et al., 2007; Shaywitz & Shaywitz, 2005). Compared to typical readers,

people with dyslexia normally exhibit an atypical pattern of brain

Received: 28 January 2018 Revised: 15 August 2018 Accepted: 30 August 2018

DOI: 10.1002/hbm.24390

Hum Brain Mapp. 2019;40:505–516. wileyonlinelibrary.com/journal/hbm © 2018 Wiley Periodicals, Inc. 505

https://orcid.org/0000-0001-9000-6227
mailto:jingjing.zhao@snnu.edu.cn
http://wileyonlinelibrary.com/journal/hbm


activity across distributed brain regions (Brambati et al., 2006; Cohen

et al., 2000; Cohen & Dehaene, 2004; Dehaene & Cohen, 2011; Pau-

lesu, Danelli, & Berlingeri, 2014; Price & Devlin, 2011; Shaywitz et al.,

2002) as well as abnormal functional connectivity among reading-

related brain regions (Boets et al., 2013; Horwithz, Rumsey, & Dono-

hue, 1998; Paulesu et al., 1996; Pugh et al., 2000; Schurz et al., 2015;

Zhou, Xia, Bi, & Shu, 2015).

Functional connectivity deficits found in dyslexia may result from

white matter connectivity alterations, as white matter fiber bundles

connect distant brain regions and ensure long-range connections

between brain regions. Diffusion tensor imaging (DTI) provides a non-

invasive way to measure the connectivity of white matter fiber tracts

by calculating the diffusion tensor within each voxel to estimate orien-

tations and integrity of white matter fibers (Basser, 1995; Basser,

Mattiello, & Lebihan, 1994). White matter integrity has been found to

be decreased in various white matter structures in dyslexia compared

with typically developing controls (Deutsch et al., 2005; Klingberg et al.,

2000; Niogi & McCandliss, 2006; Richards et al., 2008; Rimrodt et al.,

2009; Steinbrink et al., 2008), especially in the left arcuate fasciculus, a

fiber pathways connecting Broca's area and Wernicke's area (Catani &

Thiebaut de Schotten, 2008; Vandermosten, Boets, Poelmans, et al.,

2012; Zhao, Thiebaut de Schotten, Altarelli, Dubois, & Ramus, 2016).

While previous studies have performed whole-brain analysis

(e.g., TBSS) to identify local differences in white matter connectivity in

dyslexia since last decades, whole-brain network analysis methods

(e.g., network-based statistic [NBS] and graph theory analysis) have

only been used to examine local and global network deficits in dyslexia

recently. These included one study with functional connectivity net-

work analysis (Finn et al., 2014) and two studies with gray matter net-

work analysis (Hosseini et al., 2013; Qi et al., 2016). Finn

et al. reported an altered local visual network in dyslexia using whole-

brain functional network analysis method (NBS), suggesting that dys-

lexia may result from reduced functional synchronization among occip-

ital regions (Finn et al., 2014). Whole-brain gray matter network

analyses found altered network properties in cortical thickness and

surface area in dyslexia (Qi et al., 2016) and in children with familial risk

of dyslexia (Hosseini et al., 2013) using graph theory analysis method.

However, no study has examined white matter network deficits in dys-

lexia. It remains unknown whether anomalies in white matter connec-

tivity might be reflected at a global network level.

The purpose of the present study was to evaluate whether develop-

mental dyslexia has anatomic connectivity deficits at the whole-brain

network level by using white matter network analysis methods (NBS and

graph theory analysis). Network analysis expands analysis of white mat-

ter connectivity from investigations of specific pathways to an entire

connectome analysis. By mapping the brain as a network composed of

nodes and edges, network-based analysis methods have been success-

fully used to quantify the connectivity of brain networks in clinical popu-

lations with neurological and psychiatric disorders such as autism (Roine

et al., 2015), major depressive disorder (Korgaonkar, Fornito, Williams, &

Grieve, 2014), preterm born infants and children (Ball et al., 2014; Batalle

et al., 2017), and Alzheimer's disease (Reijmer et al., 2013; Wang et al.,

2015) [for a review see Sporns, 2014].

The specific aims of the present study are threefold: (1) to evalu-

ate whether there are white matter network connection deficits in

developmental dyslexia using network-based statistic; (2) to explore

whether there are deficits in the network topological properties of

white matter networks in dyslexia by graph theory analysis; and (3) to

examine whether there is a correlation between the topological prop-

erties and the severity of reading disability in dyslexia, and whether

those topological parameters might explain additional behavioral vari-

ance in literacy skills over and above already established white matter

pathway disruptions in dyslexia.

2 | METHODS AND MATERIALS

2.1 | Participants

Fifty-seven children were enrolled into the study. Twenty-six children

were dyslexic (11.61 � 1.31 years) and the other 31 children were

typical readers (11.49 � 1.36 years). The age of children ranged from

109 to 169 months (9 to 14 years). All children were French native

speakers with normal vision and hearing abilities, and their nonverbal

IQ were all higher than 80. Dyslexic children were all severe dyslexic

participants diagnosed at a clinic for reading and language disabilities,

had no history of brain damage, and were screened for ADHD using

the appropriate subscale of the Child behavior checklist (Achenbach,

2001). Text reading age [based on accuracy and speed of the Alouette

test (Lefavrais, 1967)] was delayed by at least 18 months for dyslexic

children and no more than 12 months for controls. Age, sex, handed-

ness, maternal educational level, and nonverbal IQ were matched

across groups. We used the 18-month delay criterion to make sure

that these dyslexic children were all very poor readers at the time of

scanning. Informed written consent was obtained from all children

and their parents, and the study was approved by the ethics commit-

tee of Bicêtre Hospital, France. A previous analysis of certain white

matter pathways in these participants has been published, and no dif-

ference in head motion parameters was found between dyslexics and

controls (Zhao et al., 2016).

2.2 | Behavioral measures

Intellectual abilities were tested using theWISC blocks, matrices, similar-

ities, and comprehension subtests (Wechsler, 2005). The Alouette test

(Lefavrais, 1967), which assessed reading accuracy and speed using a

meaningless text, and a word/nonword reading fluency test from Ode-

dys (Jacquier-Roux, Valdois, & Zorman, 2005) were administered to esti-

mate children's reading ability. Orthographic skill was estimated by a

word spelling-to-dictation test (Martinet & Valdois, 1999). A phoneme

deletion task (Sprenger-Charolles, Béchennec, Colé, & Kipffer-Piquard,

2005), a spoonerism test (Bosse & Valdois, 2009), and the WISC digit

span subtest assessing verbal working memory (Wechsler, 2005) were

administered to measure phonological skills. The rapid automatized

naming (RAN) tasks for digits and objects (Plaza & Robert-Jahier, 2006)

were administered to assess rapid lexical retrieval. Parental education

was based on the highest diploma obtained and was coded on a scale

ranging from 1 to 6. Based on a previous factor analysis of the same set

of variables in a larger population from which this sample was drawn

(Saksida et al., 2016), behavioral measurements were collapsed into
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three factors: literacy skill (average z-score of word reading accuracy

and word spelling accuracy), phonological ability (average z-score of

phoneme deletion, spoonerism, and digit span), and rapid automatic

naming (average z-score of objects rapid automatic naming and digits

rapid automatic naming).

2.3 | Imaging acquisition

All children were familiarized with the scanner environment in a mock

MRI setup and then underwent scanning with a 3T MRI system (Tim

Trio, Siemens Medical Systems, Erlangen, Germany) equipped with a

whole body gradient (40 m T/m, 200 T/m/s) and 32-channel head

coil, at the Neurospin centre, Gif-sur-Yvette, France. Whole-brain

anatomic imaging was performed using a MPRAGE sequence (acquisi-

tion matrix = 230 × 230 × 224, repetition time (TR) = 2,300 ms, echo

time (TE) = 3.05 ms, flip angle = 9�, field of view (FOV) = 230 mm,

voxel size = 0.9 × 0.9 × 0.9 mm3).

For diffusion weighted imaging, to reduce geometric distortions,

the procedure used a diffusion-weighted spin-echo single-shot EPI

sequence with parallel imaging (GRAPPA reduction factor 2), partial

Fourier sampling (factor 6/8), and bipolar diffusion gradients. The

whole brain was imaged with an isotropic spatial resolution of

1.7 mm3 (matrix size = 128 × 128, FOV = 218 mm) and 70 inter-

leaved axial slices. Diffusion gradients were applied along 60 orienta-

tions, uniformly distributed, with a diffusion weighting of b = 1,400 s/

mm2 (TR = 14,000 ms, TE = 91 ms). To make this protocol tolerable

for children, three subsequences were acquired separately with

20, 21, and 19 diffusion weighted (DW) volumes (Dubois, Poupon,

Lethimonnier, & Bihan, 2006), in which gradient orientations were as

uniformly distributed as possible in space. Additionally, three b0

images were acquired with no diffusion gradient applied (b = 0), one

per run. Each sequence took about 6 min, resulting in a total acquisi-

tion time of 18 min.

2.4 | Image analysis

All the steps for image analysis, except for atlas registration, were per-

formed using ExploreDTI (http://www.exploredti.com, see Leemans,

Jeurissen, Sijbers, & Jones, 2009). For each of the 57 children, volumes

from the three scans were first concatenated into a single 4D image set.

Coregistration and eddy current correction were applied on the resul-

tant 4D images to correct for subject motion and geometric distortions.

Next, the b0 images of each participant were exported from each DW

data set. To optimize the quality of the registration results, the voxel size

of the b0 image was resampled from 1.7 × 1.7 × 1.7 mm3 to

1 × 1 × 1 mm3 matching the voxel size of the Automated Anatomical

Labeling (AAL) template (Tzourio-Mazoyer et al., 2002). Constrained

spherical deconvolution (CSD) was used to estimate multiple fiber orien-

tations with whole-brain tractography conducted in native space

(Tournier, Calamante, & Connelly, 2007). Fibers were reconstructed by

starting seed samples uniformly throughout the data at 1.7 mm isotropic

resolution and by following the main diffusion direction (as defined by

the principal eigenvector) until the fiber tract made a high angular turn

considered to be anatomically unlikely (angle <35�). The step size was

set at 0.5 mm. The fiber length range was between 25 mm and 500 mm

(Zhao et al., 2016).

Network construction included two types of elements—nodes

and edges. In a white matter network, nodes represent cortical regions

and edges correspond to white matter fiber pathways connecting cor-

tical regions.

Node definition for each participant was based on the AAL tem-

plate. According to the AAL atlas, the whole-brain gray matter (exclud-

ing cerebellum) of each child was divided into 90 regions of interest

(ROIs). First, the b0 image of each participant was registered to the T1

image, generating a transfer matrix. Then the T1 image was registered

to the MNI152 (Montreal Neurological Institute) template to perform

a nonlinear registration. After combining those two transformations,

which moved the images from native space to standard space, the

inverse transformation was calculated and applied to the atlas in stan-

dard space to project back to the individual native space. All these

steps were executed using FMRIB's Nonlinear Image Registration Tool

(FNIRT, FSL, http://www.fmrib.ox.ac.uk/fsl/) (Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012).

Edges were defined as the white matter fibers connecting each

pair of nodes, representing white matter pathways between two gray

matter regions. In a weighted network, each edge is valued to repre-

sent a connection property between two nodes. Number-of-

streamlines weighted and density-weighted networks were both con-

structed in the present study. The value of edges in the number-of-

streamlines weighted network was equal to the total number of

streamlines between the two nodes connected by the edge. The value

of edges in the density-weighted network was calculated by dividing

the total number of streamlines between two nodes by the total sur-

face area of the two nodes. Figure 1 illustrates the application of the

AAL template to each brain, the whole-brain constrained spherical

deconvolution tractography, and the edges and nodes identified in the

density-weighted white matter network.

2.5 | Network-based statistic analysis

Network-based statistic (NBS) analysis is a statistical approach used to

identify group differences in network organization (Zalesky, Fornito, &

Bullmore, 2010). NBS was applied to both the number-of-streamlines

and density weighted networks. First, group differences in each connec-

tion (streamline number or density) were examined based on a one-tail

t test with contrast setting as “[−1, 1]” to examine, if there are subnet-

works with lower connectivity in the dyslexic group than the control

group. Following the trial and error progress in NBS, a series of

alpha value was used to construct a set of suprathreshold links. Compo-

nents were defined as sets of interconnected suprathreshold links, iden-

tified using a breadth first search (Ahuja, Magnanti, & Orlin, 1993) and

characterized by their size, that is, the number of links they contained.

To ascribe a p value controlled for the family-wise error (FWE) rate to

each component, permutation testing was conducted based on each

component's size. Five thousand permutations of group membership

were generated independently. After applying the same threshold of

alpha value to each permuted network, the maximal component size in

the suprathreshold links was stored, yielding an empirical estimate of

the null distribution of maximal component size. Finally, the empirical
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p value of the observed component of size k was estimated by finding

the number of permutations for which the maximal component size is

greater than k and normalizing by 5,000. This analysis was done once on

the number-of-streamlines weighted network, and once on the density-

weighted network. In the present study, the FWE rate for component

size was set at 0.025. The visualization of the subgraphs was performed

using BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia,

Wang, & He, 2013).

2.6 | Graph theory analysis

To investigate topological properties of white matter networks, a set

of thresholds were set to avoid false positive connections and keep

the number of edges equal among all participants, to eliminate con-

founding factors such as different number of edges and connected

nodes which may induce spurious group differences (Drakesmith

et al., 2015; Meunier, Achard, Morcom, & Bullmore, 2009; van den

Heuvel et al., 2009). The set of thresholds ranged from 10% to 30%

with a step size of 1%, preserving the strongest connections

(Korgaonkar et al., 2014). This range of thresholds is usually used to

obtain a network with small-world properties (Korgaonkar et al.,

2014; Zhang et al., 2011). We tested small-worldness at each thresh-

old value, using the following approach (Humphries & Gurney, 2008):

S¼
C
�
Crand

L Lrand
,=

where C and Crand are the clustering coefficient (see definition

below), and L and Lrand are the characteristic path length of the target

network and of a random network.

L¼1
n

X

i2N

P
j2N, j 6¼1dij
n−1

,

where dij is the shortest-path length between node i and j. A network

is said to be small-world when small-worldness parameter S > 1. For

each threshold between 10% and 30%, we computed the S value of

networks across thresholds from 10% to 30% to check whether our

data met that property. One sample t tests were applied to examine

whether the S value was significantly higher than 1 across all thresh-

olds. Results were corrected for multiple tests with Bonferroni

correction.

Subsequent analyses were then carried out only at those thresh-

olds in accordance with small-worldness. Six parameters (clustering

coefficient, local efficiency, global efficiency, transitivity, betweenness

centrality, strength) were chosen to evaluate group differences in

topological properties, based on both number-of-streamlines

weighted and density-weighted networks. All parameters were

extracted using Brain Connectome Toolbox (Rubinov & Sporns, 2010,

https://sites.google.com/site/bctnet/). Clustering coefficient (CC)

measures the prevalence of clustered connectivity around each node

(Watts & Strogatz, 1998). Higher average CC in the whole network

indicates that there are more clusters, with all nodes more densely

connected with each other.

CC¼1
n

X

i2N

2ti
ki ki−1ð Þ ,

where ti is the number of triangles around node i, and ki is the degree

of a node i (the number of nodes directly connected with node i).

Efficiency has been widely used in complex network analysis to

evaluate parallel information processing (Latora & Marchiori, 2001).

Specifically, local efficiency (LE) is the average efficiency of local sub-

graphs formed by the neighborhood of a node, representing the fault

tolerant capacity of the network when a random node lesion occurs

(Latora & Marchiori, 2001).

LE¼1
n

X

i2N

P
j,h2N, j6¼1aijaih djh Nið Þ� �−1

ki ki−1ð Þ ,

where aij is the value of connection between node i and j. Global effi-

ciency (GE) measures the information transferring ability of whole

FIGURE 1 Workflow of method for constructing a whole-brain white matter network: The b0 image was exported from DW data set and then

resampled to 1 × 1 × 1 mm3 (a); the automated anatomical labeling (AAL) template (b) in standard space was registered into the b0 images of
each participant in native space (c); whole-brain tractography (d) was conducted using constrained spherical deconvolution (CSD) algorithm and
coregistered to the AAL template in native space generating a density weighted connection matrix between the 90 AAL cortical regions (e) which
represents a whole-brain white matter network (f )

508 LOU ET AL.

http://www.nitrc.org/projects/bnv/
https://sites.google.com/site/bctnet/


brain evaluated by previously established procedures (Latora &

Marchiori, 2001).

GE¼1
n

X

i2N

P
j2N, j6¼1dij
n−1

:

Transitivity (T) is a variant of the clustering coefficient that is

computed on a global level rather than averaging the value of each

node, ensuring resilience by disproportionately weighing low-degree

nodes.

T¼
P

i2N2tiP
i2N ki ki−1ð Þ :

Betweenness centrality (BC) is the fraction of all shortest paths in

the network that contain a given node.

BC¼ 1
n−1ð Þ n−2ð Þ

X

h, j2N

ρhj ið Þ
ρhj

,

where ρhj(i) is the number of shortest path lengths between node

h and j that pass through node i. Strength (S) is the average of all

nodes' strength Si, the number of links connected to the node i.

Si ¼
X

j2N
aij:

2.7 | Statistical analysis of graph theory measures

To investigate group differences of network topological properties (CC,

LE, GE, T, BC, S), a multivariate analysis of covariance (MANCOVA) was

performed with group (control vs. dyslexic) as a between-subject variable,

and age, gender and parental education as covariates. CC, LE, GE, T, BC

and S across all thresholds following small-worldness were entered into

the model as dependent variables for number-of-streamline and density

weighted network, separately. Correction for multiple tests (6 network

topological properties × 2 weighting methods) used the False Discovery

Rate (FDR) correction (Benjamini & Hochberg, 1995). Tests of partial cor-

relations between network parameters and three behavioral composite

measurements were then conducted within the dyslexic group, control-

ling for sex, age, parental education and mean global FA, using FDR to

correct for multiple comparisons.

Network topological parameters which were significantly corre-

lated with behavioral measurements were then entered in hierarchical

multiple regression analyses to examine their additional value to pre-

dict reading dysfunction in developmental dyslexia, beyond that of

previously identified white matter tract integrity measures which have

been found to correlate with literacy skills using the same sample

(Zhao et al., 2016). The behavioral measurements were the dependent

variables. The following parameters were entered as independent var-

iables: model 1: gender, age, parental education, and mean global FA;

model 2: model 1 + the lateralization index (LI) of the inferior fronto-

occipital fasciculus (IFOF) and the superior longitudinal fasciculus

(SLF) II which have been shown to be significantly correlated with

reading/spelling accuracy in dyslexic children (data from previous

study using the same sample) (Zhao et al., 2016); model 3: model

2 + network topological parameters. The additional share of variance

explained (ΔR2) between the model and the previous model and the

corresponding p value was calculated. Because of multicollinearity

(condition index >30, VIF > 10), clustering coefficient, local efficiency,

global efficiency, and transitivity were entered into the model and

analyzed separately.

3 | RESULTS

3.1 | Demographic and behavioral measures

Descriptive statistics for demographic and behavioral measures for

the dyslexic and control groups are shown in Table 1. Age, gender,

handedness, nonverbal IQ and maternal education did not differ

between groups. Literacy, phonological abilities, and rapid naming

speed were significantly lower in the dyslexic than in the control

group. Dyslexic children also had lower verbal IQ scores than controls.

3.2 | Small-worldness properties

Small-worldness parameters (S) across thresholds from 10% to 30% in

the density weighted network and in the number-of-streamline

weighted network were all higher than one (Table 2). However, only

thresholds from 12% to 26% survived Bonferroni correction.

3.3 | Network-based statistics

For number-of-streamline network, a component network in the left

occipito-temporo-parietal region whose connections were signifi-

cantly weaker (FWE corrected p = .023) in dyslexic children compared

with controls (Figures 2 and 3) was identified when the alpha value

was .0055. The subgraph comprised seven edges connecting eight

brain nodes, including the connections between left middle temporal

gyrus (MTG.L) and left middle occipital gyrus (MOG.L), MOG.L and

left temporal pole (TPOsup.L), TPOsup.L and left Heschl's gyrus (HES.

L), HES.L and left Rolandic operculum (ROL.L), left insula (INS.L) and

ROL.L, left superior temporal gyrus (STG.L) and INS.L, and between

INS.L and left supramarginal gyrus (SMG.L). As a follow-up to facilitate

the interpretation of this finding, all FA value of the seven edges were

extracted and averaged as the mean FA of the subnetwork. We found

that the mean FA of this subnetwork was significantly lower in dys-

lexic children compared with controls (F(1, 55) = 6.935, p = .011). The

analysis based on the density-weighted network did not yield any

component that significantly differed between groups.

For examining if the NBS results we have reported could be repli-

cated using different node and edge definitions, we performed further

validation analyses using fiber orientation distribution (FOD) as an

alternative edge definition and the Harvard-Oxford 96-regions atlas

(Makris et al., 2006) as an alternative node definition. All procedures

and results are listed in the Supporting Information.

3.4 | Graph theory analysis

Results from the MANOVA showed that CC, LE, T, GE, BC, and S had

no significant group differences between dyslexic and control group

neither in number-of-streamline nor density weighted networks (ps >

.1). Correlations between the mean value for each of the six network

parameters across thresholds from 12% to 26% (threshold following
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small-worldness) and the three composite behavioral measurements

in the dyslexic group are shown in Table 3. In the density weighted

network, the correlations between literacy skill and four network

parameters were significant, including CC (r (25) = .689, p = .0005 <

FDR-corrected q* = .0028), LE (r (25) = .701, p = .0004 < FDR-

corrected q* = .0014), T (r (25) = .623, p = .0025 < FDR-corrected

q* = .0056) and GE (r (25) = .687, p = .0006 < FDR-corrected q* =

.0042), as shown in Figure 4. For the number-of-streamline

weighted network, CC (r (26) = −.502, p = .0173), LE

(r (26) = −.538, p = .0097), T (r (26) = −.481, p = .0234), and GE

TABLE 2 Small-worldness across thresholds from 0.10 to 0.30 on both density and number-of-streamline weighted network

Thresholds Density weighted network Number-of-streamline weighted network

Mean SD p Mean SD p

.10 1.0349 .20476 .203 1.0345 .20413 .207

.11 1.0703 .21538 .017 1.0708 .21538 .016

.12 1.1087 .21385 <.001 1.1091 .21495 <.001

.13 1.1361 .21393 <.001 1.1372 .21540 <.001

.14 1.1739 .22147 <.001 1.1741 .22200 <.001

.15 1.2072 .22829 <.001 1.2080 .22812 <.001

.16 1.2445 .23488 <.001 1.2447 .23507 <.001

.17 1.2831 .24627 <.001 1.2839 .24679 <.001

.18 1.3174 .25757 <.001 1.3176 .25570 <.001

.19 1.3542 .25692 <.001 1.3544 .25777 <.001

.20 1.3826 .26268 <.001 1.3820 .26217 <.001

.21 1.4179 .27514 <.001 1.4163 .27328 <.001

.22 1.4520 .28619 <.001 1.4506 .28635 <.001

.23 1.4759 .29846 <.001 1.4748 .29803 <.001

.24 1.4944 .31483 <.001 1.4944 .31549 <.001

.25 1.4905 .34680 <.001 1.4913 .34780 <.001

.26 1.4698 .37677 <.001 1.4702 .37626 <.001

.27 1.2205 .45165 .001 1.2202 .45322 .001

.28 1.1829 .48707 .006 1.1847 .49041 .006

.29 1.1403 .50749 .041 1.1400 .50705 .042

.30 1.0376 .47474 .553 1.0361 .47162 .566

TABLE 1 Demographical data, behavioral scores, and brain measurements

Control children Dyslexic children Test statistics

N Mean (SD) N Mean (SD)

Subject characteristics

Gender (male/female) 31 18/13 26 13/13 χ2 (1) = .371, p = .543

Handedness (left/right) 31 2/29 26 3/23 χ2 (1) = .457, p = .499

Age (years) 31 11.49 (1.36) 26 11.61(1.31) t (55) = −.320, p = .751

Maternal education 31 2.65 (1.38) 26 3.08 (1.80) t (55) = −1.029, p = .308

Paternal education 31 2.52 (1.61) 26 3.62 (1.92) t (55) = −2.352, p = .022

Nonverbal IQ 31 110.29 (17.09) 26 106.00 (15.69) t (55) = .980, p = .332

Verbal IQ 31 123.84 (18.70) 26 107.88 (18.22) t (55) = 3.246, p = .002

Reading age (months) 31 145.94 (18.65) 26 87.27 (11.43) t (55) = 13.979, p < .0001

Behavioral tests

Word reading accuracy (/20) 31 18.65 (1.64) 25 10.52 (4.33) t (54) = 9.650, p < .0001

Spelling (%) 31 82.75 (13.77) 26 37.94 (20.18) t (55) = 9.922, p < .0001

Phoneme deletion (/24) 31 22.97 (1.38) 26 17.89 (4.77) t (55) = 5.667, p < .0001

Spoonerism (/12) 31 7.83 (2.56) 24 2.29 (2.73) t (53) = 7.679, p < .0001

Digit span (WISC scaled score) 31 10.87 (2.68) 26 6.58 (2.18) t (55) = 6.554, p < .0001

RAN digits (s) 31 21.33 (3.19) 26 32.60 (7.62) t (55) = −7.493, p < .0001

RAN objects (s) 31 35.86 (6.92) 26 51.23(9.52) t (55) = −7.043, p < .0001

Brain measurements

Mean global fractional anisotropy 31 .474 (.012) 26 .473 (.016) t (55) = .249, p = .804

Head motion parameter 31 4.239 (1.378) 26 4.936 (2.413) t (55) = −1.365, p = .178
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(r (26) = −.532, p = .0108) showed trend of negative correlation

with phonological ability, but they did not survive FDR correction.

No significant group difference or network-behavior correlations

were found on the number-of-streamline weighted network.

3.5 | Added value of network parameters relative to
white matter pathway

As the correlations between literacy skill and four network parameters

in the density weighted network were significant, hierarchical multiple

regression analyses with literacy skill as dependent variable were fur-

ther performed. Regression analyses results are presented in Table 4.

Gender, age, parental education, and mean global FA together

explained 45.3% of the variance in literacy skill (model 1). The LI of

IFOF and SLF II significantly explained an additional 25.5% of the vari-

ance (model 2). Adding graph theoretical measures significantly

increased the explained variance in literacy skill, by 7.2% for clustering

coefficient (p = .031), 7.2% for local efficiency (p = .030), by 5.5% for

transitivity (p = .062), and by 6.5% for global efficiency (p = .041).

4 | DISCUSSION

The present study investigated white matter network deficits in devel-

opmental dyslexia. For the first time, we demonstrated that develop-

mental dyslexia involves widely distributed white matter deficits at

the brain-network level. Network topological properties correlated

with literacy skills in dyslexia and explained additional variance of the

literacy ability in dyslexic children beyond previously established

white matter abnormalities.

The first important finding was from the network-based statistics

(NBS) analysis. Using NBS, we found that dyslexic children showed fewer

connections within an integrated and widespread left hemisphere net-

work including Rolandic operculum, insula, supramarginal gyrus, superior

temporal pole, middle occipital gyrus, middle temporal gyrus, superior

temporal gyrus, and Heschl's gyrus, compared with matched healthy con-

trols. The connectivity of this local network as indexed by FA was also

lower in dyslexic children as compared to control children. Although it

emerged from an unbiased whole brain analysis, this left hemisphere sub-

network is largely consistent with widely accepted notions about the

neural basis of reading and regional brain alterations in dyslexia (Jobard,

FIGURE 2 Abnormalities in a number-of-streamline weighted brain subnetwork in developmental dyslexia, identified using network-based

statistics (NBS). The subnetwork consists of a central cluster of eight nodes and seven edges located in the left occipito-temporo-parietal lobe. L,
left; TPOsup, superior temporal pole; MOG, middle occipital gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; INS, insula; HES,
Heschl's gyrus; ROL, Rolandic operculum; SMG, supramarginal gyrus

FIGURE 3 The number-of-streamline weighted subnetwork from one representative control child. The top of the figure exhibits

the subnetwork. Each of the seven edges in the subnetwork were extracted separately as shown on the bottom of the figure (from
left to right: The connections between the left superior temporal pole and the left Heschl's gyrus, the connections between the left
insula and the left Rolandic operculum, left middle temporal gyrus and the left middle occipital gyrus, the connections between the left
superior temporal gyrus and the left insula, the connections between left insula and the left supramarginal gyrus, the connections
between the left Heschl's gyrus and the left Rolandic operculum, and the connection between the left middle occipital gyrus and the
left temporal pole)
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Crivello, & Tzourio-Mazoyer, 2003; Sandak, Mencl, Frost, & Pugh, 2004;

Schlaggar & McCandliss, 2007; Vandermosten, Boets, Poelmans, et al.,

2012; Zhao et al., 2016). This disrupted network includes the two main

pathways understood to underlie speech and reading processing (for

reviews see Hickok & Poeppel, 2007; Vandermosten, Boets, Wouters, &

Ghesquiere, 2012). One is the dorsal pathway, which is centered on

language-related regions including key regions for auditory processing

and phonological processing including inferior frontal regions (ROL), tem-

poral auditory cortex (HES, STG), and multimodal temporo-parietal

regions (SMG) [for a review see Vandermosten, Boets, Wouters, &

Ghesquiere, 2012]. These regions are notably connected by the arcuate

fasciculus (Catani & Thiebaut de Schotten, 2008), a key bundle connect-

ing anterior and posterior language regions.

The other pathway is in the ventral network, including tracts con-

necting the left-middle occipital gyrus and the left-superior temporal

pole. This ventral network overlaps with the inferior longitudinal fas-

ciculus (Catani & Thiebaut de Schotten, 2008). Although few studies

have reported abnormalities in dyslexia in the inferior longitudinal fas-

ciculus (Yeatman, Dougherty, Ben-Shachar, & Wandell, 2012), the cur-

rent finding corroborates previous functional and structural imaging

TABLE 3 Pearson partial correlation coefficients (controlled for gender, age, parental education, and mean global FA) between behavioral

measures and network parameters in the group of dyslexic children

Correlations between reading performance number-of-streamline weighted network

N r (p)

Clustering
coefficient

Local efficiency Transitivity Global efficiency Betweenness
centrality

Strength

Literacy ability 25 −.158 (.4930) −.180 (.4343) −.138 (.5502) −.189 (.4120) −.006 (.9806) −.208 (.3664)

Phonological ability 26 −.502 (.0173)* −.538 (.0097)* −.481 (.0234)* −.532 (.0108)* −.039 (.8637) −.155 (.4924)

Rapid automatic naming 26 .007 (.9753) .044 (.8470) .014 (.9510) .056 (.8041) .102 (.6501) .265 (.2333)

Correlations between reading performance density weighted network

N r (p)

Clustering
coefficient

Local
efficiency

Transitivity Global
efficiency

Betweenness
centrality

Strength

Literacy ability 25 .689
(.0005)**

.701
(.0004)**

.623
(.0025)**

.687
(.0006)**

−.253 (.2694) .121 (.6017)

Phonological ability 26 .353 (.1069) .332 (.1420) .297 (.1799) .282 (.2036) −.274 (.2180) .172 (.4452)

Rapid automatic
naming

26 −.231 (.3010) −.244 (.2728) −.169 (.4534) −.221 (.3239) .182 (.4180) −.114
(.6128)

*p < .05, **q < 0.05 (surviving FDR correction).

TABLE 4 Explained variance in literacy skill (average z-score of spelling and word reading accuracy) in the group of dyslexic children by white

matter pathway markersa and network parametersb. **p < .01, *p < .05, #p < .10

Model Independent variables R2 ΔR2 p

Literacy skill

1 Age, gender, parental education, global FA .453 .453 .013**

2 Model 1 + LI of IFOF and SLF II .708 .255 .004**

3aa Model 2 + clustering coefficient .780 .072 .031*

3ba Model 2 + local efficiency .780 .072 .030*

3ca Model 2 + transitivity .763 .055 .062#

3da Model 2 + global efficiency .773 .065 .041*

Abbreviations: IFOF, inferior frontal-occipital fasciculus; SLF, superior longitudinal fasciculus.
a Model 3 includes only those network parameters that were significantly correlated with word reading/spelling accuracy as shown in Table 2.
b White matter pathway markers that were significantly correlated with word reading/spelling accuracy from Zhao et al. (2016) were controlled and
included in Model 2.

c The difference in explained change of variance (ΔR2) between the model and the previous model and the corresponding p value are given.

FIGURE 4 Correlations between literacy skills and four density-weighted network topological parameters (clustering coefficient, local efficiency,

transitivity, and global efficiency) in dyslexic children
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studies that have reported abnormal function during word form recog-

nition (Dehaene & Cohen, 2011; Price & Devlin, 2011) and atypical

gray matter geometry in the occipital-temporal region in dyslexia

(Altarelli et al., 2013; Richardson & Price, 2009). In summary, our NBS

results revealed a deficit in a subnetwork, which included both dorsal

and ventral connections in dyslexic children.

The second important finding is the correlation between whole brain

network topological properties (CC, LE, GE, and T) and literacy skill. Net-

work parameter alterations in the dyslexic group were related to behav-

ioral measures of literacy. Thus, the white matter network topological

properties we observed may represent neural correlates of reading ability.

Most previous studies in DTI have suggested correlations between

literacy skills and white matter connectivity in specific white matter

regions (Carter et al., 2009; Deutsch et al., 2005; Klingberg et al., 2000)

or specific white matter pathways (Vandermosten, Boets, Poelmans,

et al.,2012; Zhao et al., 2016). In the present study, we found for the

first time that disconnection of white matter is associated with literacy

skills not only in specific white matter regions or pathways but also in

whole-brain white matter network properties. According to graph the-

ory, the four parameters can be categorized into two types: integration

and segregation. GE is a measure of integration, describing the ability to

rapidly communicate among distributed brain regions (Latora & March-

iori, 2001; Rubinov & Sporns, 2010). Thus, positive correlation between

GE and literacy skills in dyslexics indicates that less efficient global con-

nectivity among long-range pathways leading to reduced literacy skills in

dyslexic children might be caused by less integration of communication

between distant regions. LE, CC, and T are measures of segregation,

demonstrating the capacity for specialized processing within densely

interconnected brain regions (Rubinov & Sporns, 2010). Lower CC, LE,

and T are equivalent to less densely connected clusters, which suggests

reduced functional segregation of brain regions. Therefore, positive cor-

relation between CC, LE, and T and literacy skills in dyslexics indicates

that less independent clusters leading to worse literacy skills in dyslexic

children might result from reduced functional segregation within the

brain of dyslexic individuals.

Results from hierarchical multiple regression analyses suggest that

network measures provide information on literacy ability over and

beyond that already provided by previously established white matter

tract measures. Indeed, we found that CC, GE, LE, and T explained addi-

tional variance in literacy skill beyond the lateralization index of IFOF and

SLF II, two white matter pathway measures that Zhao et al. (2016) had

found to correlate with literacy skills in the same population. The results

indicate that whole-brain network measures may provide important

information independent from measurement of specific white matter

pathways previously related to dyslexia, and that abnormal whole brain

white matter network organization is related to word reading/spelling

abilities in dyslexia.

Finally, white matter connection measure in the temporo-parietal

local white matter network where dyslexics differ from controls and

the global network topological parameters found to be associated

with dyslexics' literacy skills may both have genetic origins. Previous

studies have consistently shown that genetic factors could affect both

white matter volume and local connectivity between different brain

regions. For example, dyslexia susceptibility genes (DYX1C1, DCDC2,

KIAA0319), which have been implicated in neuronal migration, were

associated with white matter volume and its development in left

temporo-parietal regions (Darki, Peyrard-Janvid, Matsson, Kere, &

Klingberg, 2012; Darki, Peyrard-Janvid, Matsson, Kere, & Klingberg,

2014). DCDC2 and KIAA0319 were also reported to be highly

expressed in the temporal and parietal regions (Meng et al., 2005). It

therefore indicates that atypical expression of the dyslexia susceptibil-

ity genes may lead to white matter disruption in the left temporo-

parietal region. Besides, studies have also revealed genes modulating

brain connectivity between different brain regions. For example, a

gene SLC2A3 which regulates neural glucose transport (Maher &

Simpson, 1994; Maher, Vannucci, & Simpson, 1994; McCall, Van Bue-

ren, Moholt-Siebert, Cherry, & Woodward, 1994) and phonological

processing (Roeske et al., 2011) was related to FA of the arcuate fas-

ciculus, a white matter fiber pathway linking Broca's area and Wer-

nicke's area (Skeide et al., 2015). ROBO1, a gene related to axon

guidance receptor, was also shown to be related to reading behavior

and connectivity (axonal diffusion) of the middle corpus callosum,

white matter fiber pathway linking the left hemisphere and the right

hemisphere (Sun et al., 2017). In the present study, using NBS we

have identified a subnetwork with less white matter streamlines in the

dyslexic groups than in the control groups in distributed left temporo-

parietal region. The edges of our subnetwork included left arcuate fas-

ciculus, which have been reported to be related to gene SLC2A3. The

node of our subnetwork included supramarginal gyrus, which also

overlapped with the left temporo-parietal region where Darki

et al. found to be associated with dyslexia susceptibility genes

(DYX1C1, DCDC2, KIAA0319). Therefore, we speculated that the

group differences between dyslexics and controls found in the local

temporo-parietal network may have genetic basis to SLC2A3 and

DYX1C1, DCDC2, and KIAA0319, although these speculations might

still require future examinations. In addition, we also expect that the

more global network topological parameters might also have genetic

origins with dyslexia susceptibility genes (DYX1C1, DCDC2,

KIAA0319) and genes associated with phonological abilities and read-

ing skills (e.g., SLC2A3 and ROBO1), as we found that the global net-

work topological properties were associated with dyslexics' literacy

skills. All these expectations should be tested systematically before

making firm conclusions. Nevertheless, our results suggest future

directions for investigating the genetic origins of white matter net-

work organization and properties in developmental dyslexia.

It should be noted that the significant results from NBS analysis

were for the number-of-streamline weighted network but the signifi-

cant global network-behavior correlations were based on the density

weighted network. This discrepancy between two different network

analysis methods and two edge-weighted network may be due to

(1) the nature of the two different network analysis methods, and

(2) the differences of the edge definitions of the two edge-weighted

network. First, NBS and graph theoretical analysis are based on differ-

ent statistical methods and reflect different network properties. NBS

applied a set of t tests to examine group differences on every edge of

the network. Any significant group difference on the subnetwork was

based on the exact connectivity of the white matter pathways in the

subnetwork. Therefore, NBS reflects local connectivity of the net-

work. In contrast, graph theory analysis quantified the whole-brain

topological structure of the white matter network, therefore reflecting
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more global and complex network properties than the simple connec-

tivity of specific edges in the network. Second, the edges in the

streamline weighted network and the density weighted network

reflect different characteristics of the connectivity. The edge in the

streamline weighted network is the exact number of streamlines

between two brain regions, whereas the edge in the density weighted

network divides streamline number by the total volume of two brain

regions, which potentially normalizes the sizes and connections of

brain regions. Therefore, the streamline weighted edges would be

more sensitive to reflect the local differences in a subnetwork. Com-

paratively, density weighted edges would be more suitable for evalu-

ating whole brain network properties, as at the global whole brain

level, it is necessary to normalize the streamline number with brain

volume to standardize each edge. To sum up, results on networks with

streamline-weighted values in NBS and density-weighted values in

graph theoretical analysis might reflect different types of white matter

connectivity at local and global levels biased by streamline-weighted

and density-weighted edge definitions. Our findings of group differ-

ences in streamline weighted local network by NBS indicate that the

network-neuropathology of dyslexia might be more sensitive at the

local level network structure, which is also consistent with previous

studies (e.g., Finn et al., 2014; Qi et al., 2016). Our results of brain-

behavior correlations in dyslexia found by graph theoretical analysis in

global density-weighted network seem to indicate that the global level

network parameters might be more sensitive to account for the

behavioral variations in dyslexia, which requires future validations of

course.

It should also be acknowledged that although the network analy-

sis procedure that we used in the present study for studying dyslexia

was the widely used procedure for white network analysis, some

drawbacks existed in the procedure. First, the AAL parcellation that

we used for defining nodes was a standard practice in the field of net-

work analysis. However, the AAL template is underpowered since

gyral parcellation is not related to functional parcellation. Future stud-

ies might consider using functional parcellated template to define

nodes for network analysis, which might help understand the reading-

specific network deficits in dyslexia. Second, the core measurements

from the current standard white matter network analysis procedure

are number of streamlines, which are criticized as a measure of con-

nectivity strength, but can be seen as a surrogate for connectivity

strength measure. Future studies might explore other more transpar-

ent white matter connectivity measures such as anisotropy in the net-

work analysis of dyslexia.

5 | CONCLUSIONS

This study was the first study identifying alterations of white matter

connectivity in whole-brain connectome level. The findings demon-

strate that white matter connections in a local left occipito-temporo-

parietal network are disrupted in developmental dyslexia. Further-

more, global white matter network properties generated based on

graph theoretical analyses were correlated with literacy skills in dys-

lexia, and added to the prediction of literacy skills beyond the

contributions of specific white matter tracts known from previous

work to be related to developmental dyslexia.
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