TARGET ARTICLE WITH COMMENTARIES AND RESPONSE

The role of sensorimotor impairments in dyslexia: a multiple case study of dyslexic children

Sarah White,¹ Elizabeth Milne,²,³ Stuart Rosen,⁴ Peter Hansen,⁵ John Swettenham,³ Uta Frith¹ and Franck Ramus¹,⁶

¹. Institute of Cognitive Neuroscience, University College London, UK
². Department of Psychology, University of Sheffield, UK
³. Department of Human Communication Science, University College London, UK
⁴. Department of Phonetics and Linguistics, University College London, UK
⁵. Department of Physiology, University of Oxford, UK
⁶. Laboratoire de Sciences Cognitives et Psycholinguistique, EHESS/CNRS/ENS, Paris, France

Abstract

This study attempts to investigate the role of sensorimotor impairments in the reading disability that characterizes dyslexia. Twenty-three children with dyslexia were compared to 22 control children, matched for age and non-verbal intelligence, on tasks assessing literacy as well as phonological, visual, auditory and motor abilities. The dyslexic group as a whole were significantly impaired on phonological, but not sensorimotor, tasks. Analysis of individual data suggests that the most common impairments were on phonological and visual stress tasks and the vast majority of dyslexics had one of these two impairments. Furthermore, phonological skill was able to account for variation in literacy skill, to the exclusion of all sensorimotor factors, while neither auditory nor motor skill predicted any variance in phonological skill. Visual stress seems to account for a small proportion of dyslexics, independently of the commonly reported phonological deficit. However, there is little evidence for a causal role of auditory, motor or other visual impairments.

Introduction

A classical account of the phonological theory of dyslexia assumes that an impairment in the cognitive representation of speech sounds results in dyslexia, as defined by the characteristic discrepancy between reading skills and general cognitive ability (Stanovich, 1988; see Snowling, 2000, for a recent review). Indeed, learning to read involves acquiring a mapping between phonology and orthography, between speech sounds and letter symbols. A phonological deficit would affect the learning of such mapping and hence hinder reading acquisition. The role of phonology in literacy attainment has been well supported in the research literature since Bradley and Bryant’s study (1983), in which phonological awareness in preschoolers was found to predict later reading ability, irrespective of IQ. Support for the presence of a phonological deficit in dyslexia comes from numerous studies of dyslexics’ poor performance on tasks involving phonological awareness (e.g. Bradley & Bryant, 1978).

However, alternative theories of the cause of dyslexia exist, in particular those that advance lower-level sensorimotor impairments. These alternative theories look to more basic and less specific causes of the reading disability, in the visual system, auditory system and the cerebellum. Each of these theories accepts that a phonological deficit may be present and both the auditory and cerebellar theories attempt to account for it as a secondary impairment. However, they also implicate a range of other impairments.

The magnocellular theory of dyslexia proposes that dyslexia is caused by an impairment in the visual system, stemming specifically from the dysfunction of magnocells in the lateral geniculate nucleus (LGN) (Livingstone, Rosen,
Drislane & Galaburda, 1991). The visual system is thought to exist in two main divisions at this level, magnocellular and parvocellular, each processing different aspects of incoming visual information. Magnocellular dysfunction produces a deficit in the processing of visual information at low luminance, low spatial frequency and high temporal frequency (Lovegrove, Bowling, Badcock & Blackwood, 1980), while parvocellular dysfunction produces a deficit at high luminance, high spatial frequency and low temporal frequency. A similar impairment has also been proposed in the auditory system; the temporal processing theory of dyslexia (Tallal, 1980) proposes that the reading and spelling difficulties characterizing dyslexia are the result of an auditory impairment, producing a deficit in the processing of rapidly changing auditory stimuli. Lastly, the cerebellum has been put forward as a further site of dysfunction (Nicolson & Fawcett, 1990) producing deficits in motor and timing skills as well as automaticity and balance.

The magnocellular theory has now been extended to account for auditory and motor, as well as visual, impairments (Stein, 2001; Stein & Walsh, 1997). The magnocells of the medial geniculate nucleus (MGN) may also be dysfunctional, producing the auditory impairments, as these cells are thought to process rapidly changing auditory inputs. Both visual and auditory impairments can therefore be seen as dynamic processing deficits. Cerebellar dysfunction would result indirectly from deficient input from the magnocells, as the cerebellum receives strong projections from the magnocellular pathway.

Outstanding questions and the present study

The goal of the present study is to investigate the role of sensorimotor impairments in the causality of dyslexia by addressing each of the current theories of dyslexia discussed above. In order to address this issue of causality, the question ‘Do sensorimotor impairments play a causal role in dyslexia?’ can be broken down into a number of more simple questions.

Can visual impairments explain literacy impairments?

One possible mechanism by which visual impairments have been suggested to act on literacy skill is through the role of the magnocellular system in controlling eye movements, mediated by its input to the posterior parietal cortex (Stein & Talcott, 1999). An impaired magnocellular system may not correctly control eye movements, leading to binocular dysfunction and visual instability, making it hard to read. However, magnocellular visual dysfunction seems to be often associated with the phonological deficit (Cestnick & Coltheart, 1999; Ramus, Rosen, Dakin, Day, Castellote, White & Frith, 2003) so it is unclear whether it makes an independent contribution to reading difficulties.

Visual stress is another condition with symptoms similar to those reported by Stein and Walsh (1997): perceptual distortions including the movement of letters, blurring, coloured halos and pattern glare (Irlen, 1991; Wilkins, 1995). However, visual stress is not related to magnocellular function (Simmers, Bex, Smith & Wilkins, 2001) and can occur both with dyslexia and independently of it. The role of visual factors in reading disability therefore needs clarifying.

Can auditory impairments explain literacy impairments?

The auditory impairments that have been proposed involve a deficit in the processing of rapidly changing stimuli, also referred to as a temporal processing deficit (Tallal, 1980). Certain phonemic contrasts, such as /ba/ and /da/, differ in formant transitions only in the first 40 milliseconds, so a temporal processing deficit would impair the ability to discriminate between such stimuli. In this way, an auditory impairment has been suggested to cause the phonological deficit and therefore the literacy impairment seen in dyslexia. Although initially attributed only to those dyslexics with oral language problems, this theory has frequently been extended to dyslexics without oral language problems (Farmer & Klein, 1995; Temple, 2002), possibly indicating more wide-ranging language problems (Tallal, 2004). Other auditory theories of dyslexia have also been suggested, for example, an impairment in the perception of speech rhythm (Goswami, Thomson, Richardson, Stainthorp, Hughes, Rosen & Scott, 2002; Muneaux, Ziegler, Truc, Thomson & Goswami, 2004).

A number of studies have failed to replicate findings of an auditory deficit, or have found one only in a subset of dyslexic children (Heath, Hogben & Clark, 1999; Hill, Bailey, Griffiths & Snowling, 1999; Marshall, Snowling & Bailey, 2001; McArthur & Hogben, 2001; for a review, see Ramus, 2003) and others that do find a deficit show it to be unrelated to reading skill once IQ is controlled (Hulslander, Talcott, Witton, DeFries, Pennington, Wadsworth, Willcutt & Olson, 2004). Also, the deficit appears to be more prominent for speech than for non-speech sounds distinguished by the same rapid acoustic feature (Mody, Studdert-Kennedy & Brady, 1997; Rosen & Manganari, 2001). It is therefore unclear whether auditory dysfunction can explain the phonological deficit of children with dyslexia.
Can cerebellar impairments explain literacy impairments?

Cerebellar dysfunction was suggested as a cause of dyslexia from the observation that many dyslexic children were clumsy and had poor motor control (Nicolson & Fawcett, 1990). The proponents of this theory predict that all aspects of cerebellar function would be affected, including motor and timing skills, automaticity and balance. Reading ability would be affected in terms of automaticity while a phonological deficit is thought to emerge through poor articulatory skills (Nicolson, Fawcett & Dean, 2001; Fawcett & Nicolson, 2002). However, empirical evidence suggests that there is no link between articulatory ability and phonological ability or literacy skills (see Ramus, Pidgeon & Frith, 2003, for a discussion of this issue). It should also be noted that the majority of experiments reported in the literature involve only motor tasks and therefore poor performance may not necessarily be attributable to a cerebellar impairment. The extent of these motor difficulties and their putative role in the dyslexic population are still debated (Ramus, Pidgeon & Frith, 2003; Wimmer, Mayringer & Landerl, 1998; Yap & van der Leij, 1994), especially whether cerebellar dysfunctions can independently cause reading disability, or whether it co-occurs, with a different cause of reading impairment.

Are sensorimotor impairments found in all dyslexics?

Few studies evaluate individual performance on these tasks. Cornelissen, Richardson, Mason and Fowler (1995) found, at most, eight out of 29 dyslexics who performed outside the control range on a visual magnocellular task. Similarly, Witton, Talcott, Hansen, Richardson, Griffiths, Rees, Stein and Green (1998) detected performance out of the range of controls in approximately 25% of dyslexics on a visual task and 50% on an auditory task while Talcott, Gram, Van Ingelghem, Witton, Stein and Toennesen (2003) found such performance in approximately 25% of dyslexics on an auditory task but none on a visual task. In a recent meta-analysis of studies investigating auditory, visual or motor deficits, Ramus (2003) estimated the prevalence of auditory and visual deficits at 39% and 29% respectively, while motor deficits would seem to affect between 30 and 50% of dyslexic individuals. Furthermore, Ramus, Rosen et al. (2003), testing auditory, visual and motor deficits, found a subgroup of dyslexics (with a clear phonological deficit) performing perfectly normally on all the sensorimotor tasks. Any theory that postulates sensorimotor deficits as the cause of the reading difficulties characterizing dyslexia must therefore be questioned.

In summary, this study attempts to elucidate whether a sensorimotor deficit plays a causal role in the aetiology of the reading impairment in dyslexia. The shortfalls of other studies will be addressed by using a wide range of tasks and focusing on individual as well as group performance through a multiple case study design. Performance on sensory and motor tasks is therefore studied within-subject and compared to reading and phonological abilities.

Such an approach has already been followed in our previous study (Ramus, Rosen et al., 2003) conducted with university students with dyslexia. However, these subjects may have been an unrepresentative, high functioning, compensated sample and the study may therefore have underestimated sensorimotor problems. Similarly, it is possible that sensorimotor impairments play a role in development but are undetectable later on in adulthood. The relevance of that study to the whole of the dyslexia research field therefore has to be addressed. The present study is a more stringent test of the theory as it looks at the occurrence of sensorimotor impairments in a more representative and heterogeneous sample of dyslexic children, encompassing a wide range of abilities and typical of a large dyslexia clinic.

Method

Participants

In total, 23 dyslexic and 22 control children took part, aged from 8 to 12 years. All children had a non-verbal IQ of at least 85, as measured by the Raven’s Standard Progressive Matrices (Raven, Court & Raven, 1988; raw scores converted to standardized scores by interpolation and extrapolation from percentile scores given) and all control children had a standard reading score of at least 90. The controls were selected from a larger sample to match the dyslexic group on gender (χ² = 1.793) and on their range of ages and non-verbal IQs (age t(43) < 1; non-verbal IQ t(43) < 1) (see Table 1); this sample was not self-selected and no knowledge of literacy levels was available at the time of selection. The dyslexic children had all previously received a diagnosis of dyslexia from a chartered educational psychologist and were mainly recruited through the Dyslexia Institute (DI); all those who fulfilled the above age and ability criteria and whose parents gave permission were included. The remaining dyslexics and the control children were recruited from schools located in the area where the children from the DI lived. The control children whose parents gave permission for participation were screened, and a sample then selected to match the dyslexic group in terms of gender, age range and non-verbal IQ.
The majority of the dyslexic children were referred from the DI and had therefore received the same neuropsychological assessment from the same highly experienced educational psychologist. A classification system (Turner, 1997) had been used to specify the severity of their dyslexic symptoms, based on performance in IQ, reading, spelling and other diagnostic tests, such as digit span and speed of information processing. This system employs a six-point scale, ranging from 'not dyslexic' to 'very severe dyslexia' and all children taking part in this study had been classified on the highest three points of the scale (moderate, severe or very severe). Any children with a suspicion of broader language impairment would have been screened out at diagnosis. Furthermore, sensorimotor measures or direct measures of phonological awareness were not used in the diagnostic process and therefore the children were thought to comprise a representative sample of dyslexics with reading and spelling disability. In the dyslexic group, four children also had diagnoses of dyspraxia, one of Attention Deficit Hyperactivity Disorder (ADHD) and one of both. Such diagnoses are relatively common alongside dyslexia and so, in order to maintain a representative sample, these children were not excluded.¹

Procedure

Ethical approval for the study was obtained from the Joint UCL/UCLH Committees on the Ethics of Human Research and informed consent to participate was given by both parent and child. Children were tested individually in a quiet room either at their home, at their school or at the Institute of Cognitive Neuroscience, University College London (UK). Testing was divided into three sessions of approximately an hour and every child completed a battery of tasks assessing psychometric, phonological, auditory, visual and motor abilities. For the majority of children, the first session consisted of tests of non-verbal IQ and phonology, the second session of auditory and visual tasks and the last of literacy, motor and visual stress tasks in the order stated. The sensorimotor tests were chosen to reflect those currently in use by the proponents of each theory and on which they have found significant group differences. This allowed direct comparison to be made with previous studies and, therefore, any differences between this and previous results could not be attributed to the use of different experimental measures.

¹ Although one child with ADHD was on medication, his results showed that he was not an outlier on any sensorimotor measure. Poor sensorimotor performance could therefore not be accounted for by the effect of his medication and so he was not excluded.

Literacy tests

Literacy tests included standardized assessments of each child’s reading and spelling abilities. The children were tested on the Wide Range Achievement Test (WRAT3; Wilkinson, 1993) to provide a measure of their reading and spelling skills.

Phonology tasks

From here on we use the term ‘phonology’ or ‘phonological’ to refer to tasks assessing phonological awareness, short-term memory and rapid automatic naming. The Phonological Assessment Battery (PhAB; Frederickson, Frith & Reason, 1997) was used to assess these skills and was administered according to the test manual, although the alliteration test was excluded due to ceiling effects. The following subtests were therefore administered (trial accuracy was the measure recorded unless otherwise stated).

Rhyme

The child identified which two words out of three ended with the same sound (21 items).

Spoonerisms

The child replaced the first sound of a word with a new sound (10 items) or exchanged the initial sounds of two words (10 items).

Non-word reading

The child read one or two syllable nonsense words aloud (20 items).

Naming speed

The child named each item in a randomized series of 50 pictures of five common objects, or of the digits 1 to 9, and the time taken was recorded (two trials per stimulus type).

Fluency

The child said as many words as possible in a given category: by alliteration, rhyme or semantic (non-phonological) category (two trials per category).

Visual tasks

Following the main proponents of the magnocellular theory (Cornelissen et al., 1995; Hansen, Stein, Orde,
Motion coherence

A standard random dot kinematogram (RDK) stimulus was used to determine psychophysical thresholds for coherent motion detection for each participant, as a measure of magnocellular/dorsal stream function. The stimuli consisted of two horizontally adjacent panels of moving dots, each containing 300 white dots (each 1 pixel) of high Michelson contrast (~90%) superimposed on the black background of the computer screen. One panel contained a variable proportion of target dots that moved coherently to either left or right over successive screen refreshes, while the remaining noise dots in the panel moved with the same speed but in a direction that randomly changed between refreshes (Brownian motion). The coherent motion also reversed in direction every 570 ms. The other panel contained only noise dots moving in a Brownian fashion. To prevent tracking of individual dots, the lifetime for each dot was fixed at 85 ms, after which time the dot was regenerated at a random position inside the same panel. The consequence of this finite dot lifetime is to decrease the number of dots moving coherently at any particular point in time, as those dots that expire effectively add to the noise background. Motion coherence values were therefore corrected for this factor.

Form coherence

The form coherence task was a control task tapping parvocellular visual function, designed to be as similar as possible in application to the motion coherence task. As before, two rectangular panels were presented side by side, matched in size and overall luminance to the motion task. Each panel consisted of 600 short, high contrast line elements. In one panel there was a coherent form signal, defined by line elements that were oriented tangentially to imaginary concentric circles within a fixed diameter. The circle itself was always centred in the middle of the panel. Signal coherence was varied by modifying the percentage of aligned elements. At 100% coherence therefore, all line elements within the fixed diameter would be perfectly aligned and the circle would be easy to perceive. As the coherence value was lowered, the proportion of elements that were aligned was correspondingly reduced and the circular form was harder to detect. Elements outside the fixed diameter were orientated randomly, as were those in the other panel.

Visual stress

For purely exploratory purposes, we added another measure to our visual battery: sensitivity to visual stress. Although visual stress has never been advocated as a cause of dyslexia, some of its symptoms (blurring, letter superposition, apparent movement) are similar to those reported for magnocellular dysfunction by its proponents (Stein & Walsh, 1997) and visual stress is thought to impact on reading fluency. It is therefore possible that some children diagnosed as dyslexic might have visual stress. By including a measure of visual stress, we were able to address this hypothesis.

A test involving reading words through different coloured overlays was used to look for the presence of visual stress (Wilkins, 1994; Wilkins, Jeanes, Pumfrey & Laskier, 1996). Children were first familiarized with a page of text, consisting of 15 simple words in a randomized order per line. They then chose the overlay that was clearest and most comfortable to see with from a range of 10 colours, by sequential comparisons of two different colours, each time choosing the best colour. They were also given the option of choosing a double overlay, consisting of their chosen overlay and another of the same
or adjacent colour, again by comparison of two different colour combinations. Each child then read aloud for one minute from the page of text they had been familiarized with, first with their chosen overlay, twice without it and then once with it again, and the number of words read correctly was recorded. The percentage increase in reading speed with the overlay over these four trials was calculated, with high scores indicating the presence of visual stress.

Auditory tasks

A large variety of auditory tasks were chosen in order to cover as much theoretical and empirical ground as possible. As a basic auditory task, we chose 2-Hz frequency modulation detection, as it has been found to be highly sensitive in recent dyslexia research. Given the slow modulations, this task does not strictly speaking address Tallal’s theory of dyslexia. For this purpose, we included a formant discrimination task, which precisely taps the ability to process this 40-msec-long spectral transition that differs between [b] and [d], that requires rapid temporal processing and that is supposed to be deficient in dyslexics (e.g. Tallal, 2004). Furthermore, we embedded this formant transition in both speech and non-speech sounds, in order to take into account the debate on the possible specificity of the deficit to speech (Mody et al., 1997). Finally, we included additional speech discrimination and categorization tasks, since any auditory theory of dyslexia (and specifically Tallal’s, 2004) must assume that an auditory deficit produces an effect on reading acquisition through its disruption of speech perception.

Audiological screening

All participants were required to pass a pure tone screen using a standard clinical audiometer at or better than 25 dB HL at frequencies of 0.5, 1, 2, 4 and 8 kHz, in both ears.

All auditory tasks were run on a laptop computer using special purpose software known as SPA (Speech Pattern Audiometry). For single interval identification tasks, two independent randomly interleaved tracks were run, estimating the stimulus leading to 29% and 71% responses of one of the two possible responses (e.g. ‘coat’ vs. ‘goat’). In the multiple-interval discrimination tasks (e.g. detection of frequency modulation), the tracks were linked in order to emulate standard adaptive procedures. Cumulative Gaussian distributions were fitted to all trials in a particular test (probit analysis), in order to estimate the category boundary (the point on the continuum which results in 50% of each of the two responses) and a measure of function slope. Slopes were converted to units of ‘just-noticeable difference’ (jnd), the stimulus difference necessary to change from 50% to 75% of a particular label. Thus smaller jnds indicate better performance. Two consecutive tests were run for each task, with the best result recorded, and the order of tasks counterbalanced between subjects. If the function obtained for a test result was not significantly different from chance performance ($p < .1$), it was replaced with the worst result above chance taken from all the children, on the assumption that the threshold was meaningless.

Phonemic categorization

Categorization functions were obtained for two synthetic speech sound continua created with a formant synthesizer. Continua encompassing a contrast in two of the main phonetic features were used: voicing and place. Place contrasts have often been used in previous studies of auditory processing deficits, because they can be cued by highly dynamic spectral transitions, which are meant to be particularly vulnerable to the kinds of deficits in perception proposed by Tallal, among others. The voicing continuum (coat-goat) was modified slightly from the ‘combined-cue’ continuum developed by Hazan and Barrett (2000); the cues present were voice onset time (VOT), and the concomitant changes in the onset frequency and extent of transition in the first formant at vowel onset. VOT varied in 1-ms steps across the 51 stimuli. These stimuli were modelled closely on a particular speaker’s tokens, and so sounded quite natural. In contrast, the /ba/-/da/ continuum, varying place of articulation, was highly schematic. The stimuli were based on those specified by Mody et al. (1997) but with only the lower two formants and with a monotone fundamental frequency. Only the onset frequency of the second formant (F2), and hence the direction and extent of the formant transition, varied across the 41 stimuli in the continuum. On each trial of the test, participants heard a single stimulus and indicated which they had heard by clicking with a mouse on one of two relevant buttons on the computer screen. The buttons were labelled either with pictures or with ‘BA’ and ‘DA’ spelled out in upper case letters. In order to assist in the stability of the phoneme categories, continuum endpoints were randomly interspersed throughout the test on 20% of the trials.

Formant discrimination

The ability of subjects to discriminate second-formant transitions in speech and non-speech sounds was assessed. The /ba/-/da/ stimuli described above served as the speech sounds. In this particular place contrast, it is the rapidly varying second formant transitions that are the primary cue to the distinction. Thus we also tested perception of
them as a non-speech analogue. Non-speech isolated-F2 stimuli were obtained simply by outputting from the synthesizer the waveforms from the F2 resonator on their own. A four-interval, two-alternative forced-choice task (4IAX) was used. On each trial, two pairs of stimuli were heard, one pair being identical (/ba/ or its non-speech analogue), the other being different (/ba/ paired with another stimulus on the continuum). The participants were required to indicate which pair of stimuli was different by clicking with a mouse on one of two relevant buttons on the computer screen. The buttons were labelled with two pairs of shapes arranged from left to right as follows: two red circles followed by a red circle and a yellow triangle, and a red circle and a yellow triangle followed by two red circles. Feedback was provided in the form of appropriate pictures (a happy face for correct responses and a sad face for incorrect ones).

Detection of frequency modulation (FM)

Although this task involves much slower auditory variations than would be expected to be impaired from Tallal’s theory (Tallal, 1980), it has been assimilated into the multi-modal magnocellular theory (Stein, 2001; Stein & Walsh, 1997) as a dynamic auditory processing task and provides one of the more consistent findings of auditory impairment in the literature. This task was therefore included and stimuli were modelled closely on those used by Talcott, Witton, McLean, Hansen, Rees, Green and Stein (2000). Each trial consisted of a pair of 1-s tones, one of which was a sinusoid of 1 kHz, while the other was frequency modulated. Participants indicated which tone was modulated by clicking on an appropriate graphic, either of a straight line followed by a wavy line or vice-versa. Two modulation frequencies were used, 2 Hz as an experimental and 240 Hz as a control task, with the depth of frequency modulation adaptively varied and with graphical corrective feedback after every trial (as before).

Motor tasks

Previous research on dyslexia led us to consider two broad categories of motor tasks: those involving balance and those involving fine manual skills. None of these tasks are pure tests of cerebellar function, but cerebellar dysfunction would be expected to affect performance on these tasks.

Bead threading

The child was required to thread 15 large beads onto a string as quickly as possible, holding the string in their dominant hand (Fawcett & Nicolson, 1996). This task was performed twice and the completion time was measured, with the best time recorded.

Finger and thumb

The thumbs and index fingers of opposite hands are joined, the lower thumb-finger pair is released and the hands are rotated in opposite directions in order to join them again at the top. The child practised this sequence of movements until they could perform it fluently five times and then repeated it ten times as quickly as possible (Dow & Moruzzi, 1958; Fawcett, Nicolson & Dean, 1996). This task was performed twice and the completion time was measured, with the best time recorded.

Stork balance

The child was required to stand on one foot and place the other foot on the supporting knee, with their hands on their hips (Henderson & Sugden, 1992). The time spent standing on one foot, without moving the other foot from the supporting knee or the hands from the hips, was recorded for up to 20 seconds. This task was conducted twice on each leg, the best performance on each leg was recorded and these times were averaged.

Heel-to-toe

The child walked along a line, placing the heel of one foot against the toe of the other for up to 15 steps (Henderson & Sugden, 1992). The number of steps achieved before placing a foot off the line or away from the toe of the other foot was recorded. Each child performed this task twice and their best performance was recorded.

Results

Independent samples t-tests (two-tailed) were used to assess the differences between the groups, unless otherwise stated. As well as group differences, individual differences in performance were studied and outliers with abnormally low performance were identified. To detect the outliers on each task, any control outliers more than 1.65 standard deviations (SDs) below the control mean were removed in order to obtain a better estimate of normal performance, regardless of controls who might have performed abnormally on any one task. The control mean and SD were then recalculated and outliers were defined as those 1.65 SDs below the mean corresponds to the bottom 5% of a normal distribution.
lying more than 1.65 new SDs below this new control mean (procedure as in Ramus, Rosen et al., 2003). Also, in order to look at performance by modality rather than by task, summary factors accounting for all tasks in a given modality were calculated by averaging z-scores (calculated in relation to control performance) for each participant on each group of tasks, giving equal weighting to each task. Positive scores indicate good performance and negative scores indicate poor performance.

Figure 1 shows individual performances for both the control and dyslexic groups for each summary factor. The cut-off (of 1.65 SDs from the control mean) is shown by a broken line and children below this line are outliers and are labelled (although dyslexic non-outliers are labelled on literacy and phonology measures).

Literacy tests

As expected, there were significant differences between the groups for reading ($t(43) = 8.004$, $p < .001$) and spelling ($t(43) = 8.494$, $p < .001$) (see Table 1). Although the controls, as a group, were performing above average on these tasks, it should be noted that their non-verbal IQ was approximately average. Their higher reading ability is possibly due to the influence that the literacy hour has had in recent years that has not been accounted for in the test standardization. As the dyslexics are likely to have received just as much, if not more, instruction and were matched to the controls for age and non-verbal IQ, the groups were compared on all measures rather than comparing the dyslexics to the population norms.

For reading, 22 of the 23 dyslexics were outliers (three control outliers), and for spelling, 17 out of 23 dyslexics were outliers (no control outliers). The non-word reading test from the PhAB also revealed significant group differences ($t(31.7) = 7.075$, $p < .001$) with 18 out of 23 dyslexic outliers (two control outliers). A literacy factor was calculated by combining reading, spelling and non-word reading scores (group difference $t(43) = 10.814$, $p < .001$). Twenty-two of the 23 dyslexics showed deviant performance (four control outliers). Participant 2 was the only dyslexic to lie within the cut-off and was still more than 1 SD below the corrected control mean. He was also noted to have a particularly high IQ score of 119, more than 1 SD above the corrected control mean, indicating that a larger difference existed between literacy and intelligence than this literacy measure revealed. Similarly, the four controls who were literacy outliers all had nvIQs well below 100 and reading scores greater than their nvIQ.

3 The literacy hour is an educational strategy introduced into schools in the UK in September 1998 and is heavily based on phonics training.

| Table 1 Background and literacy test means (and standard deviations) |
|-------------------|------------------|
| | Control | Dyslexic |
| Number (M:F) | 22 (9:13) | 23 (14:9) |
| Age (months) | 123.82 (13.73) | 126.04 (15.01) |
| Non-verbal IQ (Raven’s) | 102.95 (13.88) | 102.13 (13.21) |
| Reading (WRAT3)***| 112.64 (10.57) | 85.78 (11.86) |
| Spelling (WRAT3)***| 113.23 (12.94) | 84.83 (9.27) |
| Non-word reading (PhAB)*** | 114.95 (12.68) | 93.39 (6.74) |
| Literacy factor***| 0.00 (1.00) | −3.19 (0.85) |

*** $p < .001$.

Test scores are standardized scores; literacy factor scores are averaged z-scores.

The correlation between literacy ability and non-verbal IQ was significant for the whole sample ($r = 0.352$, $p = .018$) and within each group (control $r = 0.569$, $p = .006$; dyslexic $r = 0.554$, $p = .006$). All the dyslexic children lay outside the 90% confidence interval for this regression line in the control population (see Figure 2), which provides a post-hoc confirmation that they fulfilled a discrepancy definition of dyslexia. Given this correlation, it was decided that individual variations in non-verbal IQ should be accounted for; each summary factor was subsequently entered as the dependent variable into a regression analysis with non-verbal IQ as the independent variable. Unstandardized residuals for each participant were recorded from this analysis as the corrected summary factor. The literacy factor was therefore recalculated (group difference $t(43) = 10.814$, $p < .001$) and all 23 dyslexics were found to be outliers (see Figure 1a), while only one control was. This control was removed from all further analysis as it could not be assumed that his literacy development was normal.

Phonology

Group differences were found on all but one of the phonological tasks of the PhAB (excluding non-word reading), but not on the non-phonological semantic fluency task, indicating that the dyslexics had significant phonological problems (see Table 2). Group differences were highly significant for the rhyme, spoonerisms, picture naming, digit naming and rhyme fluency tasks ($t(42) > 3.5$, $p \leq .001$). The alliteration fluency task did not produce group differences ($t(42) < 1$), which was unexpected, and is due both to the dyslexic group performing better and the control group performing worse than expected from their general performance level. After combining the scores from these six phonological tasks, and accounting for non-verbal IQ, to make a phonology factor (group difference $t(42) = 5.648$, $p < .001$), 12 of the 23 dyslexic children were found to be outliers (no control outliers) (see Figure 1b).
Figure 1 Graphs of individual performance for each summary factor. All summary factors have nviQ partialled out, while the sensorimotor factors also have age partialled out. The y-axis values are z-scores, the position of the x-axis indicates the control mean, and the cut-off (of 1.65 SDs below the control mean) is shown by a broken line. Children below this line are outliers and are labelled (although for literacy and phonology factors, dyslexic non-outliers are labelled instead). a = literacy, b = phonology, c = visual motion, d = visual stress, e = auditory, f = motor.
Visual tasks

The majority of children performed all catch trials correctly, while a minority failed only one catch trial. This meant that no results were removed from the analysis, although data for the motion coherence task were lost for one child with dyslexia. The visual tasks were not combined to give a single visual factor as they were believed to probe different visual functions and so individual tasks were considered as factors. After accounting for age as well as non-verbal IQ (as the sensorimotor tasks were not standardized for age, unlike the literacy and phonological tasks), neither the motion nor form coherence tasks produced significant differences between the groups (motion $t(41) < 1$; form $t(42) < 1$) (see Table 3). Two dyslexics were outliers on motion coherence (participants 8, 19) with three control outliers (see Figure 1c), and five on form coherence (participants 6, 7, 16, 17, 20) with two control outliers. The visual stress measure again did not produce a significant group difference, although there was a trend towards the dyslexics increasing their reading speed more with an overlay ($t(43) = 1.843, p = .072$). Eight dyslexic outliers were found (subjects 2, 4, 6, 7, 10, 16, 23, 24) with four control outliers (see Figure 1d) and none of these were outliers on the motion coherence task, confirming that visual stress is not accounted for by magnocellular dysfunction (Simmers et al., 2001). Three of the dyslexic visual stress outliers were also outliers on the form coherence task, although there was no group correlation between performance on these two tasks ($r = 0.053, p = .733$).

Auditory tasks

The majority of children obtained good Gaussian fits for all tests, while a minority performed at chance (one child on three tasks, two children on two tasks and 11 children on a single task; in total, seven controls and seven dyslexics; of these children, nine were at chance on /ba/-/da/ categorization, two on FM at 2 Hz, four on speech formant discrimination and three on non-speech formant discrimination). In these cases, it was impossible to know whether this was due to poor auditory skill or other factors, although the fact that no child was at chance on all five tasks indicates that this may not be due to non-sensory factors. Again, no significant group differences were found on any task ($t < 1.3$) (see Table 4) but between five and seven outliers were found on each

Table 2 Phonology test means (and standard deviations)

<table>
<thead>
<tr>
<th>Task</th>
<th>Control</th>
<th>Dyslexic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhyme***</td>
<td>112.00 (11.67)</td>
<td>96.26 (14.09)</td>
</tr>
<tr>
<td>Spoonerisms***</td>
<td>112.48 (10.90)</td>
<td>98.00 (9.19)</td>
</tr>
<tr>
<td>Picture naming***</td>
<td>109.24 (12.80)</td>
<td>92.22 (12.76)</td>
</tr>
<tr>
<td>Digit naming***</td>
<td>108.62 (12.54)</td>
<td>88.83 (9.67)</td>
</tr>
<tr>
<td>Alliteration fluency</td>
<td>100.10 (7.78)</td>
<td>99.61 (10.66)</td>
</tr>
<tr>
<td>Rhyme fluency**</td>
<td>114.38 (11.21)</td>
<td>101.70 (11.93)</td>
</tr>
<tr>
<td>Semantie fluency</td>
<td>107.48 (10.92)</td>
<td>100.65 (15.29)</td>
</tr>
<tr>
<td>Phonology factor***</td>
<td>0.00 (1.00)</td>
<td>-1.69 (0.99)</td>
</tr>
</tbody>
</table>

*** $p < .001$; ** $p < .01$.
Test scores are standardized scores; phonology factor scores are averaged z-scores.

Table 3 Visual test means (and standard deviations)

<table>
<thead>
<tr>
<th>Task</th>
<th>Control</th>
<th>Dyslexic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion</td>
<td>10.18 (4.15)</td>
<td>10.69 (3.40)</td>
</tr>
<tr>
<td>Form</td>
<td>26.67 (4.58)</td>
<td>27.92 (7.07)</td>
</tr>
<tr>
<td>Visual stress</td>
<td>-1.30 (11.39)</td>
<td>5.19 (11.93)</td>
</tr>
</tbody>
</table>

All group differences are non-significant.
Motion and form scores are coherence thresholds (low scores indicate good performance); visual stress scores are the percentage increase in reading speed with a coloured overlay (positive scores indicate visual stress).

Table 4 Auditory test means (and standard deviations)

<table>
<thead>
<tr>
<th>Task</th>
<th>Control</th>
<th>Dyslexic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ba/-/da/</td>
<td>3.98 (4.70)</td>
<td>3.99 (4.73)</td>
</tr>
<tr>
<td>coat-goat</td>
<td>3.43 (2.12)</td>
<td>5.05 (5.31)</td>
</tr>
<tr>
<td>FM 2 Hz</td>
<td>2.04 (2.17)</td>
<td>2.64 (2.44)</td>
</tr>
<tr>
<td>Formant (speech) discrimination</td>
<td>6.36 (3.46)</td>
<td>6.27 (4.88)</td>
</tr>
<tr>
<td>Formant (non-speech) discrimination</td>
<td>6.73 (4.14)</td>
<td>6.05 (4.03)</td>
</tr>
<tr>
<td>Auditory factor</td>
<td>0.00 (1.00)</td>
<td>-0.30 (1.65)</td>
</tr>
</tbody>
</table>

All group differences are non-significant.
Test scores are quoted as jnds / modulation index for FM tasks, with low scores indicating good performance; auditory factor scores are averaged z-scores.
task, with between one and six control outliers. A large number of children reported being unable to hear any difference between the stimuli in the FM at 240 Hz control task due to low intensity, which was reflected in their extremely poor results, and so this task was not included in the analysis. Unexpectedly, the dyslexic group performed slightly better than the control group on the formant discrimination tasks, although not significantly so, and this seems to be due to a subgroup of dyslexics performing out of the range of the controls. If this is not mere noise, then this is reminiscent of Serniclaes, Sprenger-Charolles, Carre and Demonet’s (2001) hypothesis that dyslexics have enhanced within-category discrimination.

Performance across the tasks was inconsistent, with different children as outliers on different tasks. In order to further investigate the relationship between performance in the different auditory tasks, we computed all cross-correlations (partialling out age and non-verbal IQ). Tallal’s rapid temporal processing theory would predict correlations between all tasks involving rapid transitions (i.e. all but FM at 2 Hz); Talcott et al.’s (2000) dynamic processing theory would predict correlations between all tasks; and Mody et al.’s (1997) speech-specific theory would predict correlations only between tasks involving speech stimuli (all but FM at 2 Hz and non-speech formant discrimination). We found that only coat/goat categorization and frequency modulation detection at 2 Hz were significantly correlated ($r = 0.57, p < 0.001$) due to three dyslexic outliers on both measures. Marginally significant correlations were found between ba/da and coat/goat categorization ($r = 0.33, p = .053$) and between speech and non-speech formant discrimination ($r = 0.30, p = .076$). Overall this pattern of correlations does not support any existing theory and does not obviously suggest any other one. This is consistent with previous studies showing that there is no general pattern to dyslexics’ auditory deficit, and that the nature of the deficit cannot be accounted for by a rapid temporal processing deficit, nor by a dynamic processing deficit, nor by a speech-specific deficit (Amitay, Ahissar & Nelken, 2002; Ramus, Rosen et al., 2003).

Given that the present data set does not favour any particular theory or method to group the different tasks, we combined all five tasks together to form a general (a-theoretical) auditory factor, again factoring out non-verbal IQ and age (no group difference ($t(43) < 1$). Six out of 23 children with dyslexia were found to be outliers (participants 5, 10, 16, 19, 20, 23) with four control outliers (see Figure 1e).

Motor tasks

The data from the bead threading task and both balance tasks were found to have distributions significantly different from a normal distribution (Shapiro-Wilk’s test) so non-parametric analysis was required (Mann-Whitney U-test). On tests of manual dexterity there were no significant differences between the groups (bead threading $U = 189.5, p = .291$; finger and thumb $t(29.7) < 1$) (see Table 5).

Three dyslexic children were outliers on the bead threading task (two control outliers), but no outliers were found on finger and thumb (three control outliers). However, differences between groups were significant for the balance tasks (heel-to-toe $U = 199.5, p = .048$; stork balance $U = 139.5, p = .004$), with four dyslexic outliers on heel-to-toe (no control outliers) and eight on stork balance (two control outliers). A motor factor was produced by combining scores over all these tasks and factoring out age and non-verbal IQ ($t(42) = 1.604, p = .116$), and five dyslexic outliers were found (participants 2, 10, 15, 17 and 20) with three control outliers (see Figure 1f).

Subgroups

Figure 3 shows all the children with dyslexia grouped by their deviant performance on the different tasks. In total, 14 dyslexics had a sensorimotor impairment; eight of whom had a single sensory or motor impairment, five had two impairments and one had three impairments. However, when comparing those dyslexics with sensorimotor impairments to those without, no differences were found in literacy performance, either for all those with sensorimotor impairments ($t(19.8) = 1.758, p = .094$) or when divided into those with single ($t(15) = 1.931, p = .073$) or multiple impairments ($t(5.8) < 1$). This was also true for phonology performance. It should also be noted that nine dyslexics had no sensorimotor impairments whatsoever, and 13 controls had one or more impairment.

In total, 11 dyslexics were not classified as extremely poor performers on the phonology factor, as defined by our criterion of 1.65 SDs below the control mean (i.e. within the bottom 5th percentile). Differences between these dyslexics with better phonology, the remaining

<table>
<thead>
<tr>
<th>Table 5 Motor test means (and standard deviations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Bead threading (secs)</td>
</tr>
<tr>
<td>Finger & thumb (secs)</td>
</tr>
<tr>
<td>Heel-to-toe* (no. of steps)</td>
</tr>
<tr>
<td>Stork balance** (secs)</td>
</tr>
<tr>
<td>Motor factor</td>
</tr>
</tbody>
</table>

** $p < .01$; * $p < .05$.

Low scores in bead threading and finger and thumb indicate good performance; high scores in heel-to-toe and stork balance indicate good performance. Motor factor scores are averaged z-scores.
Correlates of reading and phonological ability

In order to study the extent to which the different impairments were able to predict each other and literacy ability, correlations between summary factors were performed. As can be seen from Figure 4, phonology is a good predictor of literacy skill, as correlations between the literacy and the phonology factor hold both in the whole sample ($r = 0.764, p < .001$) and within each of the groups (control $r = 0.451, p = .040$; dyslexic $r = 0.595, p = .003$). Although there are correlations between the motor factor and both the literacy ($r = 0.384, p = .010$) and phonology factors ($r = 0.377, p = .012$), these are visibly due to the same two dyslexic outliers with very poor performance in all three domains (literacy and motor $r = 0.196, p = .213$; phonology and motor $r = 0.223, p = .156$, after removing those two subjects). No other correlations were significant.\(^4\)

A multiple linear step-wise regression was performed to investigate which factors (from phonology, motion, auditory, motor and visual stress) could predict the variance in literacy performance, corrected for age and IQ. The phonology factor accounted for 60% of the variance in literacy performance and none of the other factors were found to be significant predictors of literacy. All children fell within the 95% confidence interval for this regression factor against literacy, apart from one control and one dyslexic child. Literacy skill, in these children, could therefore be explained by phonological skill, to the exclusion of all the other factors.\(^5\)

Discussion

The present findings largely replicate those of Ramus, Rosen et al. (2003) by showing that sensory and motor impairments affect only a subset of dyslexics and cannot by themselves explain the phonological deficit and reading disability. Furthermore, as the present study was carried out on a larger and more representative sample of dyslexic children, it alleviates suspicions that our previous results seriously underestimated sensorimotor impairments, with phonology and visual motion: control $t(30) = 2.119, p = .043$ and digit naming ($t(30) = 3.485, p = .002$) and on the overall phonology factor ($t(30) = 2.627, p = .013$). Furthermore, in the ‘good’ subgroup, there was a correlation between literacy and phonology performance ($r = 0.664, p = .026$). This indicates that those dyslexic children who were not outliers on the phonology factor still had significant phonological problems that were related in severity to their literacy problems. No other differences were found between these subgroups. These children can therefore be seen as less severe, better compensated phonological dyslexics.

\(^4\) Further correlations between IQ- and age-corrected factors, after partialling out variance in reading skill, were performed as a partial replication of the analysis used by Talcott et al. (2000). To quote these authors, ‘reading ability was removed because the reciprocal nature of the causal relationship between reading and phonological awareness may obscure the relationship between our sensory and phonological processing measures’ (p. 2955). Following Talcott et al., a new phonology factor was computed, composed of non-word reading and spoonerisms; however, as an orthographic choice task had not been included in the test battery, this was replaced with spelling as a measure of orthographic knowledge. Unlike the study by Talcott et al., who found partial correlations between phonology and the auditory FM at 2 Hz task and between orthography and motion coherence, no such correlations were found either in the whole sample (phonology and FM at 2 Hz: $r = -0.054$; orthography and motion: $r = 0.077$) or within each group (phonology and FM at 2 Hz: control $r = -0.100$, dyslexic $r = 0.054$; orthography and motion: control $r = 0.162$, dyslexic $r = 0.205$). This indicates that, in our sample at least, phonological skill cannot be predicted by auditory skill, even after variance in reading skill has been removed.

\(^5\) This regression was performed again but with more conservative factors for literacy (reading and spelling) and phonology (rhyme, rhyme fluency, and digit and picture naming), taking into account the possibly circular nature of the relationship between certain phonological awareness and literacy tasks. As before, phonology was the only predictor of literacy skill, accounting for 60% of the variance.
Can an auditory deficit explain dyslexia?

According to the temporal auditory processing theory (Tallal, 1980) and to the magnocellular theory (Stein, 2001), an auditory deficit is the underlying cause of the phonological deficit, which should predict that all individuals with a phonological deficit have an auditory deficit, and that there is a true correlation between auditory and phonological skills. Our results do not support these predictions. On the contrary, we found that only a minority of children with a clear phonological deficit also had an auditory deficit (four out of 12). Out of these four auditorily impaired children, only one was amongst the six worst phonological performers, so these data do not even support the weaker hypothesis that an auditory deficit might explain at least the most severe phonological cases. More generally, auditory skill was not found to predict phonological skill in any way.

It should be noted that here, speech perception tasks have been lumped indiscriminately into the auditory factor. This does not reflect an a priori conception on speech perception in dyslexia but simply the observation that, in our data, speech discrimination and categorization results are similar to those of non-speech discrimination tests: only a few individuals show abnormal performance,
with little relationship with the classic phonological deficit. As in our previous study (Ramus, Rosen et al., 2003), our current results therefore do not support the hypothesis that a perceptual deficit, even specific to speech sounds, explains difficulties in phonological awareness, rapid naming and verbal short-term memory, hence the reading impairment.

Can visual deficits explain dyslexia?

We have found no significant relationship between visual measures and reading ability. However, it could be that visual deficits account for some cases of reading disability, independently of the phonological deficit. In the past, this has proved difficult to evaluate, as visual impairments have often been shown to aggregate with the phonological deficit (e.g. Cestnick & Coltheart, 1999). Here, our analysis of individual data highlights six candidates for a possibly visual-based dyslexia without a phonological deficit: five with visual stress and one with poor coherent motion detection. Furthermore, these six cases are the only cases of non-phonological dyslexia with sensorimotor deficits. It is therefore possible that six dyslexic children within this sample of 23 may have their reading disability explained at least partly through visual factors.

Out of these six candidate visual dyslexics, five have visual stress, a disorder that is in fact not promoted as a theory of dyslexia as it affects many non-dyslexics and leads to severe reading retardation in only a few cases (Wilkins, 1995). It should also be noted that it is unrelated to magnocellular dysfunction (Simmers et al., 2001), as confirmed again here. Only two dyslexics in total have high thresholds in coherent motion detection, which is argued to be a sign of magnocellular dysfunction, although this test more generally targets the dorsal visual pathway and is not a unique indicator of magnocellular function. It is also argued to be a cause of poor binocular control (Stein, 2001), although the causal link has not been demonstrated. Overall these data provide little support for the magnocellular theory of dyslexia in general, but some support to the idea that visual dorsal stream dysfunction (with or without a magnocellular origin) may explain reading disability in a small proportion of dyslexics.

Can cerebellar deficits explain dyslexia?

In the cerebellar theory, there are two routes from the cerebellum to reading impairment: one via poor motor/articulatory skill to the phonological deficit, and another via poor automaticity directly to the reading impairment. This therefore predicts relationships between cerebellar measures and both phonological and reading measures. Here, we found no evidence for such relationships. Furthermore, most of the children in our sample showed phonological and literacy impairments without any impairment on the motor tasks. Therefore our data do not generally support the cerebellar theory of dyslexia.

This holds, of course, provided that our tasks suitably sampled cerebellar function. According to proponents of the cerebellar theory, poor performance on balance and manual dexterity tasks are indeed to be taken as good indicators of cerebellar dysfunction (Fawcett et al., 1996). Arguably, we may have underestimated cerebellar dysfunction by not including non-motor cerebellar tests (time estimation, automaticity). However, in our previous work such tests were found to be rather less sensitive than motor tasks (Ramus, Pidgeon & Frith, 2003; Ramus, Rosen et al., 2003). Furthermore, one might also argue that we have overestimated cerebellar dysfunction, to the extent that there are other possible causes of motor impairment.

Beyond the more general claims of the cerebellar theory of dyslexia, individual data analysis can be used to ask whether motor or cerebellar impairment may explain at least some cases of reading disability. Out of five dyslexic children with motor impairments, four also have a phonological impairment. For these children (participants 10, 15, 17 and 20), it is impossible to know whether their phonological deficit is caused by a cerebellar dysfunction, or simply associated with a motor impairment (given that a motor impairment is clearly not necessary for a phonological deficit to arise). As for the other child (participant 2), who was in the normal range of phonological skills (although below average), one might want to consider him as a poor-automaticity dyslexic. However, he also had visual stress and therefore his condition cannot be explained uniquely by the motor factor. Overall, the evidence for a motor/cerebellar role in dyslexia is scant.

Can a phonological deficit arise in the absence of any sensorimotor impairments?

Just as in our previous study (Ramus, Rosen et al., 2003), we find that certain dyslexics (participants 12, 13, 14, 18) can have a phonological deficit without any auditory, visual or motor impairment. This provides further evidence that the phonological deficit need not be secondary to any other deficit, and indeed can be the primary, language-specific, deficit for at least a subset of dyslexics. Given that auditory, visual and motor variables generally fail to explain any significant variance in phonological skill, even within the concerned subgroups, the most parsimonious generalization is that, in all subjects who have a
phonological deficit, it is the primary deficit, causally unrelated to sensorimotor disorders.

Of course, it could be that, earlier in their life, these participants had sensorimotor impairments which eventually disappeared in some cases (including the most severe). Given that phonological acquisition occurs largely during the first year of life, only a longitudinal study starting at birth could investigate this possibility. The only one currently available showed that 6-month-olds at risk of dyslexia have, on average, a deficit in categorizing one speech contrast (Leppänen, Richardson, Pihko, Eklund, Guttorm, Aro & Lyytinen, 2002; Richardson, Leppänen, Leiwo & Lyytinen, 2003), but this study did not investigate the underlying basic auditory abilities. Early motor and speech articulation abilities, on the other hand, were found entirely identical between the at-risk and the control groups (Lyytinen, Ahonen, Eklund, Guttorm, Laakso, Leinonen, Leppänen, Lyytinen, Poikkeus, Puolakanaho, Richardson & Viholainen, 2001; Viholainen, Ahonen, Cantell, Lyytinen & Lyytinen, 2002), contrary to the predictions of the cerebellar theory. For magnocellular and auditory processing theories of dyslexia, the hope clearly lies in future longitudinal data which might confirm the hypothesis of early sensory deficits. Meanwhile, one must judge them according to the available data.

Can a phonological deficit explain all cases of dyslexia?

The present study has replicated once more the ubiquitous finding that dyslexics are very significantly impaired on a large array of phonological measures. Analysis of individual data in this sample reveals that 12 out of 23 dyslexics have a phonological deficit beyond the 5th control percentile. This is both far more than any other deficit observed in this study, and small with regard to the presumed universality of the phonological deficit. However, a number of observations can be made. First, it is likely that most dyslexics in this study, having previously been diagnosed by an educational psychologist, have obtained extra assistance, namely specific training on phonological skills and phonics. Consequently, phonological skill is the only ability measured in this study on which most dyslexics are likely to have received extra training as compared to the controls. For this reason we are likely to have significantly underestimated the discrepancy between dyslexics and controls on the phonological measure. It is therefore expected that a number of dyslexics who lie outside the Phonology circle in Figure 3, and who have been considered as non-phonological dyslexics for the purpose of the preceding discussion, should in fact be considered as phonological dyslexics, which further diminishes the role we have found for sensorimotor factors. It can also be noted that those dyslexics who fall within the normal range (above the 5th percentile) on phonological skill still had a significant phonological impairment, which suggests that they may well be less severe or better compensated, but nevertheless the causal relationship between phonology and literacy always holds (unlike that observed with sensorimotor measures).

On the basis of these considerations, we therefore argue that a primary phonological deficit can in fact explain a far greater proportion of the present dyslexic sample than is suggested by the strict discrepancy criterion. Nevertheless, it is unlikely that the phonological deficit can explain 100% of dyslexics. In the present sample, subjects 2, 4, 6, 16, 19 and 24 are the most likely candidates for a non-phonological type of dyslexia, indeed one that is based on visual impairments and, in particular, visual stress. Between the phonological deficit and visual impairment, therefore, the vast majority of dyslexics can be accounted for. Indeed, only five are unexplained who appear to have neither phonological nor sensorimotor impairment; our data are simply insufficient to uncover the precise origin of their reading impairment.

Consistency with previous studies

Considering that this study finds no significant group difference on any of the sensorimotor measures (except balance), and no significant correlation between any of the sensorimotor measures and phonology or literacy, it can be thought to be at odds with many previously published studies which have reported such significant effects. Could it be that we lacked statistical power to detect the effects? This is most unlikely, since we chose our tasks from those reported to produce the largest effects, and many studies with far fewer subjects have found significant effects. In fact the inconsistency is a far more general fact about the dyslexia literature, as a large number of studies have also failed to find significant sensorimotor impairments in dyslexia (see review in Ramus, 2003). Furthermore, a number of recent studies showing individual data have confirmed that only a restricted subset of dyslexics have sensorimotor disorders; this is true in the auditory domain (Griffiths, Hill, Bailey & Snowling, 2003; Muneaux et al.,

6 We acknowledge the reciprocal nature of the relationship between reading skill and phonological awareness, which has been discussed many times in the literature (see Castles & Coltheart, 2004, for a recent discussion). However, the well-established influence of reading on phonological awareness has never disproved the influence of PA on reading, which is supported by considerable converging evidence. Furthermore, our measures of phonological skills do not reduce solely to phonological awareness; they also include verbal short-term memory and rapid lexical retrieval, which are not reciprocally related to reading. See footnote 4 for an analysis taking the possible circularity into account.
studies of auditory processing including a reading-age control group. This is indeed the pattern observed in sensorimotor measures with respect to that reading-age group even the age-matched controls. This would make the dyslexic not better) performance on the sensorimotor tasks than would inevitably have worse, or equal (but certainly reading-age matched controls, being younger children, deficits is being inflated in the present comparison. Indeed, then this would mean that the incidence of sensorimotor disorders, and is therefore conservative with respect to our conclusions. If we were to perform a comparison with a reading-age control group, this could only reinforce our conclusion (perhaps spuriously) that sensorimotor deficits affect only a small subset of this group of dyslexic children.

Clinical implications
There is no point training the auditory abilities of children who have no auditory deficit, the binocular control of children who have no visual impairment, the balance of children who have no balance problem, and the phonological skills of children who have no phonological deficit. It is therefore high time that putative treatments for dyslexia focus on impairments actually observed in particular individuals, rather than claim to cure all dyslexics indiscriminately. Furthermore, attention must be paid to which of the impairments are likely to be the cause of the reading disability, and which are likely to be simply associated. Our interpretation of the present study and of the dyslexia literature in general suggests that phonological treatment should be directed to the majority of dyslexics who have a clear phonological deficit, while visual treatments should be directed to the minority of dyslexics who do have visual deficits (and the visual treatment should be appropriate to the particular type of visual deficit, since there may be several). On the other hand, from the study of auditory and motor impairments in dyslexia, we find little reason to expect that auditory and motor treatments would have any beneficial effects on reading, other than placebo and non-specific effects. And indeed the efficacy of such treatments remains to be proven (Agnew, Dorn & Eden, 2004; Gillam, Froeme Loeb & Friel-Patti, 2001; Hook, Macaruso & Jones, 2001; Snowling & Hulme, 2003; Stein, 2003).

Conclusion
There appear to be two broad classes of impairments that can lead to specific reading disability: visual and
phonological. In a small proportion of cases, dyslexia may be explained by visual impairment, specifically visual stress. In the majority of dyslexics, the reading impairment seems to be directly and exclusively due to a specifically linguistic phonological deficit, which cannot be accounted for by auditory or motor impairments. Furthermore, there is an undeniable association between phonological dyslexia and a sensorimotor syndrome including auditory, visual and motor disorders, which certainly points at some common underlying biological factor (Ramus, 2002, 2004), but does not directly explain the reading disability.

Acknowledgements

We would like to thank all the children who took part, and their parents, for their time, effort and cooperation, and All Saints Benhilton Primary School for their patience and assistance. We particularly thank Dr Martin Turner for his help with recruiting participants; Prof. Arnold Wilkins for his advice concerning visual stress; Mark White for his help with the graphical illustrations; and Dr Elisabeth Hill and Dr Lauren Stewart for advice and conversation at all stages of the project. This study was funded by a Marie Curie fellowship of the European Community programme Quality of Life (QLGI-CT-1999-51305; F.R.) and by a Medical Research Council grant (G9617036; U.F.).

References

Why is translating print into meaning (or vice versa) so very difficult for some children? Researchers have been trying to answer this question for at least 80 years, and there is now widespread consensus that literacy problems go hand in hand with difficulties in analysing the speech segments of the ambient language – phonological awareness (PA). There is far less agreement, however, as to the origins of problems with PA. Some regard this as a core deficit specific to the processing of linguistic input. Others see the PA problems as secondary to lower-level deficits in sensory processing. There are various versions of this type of theory, but most focus on problems in processing rapid, transient stimuli, with potential neurobiological origins in cerebellar and/or magnocellular systems.

Into this arena come White, Milne, Rosen, Hansen, Swettenham, Frith and Ramus (this issue), with a study that aims to pit phonological explanations of dyslexia against what they term sensorimotor theories – i.e. those that postulate cerebellar or magnocellular origins of dyslexia, and so predict impairments of visual, auditory and/or motor function. Their study is a refreshing addition to the literature for two reasons: first, it focuses on individual variation in dyslexia, rather than relying on group data, and second, it incorporates measures relevant to a wide range of theories, including auditory, visual, motor and phonological measures. This is important in a field where many studies simply take a measure from a pet theory they either support or reject, and go on to show that mean scores either do or do not differ between people with dyslexia and controls. This has led to an accretion of positive and negative findings, with little sense of coherence.

In a group comparison of 23 children with dyslexia and 22 control children the dyslexic group differed from the controls on the phonological measures, but the only sensorimotor measures to show a difference were those testing balance, and only a minority of children with dyslexia were impaired. There was a trend for more children with dyslexia to be outliers on some of the sensorimotor tasks, but there was no consistent pattern of impairment, and no evidence of a general deficit affecting performance on a subset of these tasks.

White et al. conclude that a perceptual deficit cannot explain the phonological and literacy deficits seen in dyslexia, and they describe evidence for the cerebellar deficit theory as ‘scant’. Nevertheless, they note that study after study does find a minority of poor readers (typically around 25–35%) who have sensorimotor deficits, and this weak association does need to be explained. One possible account is that phonological deficits are primary in dyslexia, but sensorimotor deficits may exacerbate their impact. This is similar to arguments put forward by Bishop, Carlyon, Deeks and Bishop (1999) in the context of oral language impairments, where there are similar findings of significant but weak association between SLI and auditory perceptual deficits. Bishop et al. argued that perceptual deficits are insufficient alone to lead to SLI, but can assume importance when they occur in the context of other risk factors.

What, though, of the finding by White et al. that, when dyslexics are compared with controls, phonological tasks show much stronger effect sizes than sensorimotor measures? We should be cautious about concluding that this indicates a strong causal route from weak phonological processing to poor reading, because ability to do phonological tasks can be influenced by level of literacy. There are three lines of evidence to support this view. First, one can find orthographic influences on PA tasks (e.g. Seidenberg & Tanenhaus, 1979), indicating that, even when no written stimuli are presented, people’s phonological judgements are influenced by their knowledge of how a word is written. Second, people who are illiterate through lack of opportunity do worse than their literate counterparts in performing a range of phonological processing tasks, including classic PA segmentation tests (e.g. Morais, Cary, Alegria & Bertelson, 1979). Third,
most children who have had no exposure to reading instruction do poorly on PA tasks, but they rapidly master them once introduced to print (Wimmer, Landerl, Linortner & Hummer, 1991). Could, then, White et al.’s finding that phonological tasks do better than sensorimotor tasks in differentiating dyslexics from controls simply reflect the fact that performance on phonological tasks is facilitated if the child can use literacy knowledge to apply orthographic strategies? This does seem plausible for those phonological measures that involve manipulation of phonemes. It is less obvious that poor literacy would directly hinder naming speed for familiar items, which was the other type of task on which the dyslexic group did poorly. However, it is debatable whether it is the phonological aspect of naming speed that makes it difficult. Wolf, O’Rourke, Gidney, Lovett, Cirino and Morris (2002) argued that PA and naming speed deficits are dissociable, and they queried the tendency to lump naming speed in with other ‘phonological’ tasks. Other task demands, such as cross-modal conversion from vision to speech, rapid lexical look-up and inhibition of prior responses may be factors that slow down naming in children with reading difficulties.

Overall, the study by White et al. poses a challenge for sensorimotor accounts of dyslexia, by showing that different deficits do not form a coherent pattern, and are only weakly associated with dyslexia at best. However, their strong causal conclusion that ‘in the majority of dyslexics, the reading impairment seems to be directly and exclusively due to a specifically linguistic phonological deficit’ needs to be tempered by two considerations: their inclusion of tasks that could benefit from knowledge of orthography, and their use of a broad construct of ‘phonological’ deficit, that incorporates both phonological analysis and rapid lexical access.

References

Sensorimotor impairments in dyslexia: getting the beat

Usha Goswami

Centre for Neuroscience in Education, University of Cambridge, UK

This is a commentary on White et al. (2006).

There is widespread agreement that problems in representing phonology comprise the core cognitive deficit for dyslexic children. However, this cognitive deficit presumably has antecedents. We know, for example, that children can show deficits in phonological tasks, and consequently in literacy, because their vocabularies are poor and their cognitive abilities are below average – these children are usually called ‘garden variety’ poor readers (see Swan & Goswami, 1997). We know that other children show deficits in phonological tasks and also in literacy because they have overt speech and language difficulties: they have diagnosed speech and language impairments (SLI), and the co-morbidity between dyslexia and SLI can be as high as 50% (McArthur, Hogben, Edwards, Heath & Mengler, 2000). The remarkable thing about dyslexic children is that they show phonological impairments
even though they have excellent cognitive abilities, large vocabularies and no overt speech and language difficulties. Why is this? Theories about sensorimotor impairments attempt to explain this striking fact. White and colleagues’ paper investigates these theories as ‘alternative theories of the cause of dyslexia’ (p. 237), and concludes that all of them are wrong. But these are not alternative theories. They are complementary, attempting to explain why there is a phonological deficit in this particular group of otherwise high-functioning children.

An exploration of the different sensory theories of dyslexia in the same children was long overdue, and in this sense White and her colleagues provide a valuable data set. However, as in the study of adult developmental dyslexics by the same group (Ramus, Rosen, Dakin, Day, Castellote, White & Frith, 2003), the sample size is too small for a really sensitive test. Given that each child had to complete at least 15 different experimental tasks, and that the spread of ages of the dyslexic participants ranged from 8 to 12 years, the study lacks developmental power. Eight-year-olds and 12-year-olds usually perform quite differently in sensory and cognitive tasks. Four years of development matters. In order to compare theories about causes of development, it is most useful to conduct a longitudinal study (Goswami, 2003a). Failing that, it is optimal to sample within a relatively narrow age range, and to compare groups at different points in development (e.g., it would be more valuable to study 23 8-year-olds, 23 10-year-olds, and 23 12-year-olds).

The goal of the study is to investigate individual performance as well as group differences, and an outlier criterion is used to establish the presence of sensory deficits. Dyslexic children scoring more than 1.65 SD below the control mean are counted as having a sensory deficit. On this criterion, none of the sensory theories tested are good candidates for a causal deficit. At most, seven or eight dyslexic children are outliers in the different sensory tasks. So are between one and six controls (this could reflect the large age range in the sample). In fact, four of the 22 controls were outliers on the literacy factor, and were reported to have low IQ. These children sound like garden variety poor readers, yet three of them were retained in the sample. Out of the 23 dyslexic children, only a subset (12 children) actually had a phonological deficit according to the outlier criterion. Nevertheless, the authors conclude that a phonological deficit is primary and is causally unrelated to lower-level processing. They emphatically reject the possibility that sensory deficits could play a role in developmental dyslexia. Yet there is good data at the individual level for taking an auditory processing deficit seriously.

In our work, we have found that sensitivity to some of the auditory cues important for rhythm processing is impaired in dyslexic children. Performance in rise time detection tasks (which measure sensitivity to the rate of change of the amplitude envelope at onset) show very strong relationships with phonology and literacy (see Goswami, Thomson, Stainthorp, Hughes, Rosen & Scott, 2002; Muneaux, Ziegler, Truc, Thomson & Goswami, 2004; Richardson, Scott & Goswami, 2004). For example, in Goswami et al. (2002), rise time sensitivity explained 25% of the variance in reading and spelling after accounting for age, IQ and vocabulary, and still accounted for significant unique variance after additionally controlling for phonological skills. At the individual level, we have found that the majority of dyslexic children fall beneath the stringent 5th percentile criterion in some auditory tasks (e.g., in Richardson et al., 2004, 63% of dyslexics had a deficit in detecting rise time, and in Corriveau, Pasquini & Goswami, 2005, 71% of SLI children had a similar deficit). Obviously, larger samples and longitudinal studies are now required, but there is sufficient evidence to suggest that low-level auditory processing abilities in dyslexic children deserve serious study.

Finally, White et al. chose to omit a reading level control group. A research design using both reading level and chronological age control groups has been accepted as optimal in studies of dyslexia for at least 20 years (see Bryant & Goswami, 1986). Reading level controls are important for arguments about developmental causation. We already know that reading changes the brain (Frith, 1998). Cognitive abilities acquired through cultural practices like literacy impact on sensory abilities. We therefore need to know whether dyslexic children perform similarly to or worse than younger reading-matched controls in the sensory tasks used. The authors expect the former, and argue on this basis that a reading level comparison would a priori be uninformative.

However, the interesting developmental question if such a case arises is whether comparable performance is being achieved via the same cognitive and neural processes. In the absence of longitudinal data, neuroimaging offers a way of finding out. In our studies, dyslexic children as a group are often comparable to younger children matched for reading level in their behavioural sensitivity to rise time cues (although often marginally, for example in Goswami et al. (2002) the group difference in beat detection just missed significance at p < .06). Imaging data then enable us to establish whether sensory registration of rhythmic cues is also comparable (Thomson, Richardson, Baldeweg & Goswami, 2005). As testing of reading level controls is ongoing, it is too early for us to propose hypotheses about developmental causation. Equally, however, it is too early for the authors to reject a low-level auditory processing deficit as playing a causal role in dyslexia.

In fact, White et al.’s unequivocal rejection of sensorimotor deficits in dyslexia seems at odds with the wider...
literature concerning the cognitive neuroscience of developmental disorders. This research field has yet to find a cognitive deficit that arises detached from any neural underpinnings in terms of sensory or perceptual problems. In autism research, dominated for so long by the cognitive ‘theory of mind’ deficit, it is becoming clear that subtle perceptual processing deficits (for example, in reading emotions from the eyes) underpin the cognitive deficit. In dyslexia, too, it is likely that there are perceptual processing deficits that underpin the phonological deficit. Currently, an exciting possibility is that these lie in the domain of processing auditory cues to speech rhythm. Dyslexics just don’t get the beat (Goswami, 2003b).

References

Do cerebellar deficits underlie phonological problems in dyslexia?

Roderick I. Nicolson and Angela J. Fawcett

Department of Psychology, University of Sheffield, UK

This is a commentary on White et al. (2006).

Background

White, Milne, Rosen, Hansen, Swettenham, Frith and Ramus (2006) report a study of 23 dyslexic children and 22 normally achieving children aged between 8 and 12 years on a range of tests designed to investigate literacy, phonological, magnocellular and cerebellar function. In line with other published studies, they established significant difficulties in rhyme, spoonerisms, naming speed and balance. They also found a significant deficit in ‘visual stress’ (reading

Address for correspondence: Rod Nicolson, Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK; e-mail: R.Nicolson@sheffield.ac.uk

© 2006 The Authors. Journal compilation © 2006 Blackwell Publishing Ltd.
improvement with self-selected coloured overlays). No significant differences were found in dexterity, auditory (speech and non-speech), visual motion or visual form tasks. The phonological and naming speed scores were then combined into a ‘phonology’ factor, the balance and dexterity scores into a ‘motor’ score, the various auditory scores into an ‘auditory’ factor; and the visual motion, visual form and visual stress into a ‘visual’ factor. Scatterplots of the different factors against the reading deficit revealed marked heterogeneity between participants, with only the phonological factor showing a clean between-group dissociation. A multiple regression analysis confirmed that only the phonology factor contributed significant variance in accounting for the reading deficit. The authors conclude that phonological deficit is the only cause of dyslexia, and that cerebellar and sensory problems are not causally linked to dyslexia. We outline methodological, logical and conceptual limitations to the study and provide analyses suited to the study design.

Methodological issues

(i) **Participants**

In addition to literacy, the dyslexic children were identified via difficulties in verbal working memory and processing speed. As the authors acknowledge (footnote 4) this leads to the danger of circularity. The IQ criterion adopted for dyslexia was more inclusive than normal, being a non-verbal reasoning score ≥ 85 (rather than a full-scale IQ ≥ 90, as used in many British studies). Given that in dyslexia verbal IQ is frequently lower than non-verbal, some lower performing ‘dyslexic’ children will actually have no discrepancy between their reading and general performance – and hence should be excluded from this study.

(ii) **Test sensitivity**

The phonological tests are standardized for age, whereas raw scores are reported for the other tests. The large age range seriously reduces the power of the raw-score tests. This differential test sensitivity reduces artifically any between-group sensorimotor differences. The floor effects on several auditory tests and ceiling effect on heel-to-toe walking further diminish test power.

Logical issues

Nicolson, Fawcett and Dean (2001) proposed that cerebellar deficit was the underlying cause of the 'phonological' problems – expressive speech, processing speed and verbal working memory – that are the proximal cause of the early reading difficulties. From this perspective, cerebellar deficit is a specific, brain-based instantiation of the phonological deficit hypothesis. It is hardly surprising that once the ‘phonological factor’ is partialled out, the ‘cerebellar’ factor accounts for little additional variance.

Conceptual issues

The authors make several unstated but questionable assumptions:

(i) **‘Cause of reading deficit’ versus ‘cause of dyslexia’**

The paper addresses only the cause of the reading deficit. Few dispute that deficits in phonology, speed and working memory are directly associated with difficulties in learning to read. The more fundamental question is ‘what is the underlying cause of these problems?’ – that is, what is the cause of dyslexia? Failure to distinguish between these two questions has caused unhelpful confusion in the literature.

(ii) **Phonological deficit hypothesis**

The authors define ‘phonology’ in an ad hoc fashion, including speed of naming pictures and semantic fluency, but excluding speech formant discrimination. If the phonological deficit is indeed attributable to ‘an impairment in the cognitive representation of speech sounds’, one would surely expect a greater difficulty in receptive than expressive speech. Following Wolf and Bowers (1999) we consider it safer to maintain the distinction between speed and phonology. Those children who show a ‘double deficit’ are more at risk than those who show only one deficit.

(iii) **More is better**

The authors assume that the hypothesis accounting for the greatest proportion of the variance is inevitably better than one accounting for a lesser amount. This assumption is the root cause of what we consider to be their misinterpretation of the data. Just as poor reading may arise from many factors, so can speed and phonology. In particular, dyslexic and non-dyslexic poor readers show problems in both speed and phonology. Consequently, in mixed groups of poor readers, these two deficits will dominate in terms of overall incidence. However, the greater incidence is derived at the expense of lesser diagnostic sensitivity. Fawcett, Nicolson and Maclagan (2001) demonstrated...
that ‘static’ cerebellar tasks such as balance and muscle tone discriminated between poor readers with and without discrepancy, whereas both groups showed problems in motor skill, phonology and speed. Consequently, rather than some random irrelevance, the pattern of problems outside of phonology is actually a major theoretical discriminant. The true strength of this ‘extended case study’ design is the ability to derive individual profiles of performance on the range of tests, thereby facilitating investigation of the causes of heterogeneity in the data.

(iv) Cerebellar deficit hypothesis

The authors claim incorrectly that cerebellar deficit is inevitably associated with balance and/or motor problems. The cerebellum contains over half the neurons in the brain, and has two-way links to most brain structures. The cerebellar deficit hypothesis for dyslexia (Nicolson et al., 2001) claims only that the language-related regions of the cerebellum are affected in dyslexia. These are generally considered to be Lobule VI and VIIB in the neocerebellum – well away from the motor and balance regions in the cerebellum – though there is also some representation in the cerebellar vermis (Desmond & Fiez, 1998). Other cerebellar regions may also be affected, but this is not necessary. Consequently, null effects on motor skill are hard to interpret, whereas positive findings (especially for balance) provide clear evidence. It is also worth noting that the Finnish developmental studies in fact did find that ‘there appears to be a connection between slow development of early motor milestones and later problems in language development’ (Lyytinen, Aro, Eklund, Erskine, Guttorm, Laakso, Leppånen, Lyytinen, Poikkeus, Richardson & Torppa, 2004, p. 158).

Interpretation of the results

Individual analyses demonstrated clearly the heterogeneity of deficits in dyslexia. Of the 23 dyslexic participants, 56% showed phonological and/or naming speed problems, 61% showed sensorimotor problems, with perhaps 40–50% showing problems in balance. Given these incidences, the authors’ dismissal of sensorimotor problems is puzzling.

Cerebellar deficit is the only single explanation of problems in balance, phonology and speed, and is also one explanation of ‘pure’ phonology/speed problems. Around half the participants showed balance, phonological and speed problems indicative of generalized cerebellar deficit. Presumably a proportion of those showing pure phonological/speed problems suffered specific neocerebellar deficit.

Consequently, in contradiction to the conclusions drawn by the authors, cerebellar deficit appears to be the most parsimonious explanation for the majority of the dyslexic participants.

Directions for further research

The issue of discrepancy in poor reading is best addressed by explicitly including two groups of poor readers, with and without discrepancy. The issue of whether naming speed is intrinsically linked to phonological speed is easily addressed by a further speed test not involving phonological stimulus or response. In earlier research (Nicolson & Fawcett, 1994) we have established that the speed deficit does extend outside the phonological domain. The issue of individual differences is best addressed by providing a complete data table for each individual. The difficulty of isolating cerebellar performance can be addressed by direct tests of cerebellar function (Nicolson, Daum, Schugens, Fawcett, & Schulz, 2002; Nicolson & Fawcett, 2000; Nicolson, Fawcett, Berry, Jenkins, Dean & Brooks, 1999) and anatomy (Eckert, 2004), with interpretation of other behavioural tests via converging operations.

There are many routes to poor reading, and it is likely that there are several sub-types of dyslexia. There are also many different types of abnormal learning, not all related to reading. While the interpretations made by White and colleagues are questionable, we consider that this ‘extended case study’ design is the appropriate way for theoretical and applied investigations in the developmental disorders. Careful studies are required, in which tasks are chosen to target specific theoretical hypotheses, and individual analyses undertaken to investigate the causes of heterogeneity as well as homogeneity.

References

What happens when ‘dyslexic’ subjects do not meet the criteria for dyslexia and sensorimotor tasks are too difficult even for the controls?

Paula Tallal

Center for Molecular and Behavioral Neuroscience, Rutgers University, USA

This is a commentary on White et al. (2006).

This study claims to have evaluated many of the prominent theories of dyslexia. However, the data below (from Tables 1 and 2) show that the majority of children in the ‘dyslexic’ group scored well within the normal range on standardized reading and phonological awareness tests:

- Reading – WRAT3 mean = 85.78 (SD = 11.86)
- Non-word reading – PhAB mean = 93.39 (SD = 6.74)
- Rhyme mean = 96.26 (SD = 14.09)
- Spoonerisms mean = 98.00 (SD = 9.19)
- Alliteration fluency mean = 99.61 (SD = 10.66)
- Rhyme fluency mean = 101.70 (SD = 11.93)

How do these standardized scores translate into the data in Figure 1a showing all of the ‘dyslexics’ scoring below the 5th percentile in literacy?

Although the control group was intended to be representative of normal readers, they were, in fact, scoring well above average on the standardized tests:

- Reading – WRAT 3 mean = 112.64 (SD = 10.57)
- Non-word reading – PhAB mean = 114.95 (SD = 12.68)

Nonetheless, the authors argue that, as the groups were matched on age and non-verbal IQ, the ‘dyslexics’ should be compared to this small (N = 22) group of above-average readers, rather than on population norms. Furthermore, any control subjects with low performance on any task were identified as ‘outliers’.

To detect the outliers on each task, any control outliers more than 1.65 standard deviations (SDs) below the control mean were removed in order to obtain a better estimate of normal performance, regardless of controls who might have performed abnormally on any one task. The control mean and SD were then recalculated and outliers were defined as those lying more than 1.65 new SDs below this new control mean. (pp. 243–244)

This new control mean was set to a z-score of 0.00 (SD = 1.00). It must be emphasized that all analyses reported, for all literacy and sensorimotor tasks, were based on these recalculated new control mean z-scores. The effect of eliminating low scoring control data in this small group of already above-average readers had a highly differential effect, based on how easy or difficult each task was for the controls. For example, eliminating low scoring control data for the WRAT3 reading...
measure on which controls scored above average further elevated the recalculated mean z-score for literacy. Based on this recalculated control mean score, the dyslexic children (who actually scored less than -1 SD below the standardized mean) now scored a whopping −3.19 (0.85) below the new control mean z-score. Thus, it is only by using this unusual method of recalculation of the data that the authors demonstrate in Figure 1a how children (whose standardized reading scores place them within the low average range) can be converted into ‘severely dyslexic’ subjects all scoring below the 5th percentile in literacy.

Next, let us look at what happens when the controls score very poorly on a task or group of tasks. This occurred most often on the very difficult psychoacoustic tests as well as several of the other sensorimotor tasks. Specifically, data show that almost one-third of the control sample (7/22) performed at chance on the auditory tasks designed for this study.

The authors emphatically state that,

The sensorimotor tests were chosen to reflect those currently in use by the proponents of each theory and on which they have found significant group differences. This allowed direct comparison to be made with previous studies and, therefore, any differences between this and previous results could not be attributed to the use of different experimental measures. (p. 240)

This is not, in fact, true, especially for the auditory tasks. Few of the tasks used in this study are the same as those used in previous studies that have demonstrated deficits in auditory processing (specifically temporospectral auditory processing) in children in this age range (8–12 years). Both critical stimulus features (i.e. the number of formant transitions used to synthesize stop consonant syllables, the type of non-verbal stimuli used) as well as task design features (i.e. the introduction of significant attention, cognitive and memory load into what are intended to be ‘pure’ perceptual tasks) differ significantly from the studies these authors claim to be attempting to replicate.

The dismal performance of the control children provides compelling evidence that the auditory tasks developed initially for adults were inappropriate for 8–12 year olds. Despite being of normal intelligence and performing above average on literacy and phonological tests, an unacceptably high percentage of controls (7 out of 22) performed at chance on the auditory tasks. To exacerbate this matter, we are told that,

If the function obtained for a test result was not significantly different from chance performance ($p < .1$), it was replaced with the worst result above chance taken from all the children, on the assumption that the threshold was meaningless. (p. 242)

To clarify, control children who performed at chance were assigned the worst score above chance of any child in the ‘dyslexic’ or control group. As a third of the control subjects scored at chance on the auditory tests, control subjects’ data represent a ‘floor effect’ below which the ‘dyslexics’ could not fall. Thus, no significant differences were found. Similarly, having a third of each group’s chance scores replaced with the same low score makes it highly unlikely that significant correlations between the auditory measures and other variables with more normal distributions will be observed.

This is a very unfortunate paper for many reasons. Perhaps most critically, the subjects selected do not represent the populations intended. This study is a comparison between average and above average readers, not between dyslexic and normal readers. The spurious method used in this study for recalculating ‘new control means’ distorted every single analysis and conclusion reached in this study. The major effect of this manipulation of the data was to change the ‘bar’ for determining impaired performance based on how easy or hard a task was for the controls. As the controls performed so poorly on so many of the sensorimotor tasks, the results reported are merely a comparison between two groups of children on tasks that are not age appropriate.

Even for studies in which subjects do represent the intended populations, and tasks are age appropriate, behavioral psychophysical measures may not be sensitive enough in older children to accurately detect the presence of current sensorimotor deficits, or the potential influence such deficits may have had earlier in development. Two recent research approaches speak directly to this point:

1. In a prospective, longitudinal study comparing infants with or without a family history of language learning impairments (including dyslexia), Benasich and Tallal (2002) demonstrated a highly significant group difference in rapid auditory processing (RAP) thresholds. These RAP thresholds obtained at 6 months, together with male gender, accurately classified 91.4% of 3-year-old children who scored in the ‘impaired’ range in verbal intelligence. Longitudinal studies also have demonstrated the relationship between early language learning impairments (LLI) and dyslexia (Bishop & Adams, 1990; Scarborough, 1990). These longitudinal studies provide the best perspective from which to discuss the true ‘role of sensorimotor impairments in dyslexia’.

2. Bishop and McArthur (2004) reviewed several previous studies that (like the current study) failed to find deficits on psychoacoustic tasks. Consistent with these negative studies no significant difference was found between LLI and control children, based on behavioral responses to rapidly presented tone pairs. However, a highly significant group difference was found for the same tone pairs based on electrophysiological (ERP) data, with virtually all of the subjects with LLI showing aberrant ERP responses to these rapid acoustic stimuli.

© 2006 The Authors. Journal compilation © 2006 Blackwell Publishing Ltd.
There are hundreds of studies demonstrating sensorimotor deficits in children with significant language and reading impairments (for review see: Habib, 2000; Tallal, 2004). I, therefore, fully agree with these authors’ final conclusion that,

... there is an undeniable association between phonological dyslexia and a sensorimotor syndrome including auditory, visual and motor disorders, which certainly points at some common underlying biological factor. (p. 253)

But, I do not agree that, this ‘does not directly explain the reading disability’ (p. 253).

In interpreting seemingly negative data, such as those reported in this study, it is essential to remember that patterns of deficit that may be seen in infants or very young children may fail to replicate in school age children, college students or adults. Thus, issues pertaining to the cause of developmental disabilities must be addressed from a developmental perspective. Even well after early patterns of deficit/difference/maturation of sensorimotor processing may have resolved, or become recalcitrant to behavioral assessment, they are likely to leave a lasting legacy on the way the brain has organized itself for phonological processing, language and reading throughout life.

References

RESPONSE

Weighing the evidence between competing theories of dyslexia

Franck Ramus,1,2 Sarah White2 and Uta Frith2

1. Laboratoire de Sciences Cognitives et Psycholinguistique, EHESS/CNRS/ENS, Paris, France
2. Institute of Cognitive Neuroscience, University College London, UK

We are pleased that our paper ‘The role of sensorimotor impairments in dyslexia: a multiple case study of dyslexic children’ has attracted comments by some of the prominent researchers in the field. Overall, our lack of support for a causal role of sensorimotor processes in the reading difficulties of dyslexics meets with strong resistance. However, we believe that this resistance owes more to theoretical preconceptions than to real methodological problems. We address in turn methodological, interpretation and theoretical issues raised by Bishop, Goswami, Nicolson and Fawcett and by Tallal, as this allows us to examine again the evidence and counterevidence for the claims we have made.

Methodological issues

Were our dyslexics dyslexic?

On the basis of participants’ standard scores on reading and phonological tests, Tallal claims that our dyslexics were not dyslexic and that our controls were ‘super-controls’. However, as already explained in the paper, there are very good reasons to believe that population norms for the WRAT3 and for the PhAB are largely outdated following the introduction of the ‘literacy hour’ strategy in UK classrooms in 1998. Additionally, WRAT3 norms are for US children and it has been shown that these tend to overestimate British children’s reading age (Turner, 2000). Therefore it is more appropriate to compare dyslexics directly to the carefully matched control population than to read standard scores literally. Following this logic, Figure 2 clearly shows that the dyslexic participants in this study meet the regression definition of dyslexia. This also answers Nicolson and Fawcett’s worries about inclusion: all these dyslexic children meet a discrepancy criterion, therefore they are not a mix of dyslexic and non-dyslexic poor readers. Furthermore, this was only the second step of selection. The first step involved, for most dyslexic children, an independent formal assessment by the Dyslexia Institute documenting a history of reading disability.

Making an attack on the quality of our sample from a different direction, Tallal suggests that we manipulated the results by using z-scores with respect to control group performance, after removing control outliers. In fact, as she correctly quotes, we used this procedure only ‘to detect the outliers on each task’. All the z-scores reported in tables and figures and used in the statistical tests were unaltered, without any data point excluded. Hence the dyslexic mean literacy score of −3.19 SD is the raw data (after factoring out non-verbal IQ), simply converted into a z-score (yes, they really were dyslexic).

Our removal of control outliers only affected the deviance threshold for each variable, i.e. the dotted lines in Figure 1, and the number of outliers in each domain. This measure was necessary to prevent the occasionally inattentive control from spuriously dilating the normal range of performance, thereby reducing the possibility of detecting dyslexic outliers. This was a conservative step with respect to our conclusions. Not taking it would have led to even fewer dyslexic outliers on sensorimotor variables.

In sum, it seems to be clutching at straws to believe that our dyslexic sample does not represent the intended population.

Was our sample big enough?

All experimenters would love to have more subjects in their experiments, and we are no exception. However, we also realize that there is no point spending time and effort going far beyond adequate statistical power. As far
as statistical power is concerned, our numbers of 23 and 21 children per group are quite typical of dyslexia studies. Dozens of published studies with equal or fewer numbers have found significant group effects on sensorimotor tasks (for recent ones, see Facoetti, Lorusso, Cattaneo, Galli & Molteni, 2005; Hämäläinen, Leppänen, Torppa, Müller & Lyytinen, 2005; Iversen, Berg, Ellertsen & Tønnessen, 2005; Meyler & Breznitz, 2005; Petkov, O’Connor, Benmoshe, Baynes & Sutter, 2005; Stoodley, Harrison & Stein, in press). There is therefore no reason to believe that our study is particularly underpowered. Nevertheless, the point of this study was not whether there are significant group differences or not, since we believe that overall group differences do not address the question of cause. The main point of this multiple case study was to analyse patterns of deficits within each individual. Individual data are important because they assess the extent to which children who are diagnosed as dyslexic have similar sensorimotor and cognitive profiles, and whether a single deficit could underlie the reading problems. Testing 44 cases in depth across a whole range of tasks should be sufficient to do this. Multiple case studies are rare, because most studies are done piecemeal, in such a way that different subjects are tested on different groups of tests and thus individual relationships of performance across tests cannot be examined.

The commentators also worried that the wide age range (8–12) might mask effects on unstandardized sensorimotor tests. Indeed we found that most of these scores correlated with age, and for this reason age (and non-verbal IQ) were partialled out from all the scores entered into statistical analyses and graphs.

Were our tests sensitive enough?

Tallal and Nicolson and Fawcett complain about floor and ceiling effects that might mask group differences. Indeed such effects were obtained, but only for the heel-to-toe and stork balance tasks, where most control children performed at ceiling, while the dyslexics did not. In any case, these variables did yield significant group differences.

Importantly, no floor effect was obtained on any of the auditory tasks. It is not the case that ‘seven controls out of 22 performed at chance on the auditory tasks’ (Tallal). In fact six of these seven controls performed at chance on just one task and one control on two tasks out of five auditory tasks (and not on the same ones). On average, controls performed normally on 4.6 tasks out of 5. To put it another way, in each auditory task, all controls but one or two performed normally. Unfortunately, our use of the phrase ‘chance performance’ seems to have been slightly misleading. As can be understood from the text, we meant that these subjects’ performance did not yield a significant fit. This means that thresholds were not meaningful, not that they represented chance performance. Typically, this happens when the child does not do the task or does not pay attention and responds at random. It is only in those few cases of non-significant fit that we assigned the child with the worst threshold obtained with a significant fit. This is in fact a conservative step, since in many cases the child might have achieved a better threshold if he/she had concentrated on the task.

In sum, the auditory tasks were of adequate difficulty, were performed normally by almost all the control children, and the lack of group differences cannot be accounted for by a floor effect.

Did our study have ‘developmental’ power?

Developmental power is not a scientific concept. Rather, the word ‘developmental’ is used by Goswami as an implicit quality label that can only be attributed to studies which either are longitudinal or use a reading-age control group. We believe that neither longitudinal studies nor matching by reading age are necessarily the most appropriate techniques when investigating the causes of reading difficulty. The notion that there is a gold standard that can answer every question in the field is flawed. Methods must be evaluated with respect to the question that is being asked. Here the question is: Can sensory or motor impairments explain most cases of dyslexia? There is little reason to believe that asking this question separately in 8-, 10- or 12-year-olds would bring any benefit, given that the existing literature suggests that sensorimotor deficits are no more frequent in 8-year-old than in adult dyslexics. Furthermore, as already explained, a reading-age (therefore younger) control group could only have poorer sensorimotor performance, hence defining a poorer normal range from which dyslexics would be even less likely to be outliers.

Could our results be explained in a different way?

Nicolson and Fawcett reject as ‘ad hoc’ our definition of the phonology factor, i.e. aggregating phonological awareness, verbal short-term memory and rapid naming measures (we did not include semantic fluency in the phonology factor). Yet the partitioning of dyslexics’ phonological deficit into these three cognitive components has been well established for a long time (Wagner & Torgesen, 1987). We agree that each of these tasks taps more than just phonological representations (who knows a pure task tapping a single cognitive component?). Admittedly, rapid naming might reflect general speed
factors rather than specifically the speed of retrieval of lexical phonological representations (Bishop). But in the absence of evidence that dyslexics have a generalized speed deficit, the default assumption is that it is restricted to the phonological domain.

Regarding basic speech categorization deficits, the published literature (and the present paper) show that they are much less widespread in dyslexics than the phonological deficit (as defined above), and for this reason they are not currently seen as part of the core phonological deficit (Rosen, 2003; Vellutino, Fletcher, Snowling, & Scanlon, 2004). There is therefore no reason to lump them into the phonological factor.

The potential circularity between reading and phonology measures (Bishop; Nicolson & Fawcett) is already acknowledged and addressed in the paper (footnotes 4, 5 and 6).

Tallal is concerned that the features of our auditory tasks do not correctly address the theories under discussion. We agree that one task, FM detection at 2 Hz, involves variations much slower than implicated in Tallal’s ‘rapid temporal processing’ theory. That task was meant to address the more general ‘dynamic processing’ construct espoused by Talcott and colleagues (Talcott & Witton, 2002; Talcott, Witton, McLean, Hansen, Rees, Green & Stein, 2000), as it consistently shows auditory deficits in dyslexics, hence its inclusion here. On the other hand, all the speech and non-speech contrasts that we used (coat-goat, /ba/-/da/ categorization and discrimination in speech and non-speech versions) differ precisely in the short and rapid ‘temporospectral’ transitions (<40 ms) that are invoked in Tallal’s theory (Tallal, Miller & Fitch, 1993). These four tasks therefore quite accurately address the theory.

Nicolson and Fawcett presume that 40–50% of dyslexics in our sample show balance problems. In fact the exact figure is 26% (six out of 23). These authors also remark that if a cerebellar deficit underlies the phonological deficit, then the cerebellar factor is not expected to account for reading variance after the phonology factor is entered. This is correct (to the extent that these authors give up on the automaticity hypothesis), so indeed our multiple regression is not entirely fair to the cerebellar (or to the auditory) theories. However, these theories predict before anything else that the cerebellar and auditory factors predict some variance in the phonology factor, which is not the case (after removing two outliers) (see also Ramus, Pidgeon & Frith, 2003). Additional evidence that sensorimotor impairments do not particularly predict phonological or reading deficits comes from our recent study of autistic children (matched and compared to the present sample), some of whom show massive sensorimotor impairments, yet perfect reading ability (White, Frith, Milne, Rosen, Swettenham & Ramus, in press).

Bishop proposes an alternative explanation of our results: rather than playing no causal role, sensorimotor impairments might exacerbate the impact of the phonological deficit. We were open to this potentially conciliatory hypothesis. However, our data speak against it: no significant difference was found in literacy or phonological performance between dyslexics with and without sensorimotor impairments.

How different is the phonological theory from other theories?

One general matter of debate is whether the phonological theory of dyslexia should be seen as incompatible with other auditory, visual or cerebellar theories of dyslexia (Goswami; Nicolson & Fawcett). This question is best answered by considering separately proximal and distal levels of causation.

At the proximal level, almost everybody agrees that a phonological deficit is the direct underlying cause of most cases of dyslexia. The only non-phonological alternatives are the automaticity hypothesis (one aspect of the cerebellar theory, Nicolson, Fawcett & Dean, 2001) and visual theories (Hari, Renvall & Tanskanen, 2001; Stein & Fowler, 1993; Valdois, Bosse & Tainturier, 2004). Although we have not evaluated all of these alternative theories, our results are consistent with the hypothesis that a minority of cases of dyslexia might be explained by non-phonological deficits. Indeed, we have found that some cases of dyslexia might be explained by visual stress, to the exclusion of any phonological deficit (although visual stress is not a theory of dyslexia per se; Wilkins, Huang & Cao, 2004).

At the distal level, the question is whether the phonological deficit is primary, or whether it is secondary to other cognitive, sensory or motor deficits. We argue that our results and the literature are consistent with the former, i.e. with the theory of a primary, specific phonological deficit. Indeed we find that sensorimotor impairments fail to explain the phonological deficit and dyslexia in general. This particularly strong version of the phonological theory is indeed incompatible with sensorimotor theories.

Note that the claim that the phonological deficit is primary does not imply that it is ‘detached from any neural underpinnings’ (Goswami). Of course, there must be a brain basis for a primary phonological deficit, and indeed there is plenty of compatible neurobiological data implicating left perisylvian areas involved in phonology (Eckert, 2004; Galaburda, Sherman, Rosen, Aboitz & Geschwind, 1985; Ramus, 2004). But these are neural underpinnings of phonology, not of perception. Goswami’s claim that no cognitive deficit is detached from sensory
or perceptual problems is an article of faith, not a scientific result.

Finally, Nicolson and Fawcett have introduced a new and interesting twist to the cerebellar theory, which has in fact transformed it into a hypothesis about the brain basis of the phonological deficit. Until recently, they postulated causal links between the cerebellum and dyslexia via poor automaticity, and via poor motor skill, poor articulation, thus poor phonological skills (Nicolson et al., 2001). Now they propose that language-related regions of the cerebellum might be directly implicated in the phonological deficit. To the extent that it can be shown that phonology is supported in part by cerebellar areas, and that these areas are indeed dysfunctional, we find this hypothesis compatible with that of a primary, specific phonological deficit.

Conclusions

We are surprised that the target article has met with some fierce opposition, and sorry that this has led to insinuations that our methodology is flawed. Indeed, our main finding that sensory and motor deficits are not universal but restricted to a subgroup of dyslexics is consistent with every single published study showing reliable individual data (Ramus, 2003), including studies by our critics (e.g. Fawcett & Nicolson, 1999; Muneaux, Ziegler, Truc, Thomson & Goswami, 2004; Tallal, 1980). Furthermore, the results of the present multiple case study closely parallel those obtained in an earlier one on dyslexic adults (Ramus, Rosen, Dakin, Day, Castellote, White & Frith, 2003), and in similar studies on dyslexic children conducted by independent groups, one with (presumably) different working hypotheses (Kronbichler, Hutzler & Wimmer, 2002; Stoodley & Stein, 2004).

Obviously, the present study does not claim to have closed the debate on theories of developmental dyslexia. It simply shows that when one considers and tests a very wide range of possible sensory and motor explanations of dyslexia, even taken all together, these sensorimotor deficits fail to explain much more than half of dyslexic cases. Then, one must conclude either that some dyslexics have a specific phonological deficit (and one must explain the association between phonological deficit and sensorimotor syndrome, e.g. Ramus, 2004), or that the current methods are inadequate to reveal the real extent of sensorimotor deficits. In the latter case, the burden is on proponents of sensorimotor theories to improve their methods.

Finally, we strongly believe that it is no use to keep inundating the literature with study after study showing group differences on sensory or motor tasks: this will not do. As explained by Tallal and Goswami, the best hope for sensorimotor theories to prove their case is in (1) longitudinal studies starting at birth, measuring early patterns of sensory deficits before they putatively ‘resolve’; (2) potentially more sensitive measures that might reveal sensory deficits in all dyslexics even at school age. In both cases, such studies will be convincing only to the extent that they provide reliable individual data and demonstrate a much greater prevalence and predictive power of sensorimotor deficits in the dyslexic population than has been observed so far.

References

1 Tallal’s claim that sensorimotor impairments may resolve despite continued reading problems is at odds with her notion of an auditory treatment of dyslexia (Tallal, 2004), as such cases would show that resolution of the auditory impairment does not entail the resolution of the phonological deficit and reading disability.

2 Goswami, Tallal and many others place great hopes in ERPs. However, using current paradigms, ERPs typically do not provide reliable individual data. If the idea is to use ERPs to demonstrate more group differences, this will be no improvement on the current situation.

Received: 16 June 2004
Accepted: 16 June 2005