French Norms for the Harvard Group Scale of Hypnotic Susceptibility, Form A

Hernán Anlló, Jean Becchio & Jérôme Sackur

To link to this article: http://dx.doi.org/10.1080/00207144.2017.1276369

Published online: 23 Feb 2017.

Submit your article to this journal

Article views: 1

View related articles

View Crossmark data
FRENCH NORMS FOR THE HARVARD GROUP SCALE OF HYPNOTIC SUSCEPTIBILITY, FORM A

HERNÁN ANLLO
Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département d’Études Cognitives (École Normale Supérieure – PSL Research University), Paris, France; Centre de Recherche Interdisciplinaire (CRI), Paris, France

JEAN BECCHIO
Collège Internationale de Thérapies d’orientation de l’Attention et de la Conscience (CITAC), Paris, France

JÉRÔME SACKUR
Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département d’Études Cognitives (École Normale Supérieure – PSL Research University), École des Hautes Études en Sciences Sociales, Paris, France

Abstract: The authors present French norms for the Harvard Group Scale of Hypnotic Susceptibility, Form A (HGSHS:A). They administered an adapted translation of Shor and Orne’s original text (1962) to a group of 126 paid volunteers. Participants also rated their own responses following our translation of Kihlstrom’s Scale of Involuntariness (2006). Item pass rates, score distributions, and reliability were calculated and compared with several other reference samples. Analyses show that the present French norms are congruous with the reference samples. Interestingly, the passing rate for some items drops significantly if “entirely voluntary” responses (as identified by Kihlstrom’s scale) are scored as “fail.” Copies of the translated scales and response booklet are available online.

Several recent reviews have pointed out the potential of hypnotic suggestion as a tool for cognitive research (Cardeña, 2014; Egner & Raz, 2007; Kihlstrom, 2013, 2014; Landry, Appourchaux, & Raz, 2014; Oakley & Halligan, 2013). Suggestions can temporarily alter perception in a controlled fashion, producing effects that range from perceptual...
degradation to eliciting hallucination (see Oakley & Halligan, 2013, for a review). Their degree of effectiveness, however, is mediated by each subject’s individual level of hypnotizability (Kihlstrom, 2013; Oakley & Halligan, 2013). Hence, determining hypnotic responsiveness constitutes a fundamental echelon in hypnosis research. The standard for categorizing hypnotizability is the Stanford Hypnotic Susceptibility Scale, Form C (SHSS:C; Weitzenhoffer & Hilgard, 1962). This individual test exposes the subject to a variety of suggestions and then rates them on a “pass/fail” basis. A general score is computed, based on the objective behavioral response of the participant.

It has already been repeatedly shown across the normalization of this same protocol and others like it (see, for instance, Laurence & Perry, 1982; McConkey, Barnier, Maccallum, & Bishop, 1996; Shor & Orne, 1962) that only a small amount of the population presents the trait of very high hypnotizability. Screening through sizable groups is the only way of assuring a large enough sample of individuals capable of responding to very demanding hypnotic suggestions. Therefore, when designing suggestion-based protocols, the Stanford scale can be too resource intensive.

To address this issue, Shor and Orne created the Harvard Group Scale of Hypnotic Susceptibility, Form A (HGSHS:A; 1962), which presents several advantages over the SHSS:C: it does not call for any props, it can be administered virtually anywhere, and it offers reliable and efficient individual ratings for large groups on one single screening. Whether employed on its own or as a prescreening test for the SHSS:C, the HGSHS:A has been to date the tool of choice in dozens of studies for assessing individual differences in hypnotizability (Benham, Smith, & Nash, 2002; Carvalho, 2013). Much like its predecessor, the Harvard scale presents three parts. First, an introduction phase aimed to reassure the subjects and to demystify hypnosis. Second, an induction phase carefully designed to increase relaxation and mental absorption. Finally, a suggestion phase presenting 12 suggestions with known differences in difficulty.

A crucial issue, typically neglected in hypnotizability norm validation studies, is the impact of volition on the behavioral success of suggestion and, hence, in hypnotizability scores. As was pointed out by Cunningham and Ramos (2012, p. 417), on its own, the HGSHS:A fails to assess whether successful responses to the suggestions are due to a “classic (i.e. involuntary and automatic) suggestion effect” (Bowers, 1981; Weitzenhoffer, 1980), or if the suggested behavior simply stems from the active and willing participation of the subjects. Dissociative models of hypnosis (Bowers, 1992; Hilgard, 1977) and dissociative cognitive approaches to hypnosis (Dienes & Perner, 2007) crucially associate hypnotic suggestion with an alteration of selfhood and agency that manifests itself as an apparent dilution of volition and adequate
executive monitoring (Rainville & Price, 2003). Hence, in order to take into account this demand and offer an additional measure of hypnotizability, we decided to also present our participants with Kihlstrom’s Scale of Involuntariness (2006, as adapted to be used with the HGS: A) and used it to produce an additional set of hypnotizability rates. The Kihlstrom scale assesses, for every participant, whether his or her response to each suggestion was “voluntary” or “involuntary” (i.e., autonomously generated). For the purpose of generating this additional set of corrected results, suggestions that were marked as successful in the HGS:A but later acknowledged as fully voluntary were discarded and treated as failed (i.e., not “passed”) items.

We present data on the French translation of the HGS:A and Kihlstrom’s complementary Scale of Involuntariness (2006) and compare it to other validations of its kind: the American normative data (for being the original study), the Australian sample (for being by far the largest), and, notably, with the Canadian normative data obtained by Laurence and Perry in 1982 (the only other sample in French). It should be noted that, while the aforementioned study also implied a French translation, important dialectal and cultural differences between France and Canada, the 40-year gap between studies and, crucially, as disclaimed by the authors themselves, the wide linguistic heterogeneity of their original sample are reason enough to elaborate and validate a set of norms suited to the French population. Finally, a comparison to the German, Spanish, and Portuguese norms was added in order to further compare the norms to other romance and nonromance European samples. It should also be noted that all results stemming from the implementation of this protocol and others like it can only be interpreted as final in the context of cognitive research. Strict ecological and deontological differences exist between hypnosis in research and hypnosis in the clinical environment, and the interplay between the two has been occasionally considered but still needs to be carefully studied (Perry, Gelfand, & Marcovitch, 1979). A low score in hypnotic susceptibility from the Harvard group scale will not necessarily translate to an impossibility to undergo a hypnosis-based medical or psychological treatment (J. Barber, 1980).

METHOD

Participants

Participation was voluntary in exchange for 12.5 € for a 1-hour-and-40-minute session. Participants were all contacted by e-mail and were recruited through official laboratory recruitment channels. They were told that they would take part of a group experiment to evaluate their response to hypnotic suggestion but were warned since first contact
that all levels of susceptibility were relevant for the present study and
that their response, if any, to the procedure had no impact on their
monetary compensation. It was also clearly stated that the authors did
not have any expectation about their performance. The whole experi-
ment took place over 12 sessions in the year 2014, in a room condi-
tioned specifically for the experiment and in groups that varied from 5
to 20 people.

A total of 126 native-French speakers aged between 18 and 35 (95
female) attended the sessions and followed the entire process until
completion of the response booklets. As many as five booklets were
discarded for lack of compliance with the terms of the instructed task
(three incomplete, two improperly filled), leaving a total of 121 for
subsequent analysis. Six other participants were rejected ($N = 115$)
after manifesting improper behavior during the task (i.e., falling asleep,
talking, or refusing to participate).

Materials

The HGSHS:A was translated by the first and third authors, both
fluent in English and French, and later moderately modified by the
first and second authors so that the delivery of all 12 suggestions
would accommodate to a slightly less directive paradigm of hyp-
nosis (Erickson, Rossi, & Rossi, 1976; Lankton & Lankton, 1983;
Yapko, 1983), while still remaining true to its original structure
and content. Such modifications comprised the elimination of
most references to hypnosis as “sleep” (except those in which the
term sleep is used merely with a comparative value), the insertion
of additional dubitative adverbs (i.e., “your eyes are now tightly
shut, maybe”), positive reinforcement in key positions (i.e., “your
breath becomes deeper and deeper, yes, very good”), and the repla-
cement or elimination of certain lexemes that could be interpreted
as affectively negative (i.e., “These suggestions will not bother you”
was replaced by “You will be ok with these suggestions”).
Importantly, the structure of the script and of each suggestion
were left untouched. In order to check the quality of the resulting
translation and to make sure that the introduced changes would
not alter the actual meaning of the text or its pace in any funda-
mental way, a bilingual French-English linguist independent to the
study first translated our rendering of the scale back into English
and then compared it to Shor and Orne’s text, reaching the conclu-
sion that the translation was consistent with the original.

Procedure

Participants were first presented with a written consent, which
they had to sign to be able to remain in the room for the session (no
participants left the room). Then, the instructions prescribed in the
original HGSHS were followed to the letter (Shor & Orne, 1962). Subjects received a translated version of the original response booklet and were told not to interact with it until so told except to write their personal information on the cover. The second author, an MD and hypnotherapist, presented an explanation aimed toward demystifying the practice of hypnosis, addressing some of the most common questions on the subject and correcting some common misconceptions nurtured by folk hypnosis, fiction, and the media. He then would seamlessly proceed to start the experiment by reading the script. The first author would also stay in the room to monitor the participants. By the session’s end, participants were guided through the completion of the response booklet in accordance with Shor and Orne’s original indications. Once all booklets were collected, participants were encouraged to ask questions and discuss their experience with the authors.

Scoring, Correction for Involuntariness, and Outliers

Just like with the original, a single point was assigned if the suggestion was carried out successfully. The amnesia suggestion was reverse scored, namely a point was assigned only if the participant recalled three items or less before the signal to lift the amnesia and two or more additional items immediately afterwards (Kihlstrom & Register, 1984). Points were added together to establish a score over 12.

All booklets were scored by the first author. Then, a random sample of 45 booklets plus the five incomplete booklets were mixed together and given to an independent scorer with no ties to the project. All rejected booklets were rejected again, and only two booklets were rated differently, by one point (the amnesia suggestion). These differences did not imply a change of category in any of the involved subjects. To quantify the impact of involuntariness on the sample spread, we utilized Kihlstrom’s complementary Scale of Involuntariness (2006) to elaborate an additional “corrected” version of the sample. In this extra version, all suggestions ranked as “I did not respond at all during this time” or “My response was mostly voluntary” were marked as failed, regardless of the objective response section input. We provide separate analysis and present the results for both the corrected and uncorrected versions of the French sample in the results section.

RESULTS

Gender Differences

Given the large size difference of male and female participants (91 female, 24 male), a permutation test with 1000 permutations was used to calculate the significance of the difference between mean hypnotizability of gender groups. No significant difference was found for mean
hypnotizability across genders in the sample for either the corrected \((p = .55) \) or uncorrected \((p = .48) \) datasets. Hence, all data were pooled together.

Mean Total Scores and Distribution

All analyses comprised the entire remaining sample of 115 participants. As shown in Table 1, mean scores and sample distribution were calculated twice, on the raw data and after applying the correction for involuntariness. Following the same criterion as in Laurence and Perry (1982), we separated the participants into four categories depending on their level of suggestibility: high (scores between 10–12), medium high (7–9), medium low (3–6), and low (0–2). For the uncorrected data, 31% of participants were ranked in the “high” category, 44% in the “medium high,” 22% in “medium low,” and 3% in the “low” category. For the corrected sample, which took into account the voluntariness of the response, 15% of the subjects were considered as high, 37% as medium high, 38% as medium low, and 10% as low. This difference between

<table>
<thead>
<tr>
<th>Total Score</th>
<th>Uncorrected</th>
<th>Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Cases</td>
<td>Cumulative</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>5.2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>9.6</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>10.4</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>11.3</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>21.7</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>18.3</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>10.4</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>2.6</td>
</tr>
<tr>
<td>High (10–12)</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td>Medium-High (7–9)</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>Medium-Low (3–6)</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Low (0–2)</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
samples portrays a shift toward higher levels of hypnotizability in the uncorrected scores.

In order to assess the significance of such differences, we proceeded to compare the spread of the score across participants before and after the correction, as well as individual success rates for every suggestion, sample means, and standard deviations (SD). Figure 1a presents all item pass rates and means. Success rate is higher across items for the uncorrected sample and so is the sample mean. As shown in Figure 1b, a repeated-measures analysis of variance (ANOVA) test points to a significant main effect of correction for the difference between the samples, $F(1, 114) = 98.87, p < .0001$. When scouting each suggestion individually, a logistic regression shows (after correction for multiple comparison) a value of $p < .01$ for the difference between samples in the “Finger interlocking” suggestion and, crucially, $p < .0001$ for the “Posthypnotic Suggestion.”

Values of both the corrected and uncorrected sample means (6.35 and 8) are in the range of the reference samples (United States: 7.39; Canada: 5.38; Australia: 5.45; Germany: 6.51; Spain: 7.13; Portugal: 6.73) with the values for the uncorrected sample ranking on the higher end of the group.

Item Difficulty

Table 2 shows the item pass rates, means, and standard deviations for the corrected French sample and the reference samples. The highest pass rates for the French sample were found in Item 1 (head falling), Item 3 (hand lowering), and Item 7 (hand moving), all in the range of the reference samples. In particular, these three items are also the three highest-ranked items in the U.S. original sample obtained by Shor and Orne. One item (the fly hallucination, 18% and 14% for the uncorrected and corrected samples, respectively) was ranked substantially lower than the reference samples but was still congruous with several other samples that have pointed out this item as particularly hard to pass, such as the Portuguese (fly hallucination: 12%), Swedish (14%), and Polish (12%) samples (Carvalho, 2013).

Reliability

Table 3 displays the impact across samples of each item against the total scale (point-biserial coefficients of correlation between each suggestion and the sum of all other suggestions) and the total scale reliability (Kuder-Richardson coefficient of reliability; Hoyt, 1941). The magnitude of the correlation coefficients for the French Sample (corrected: .8; uncorrected: .7) are comparable to the Australian (.76), Canadian (.84), American (.8), Spanish (.68), German (.62), and Portuguese (.63) samples.
Figure 1. Impact of involuntariness on individual suggestions and overall hypnotizability scores. (a) Item Pass Rates (%), means, and standard deviations for the corrected and uncorrected French Samples. After correction for multiple comparison (*12), logistic regression shows \(p < .01 \) for the difference in the “Finger interlocking” suggestion and, crucially, \(p < .0001 \) for the “Posthypnotic Suggestion.” (PHS: Posthypnotic Suggestion; SD: standard deviation; (c): corrected for multiple comparison). (b) Scores spread across participants. Repeated-measures ANOVA for the difference shows \(F(1, 114) = 98.87, p < .0001 \).
We have presented and analyzed the data for our French translation of the HGSHS:A and Kihlstrom’s Scale of Involuntariness. Comparisons with the reference samples indicate that our normative data are congruous with the preexisting results. Interestingly enough, this statement holds true for both before and after correcting with Kihlstrom’s scale of voluntariness, albeit with some differences that deserve our attention.

First and foremost, the uncorrected scores would seem to overestimate hypnotizability. A large amount of subjects in the high hypnotizability category was detected in the uncorrected version (31% against 15% for the corrected sample), with virtually no participants marked as highly resistant to hypnotic suggestion (3% vs. 10% in the corrected sample, with no subjects scoring 0 or 1 for the uncorrected version). Kihlstrom’s posttest would seem to show that this difference is a direct consequence of some participants interpreting at least some of the suggestions as instructions to be followed, rather than as a phenomenon that takes place autonomously.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>FRAu (115)</th>
<th>FRAc (115)</th>
<th>USA (132)</th>
<th>AUS (1944)</th>
<th>CAN (535)</th>
<th>GER (374)</th>
<th>SPA (220)</th>
<th>PRT (313)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Falling</td>
<td>89</td>
<td>80</td>
<td>86</td>
<td>61</td>
<td>65</td>
<td>73</td>
<td>73</td>
<td>58</td>
</tr>
<tr>
<td>Eye Closure</td>
<td>77</td>
<td>67</td>
<td>74</td>
<td>57</td>
<td>63</td>
<td>73</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>Hand Lowering</td>
<td>91</td>
<td>84</td>
<td>89</td>
<td>71</td>
<td>66</td>
<td>83</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>Arm Immobilization</td>
<td>60</td>
<td>46</td>
<td>48</td>
<td>36</td>
<td>47</td>
<td>52</td>
<td>58</td>
<td>57</td>
</tr>
<tr>
<td>Finger Lock</td>
<td>71</td>
<td>50</td>
<td>67</td>
<td>53</td>
<td>50</td>
<td>57</td>
<td>67</td>
<td>75</td>
</tr>
<tr>
<td>Arm Rigidity</td>
<td>63</td>
<td>48</td>
<td>57</td>
<td>41</td>
<td>47</td>
<td>52</td>
<td>69</td>
<td>65</td>
</tr>
<tr>
<td>Hand Moving</td>
<td>91</td>
<td>83</td>
<td>86</td>
<td>71</td>
<td>64</td>
<td>74</td>
<td>79</td>
<td>67</td>
</tr>
<tr>
<td>Motor Inhibition</td>
<td>75</td>
<td>57</td>
<td>50</td>
<td>42</td>
<td>43</td>
<td>49</td>
<td>74</td>
<td>51</td>
</tr>
<tr>
<td>Hallucination</td>
<td>18</td>
<td>14</td>
<td>56</td>
<td>25</td>
<td>36</td>
<td>47</td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>Eye Catalepsy</td>
<td>69</td>
<td>53</td>
<td>56</td>
<td>38</td>
<td>36</td>
<td>47</td>
<td>59</td>
<td>46</td>
</tr>
<tr>
<td>PHS</td>
<td>42</td>
<td>11</td>
<td>36</td>
<td>17</td>
<td>15</td>
<td>31</td>
<td>29</td>
<td>44</td>
</tr>
<tr>
<td>Amnesia</td>
<td>52</td>
<td>38</td>
<td>48</td>
<td>33</td>
<td>19</td>
<td>36</td>
<td>52</td>
<td>72</td>
</tr>
<tr>
<td>Mean Percentage per Item</td>
<td>66.74</td>
<td>52.9</td>
<td>61.3</td>
<td>45</td>
<td>44.8</td>
<td>56.1</td>
<td>59.4</td>
<td>56.3</td>
</tr>
<tr>
<td>Sample Mean</td>
<td>8</td>
<td>6.35</td>
<td>7.39</td>
<td>5.45</td>
<td>5.38</td>
<td>6.51</td>
<td>7.13</td>
<td>6.73</td>
</tr>
<tr>
<td>Sample SD</td>
<td>2.47</td>
<td>2.98</td>
<td>3.04</td>
<td>2.95</td>
<td>3.28</td>
<td>2.43</td>
<td>2.61</td>
<td>2.51</td>
</tr>
</tbody>
</table>

Note. FRAu: French sample, uncorrected; FRAc: French sample, corrected; AUS: Australia; CAN: Canada; GER: Germany; SPA: Spain; PRT: Portugal; PHS: Posthypnotic Suggestion; SD: standard deviation.

Discussion

We have presented and analyzed the data for our French translation of the HGSHS:A and Kihlstrom’s Scale of Involuntariness. Comparisons with the reference samples indicate that our normative data are congruous with the preexisting results. Interestingly enough, this statement holds true for both before and after correcting with Kihlstrom’s scale of voluntariness, albeit with some differences that deserve our attention.

First and foremost, the uncorrected scores would seem to overestimate hypnotizability. A large amount of subjects in the high hypnotizability category was detected in the uncorrected version (31% against 15% for the corrected sample), with virtually no participants marked as highly resistant to hypnotic suggestion (3% vs. 10% in the corrected sample, with no subjects scoring 0 or 1 for the uncorrected version). Kihlstrom’s posttest would seem to show that this difference is a direct consequence of some participants interpreting at least some of the suggestions as instructions to be followed, rather than as a phenomenon that takes place autonomously.
Table 3
Item-Scale Correlation and Total Scale Reliability for the Corrected French and Reference Samples

<table>
<thead>
<tr>
<th></th>
<th>FRAu (115)</th>
<th>FRAc (115)</th>
<th>USA (132)</th>
<th>AUS (1944)</th>
<th>CAN (535)</th>
<th>GER (374)</th>
<th>SPA (220)</th>
<th>PRT (313)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Falling</td>
<td>.27</td>
<td>.37</td>
<td>.34</td>
<td>.39</td>
<td>.44</td>
<td>.21</td>
<td>.3</td>
<td>.29</td>
</tr>
<tr>
<td>Eye Closure</td>
<td>.29</td>
<td>.45</td>
<td>.3</td>
<td>.39</td>
<td>.51</td>
<td>.06</td>
<td>.27</td>
<td>.28</td>
</tr>
<tr>
<td>Hand Lowering</td>
<td>.25</td>
<td>.42</td>
<td>.48</td>
<td>.25</td>
<td>.44</td>
<td>.25</td>
<td>.09</td>
<td>.28</td>
</tr>
<tr>
<td>Arm Immobilization</td>
<td>.34</td>
<td>.39</td>
<td>.66</td>
<td>.36</td>
<td>.53</td>
<td>.33</td>
<td>.38</td>
<td>.31</td>
</tr>
<tr>
<td>Finger Lock</td>
<td>.66</td>
<td>.66</td>
<td>.86</td>
<td>.59</td>
<td>.71</td>
<td>.42</td>
<td>.52</td>
<td>.34</td>
</tr>
<tr>
<td>Arm Rigidity</td>
<td>.41</td>
<td>.5</td>
<td>.89</td>
<td>.55</td>
<td>.7</td>
<td>.42</td>
<td>.51</td>
<td>.43</td>
</tr>
<tr>
<td>Hand Rigidity</td>
<td>.38</td>
<td>.4</td>
<td>.44</td>
<td>.42</td>
<td>.6</td>
<td>.18</td>
<td>.22</td>
<td>.35</td>
</tr>
<tr>
<td>Motor Inhibition</td>
<td>.84</td>
<td>.7</td>
<td>.78</td>
<td>.51</td>
<td>.65</td>
<td>.38</td>
<td>.4</td>
<td>.43</td>
</tr>
<tr>
<td>Hallucination</td>
<td>.4</td>
<td>.39</td>
<td>.48</td>
<td>.34</td>
<td>.53</td>
<td>.23</td>
<td>.31</td>
<td>.1</td>
</tr>
<tr>
<td>Eye Catalepsy</td>
<td>.7</td>
<td>.45</td>
<td>.74</td>
<td>.53</td>
<td>.75</td>
<td>.47</td>
<td>.46</td>
<td>.45</td>
</tr>
<tr>
<td>PHS</td>
<td>.05</td>
<td>.36</td>
<td>.46</td>
<td>.18</td>
<td>.47</td>
<td>.14</td>
<td>.11</td>
<td>.03</td>
</tr>
<tr>
<td>Amnesia</td>
<td>.31</td>
<td>.36</td>
<td>.39</td>
<td>.18</td>
<td>.65</td>
<td>.09</td>
<td>.18</td>
<td>.02</td>
</tr>
<tr>
<td>Total Scale Reliability (Kuder-Richardson)</td>
<td>.7</td>
<td>.8</td>
<td>.8</td>
<td>.76</td>
<td>.84</td>
<td>.62</td>
<td>.68</td>
<td>.63</td>
</tr>
</tbody>
</table>

Note: FRAu: French sample, uncorrected; FRAc: French sample, corrected; AUS: Australia; CAN: Canada; GER: Germany; SPA: Spain; PRT: Portugal; PHS: Posthypnotic Suggestion.
Second, when observing the point-biserial correlation between the scale and the posthypnotic suggestion, the uncorrected sample presented a considerably lower mark than the corrected version (.05 vs. .36). It is worth pointing out that our logistic regression analysis singled out this same suggestion together with finger interlocking, as the only two cases where percentage of success was significantly lower for the corrected sample, after correction for multiple comparisons.

Last, while the Kuder-Richardson coefficient for internal consistency is at an acceptable rate for both versions of the French sample, the corrected version is one point higher, with a value equal to that of the original U.S. version (.8 vs. .7 for the uncorrected version). These results suggest that, in our sample, correcting for voluntariness of the responses to the suggestions is advisable and yields more trustworthy estimates of our participants’ hypnotizability.

We can enumerate a number of factors that could have led to this state of affairs: First, we may have inflated demand characteristics or social expectation effects. Even when participants were told that their susceptibility to suggestion was of no consequence for their involvement in future experiments and that the experimenters were neutral with respect to the level of hypnotizability of each participant, the fact that the scale was administered by a trained professional instead of a recording could have had an impact on subjects’ criteria and could lead them to attribute expectations to the experimenters nonetheless. Furthermore, while indeed some studies have pointed out a lack of any significant differences between recorded hypnosis and live suggestion (T. Barber & Smith, 1964), no study was ever performed comparing the difference between recordings and live suggestion while at the same time assessing voluntary versus automatic (or “dissociated”) responses.

Second, the mild changes targeting the directive modus of the original scale could have played a part, although we believe that this is not probable. Research as to whether less-directive hypnosis is indeed more effective, or different, than earlier more directive approaches is contradictory and unclear. Mostly, though, it declares that there are no significant differences between both methods (for a detailed review on this matter, see Lynn, Neufeld, & Maré, 2008). The changes in the present version aspired simply to offer the French-speaking community a modern translation that, while staying true to the directive nature of the original, would be more consonant with the clinical practice. It should be noted that the goal of this work was not to produce a new scale: Other purely indirect scales such as the Alman-Wexler Indirect Hypnotic Susceptibility Scale (AWIHSS) were already produced to this end (Pratt, Wood, & Álman, 1984). Rather, it was aimed to adapt the use of Shor and Orne’s existing scale to the dominant contemporary style of induction procedure in the French-speaking community.
Finally, it could be that none of the aforementioned factors on one’s own, but rather an interaction between them, is responsible for the differences we found. It should be noted though that the corrected data fit the reference criteria even better than that of the uncorrected sample. The popularity of hypnosis is high in French society: It could be the case that the participants of this study were very motivated to pass as many suggestions as possible, even when instructed to “simply let go and let things happen spontaneously.” If indeed this was the case, then our correction was a useful tool to eliminate such contamination. A larger study applying this correction on different samples and countries should be conducted to generalize its beneficial effects on raw data. Yet, we advise that if a strict “classic (involuntary, autonomous)” effect is to be sought, then the implementation of our correction can prove of use to successfully avoid false positives, particularly for posthypnotic suggestions of a motor nature.

In all, the data we have reported indicate that the French norms concur with those of the three selected reference samples. Beyond the differences that we outline, it can be seen that the progression in item difficulty and biserial correlations, as well as the internal scale consistency, are in line with data from the other norms. Taken together, these elements validate the viability of our French translation of the HGSHS: A and the Involuntariness Scale as tools for acquiring initial ratings of hypnotizability and further advance hypnosis research in the franco-phone scientific and clinical hypnosis community.

Acknowledgments

We thank Isabelle Brunet for the recruitment, Dr. Bruno Suarez (MD) for his keen advice, and Alexander Martin for his swift intervention as a bilingual translator. We are grateful to all subjects who participated of this study.

Funding

The project reported in this article was made possible by a PhD fellowship from Frontiers du Vivant (CRI) to Hernan Anlló. It was also supported by grants from the Région Ile-de-France, Fondation de France, LabEx IEC (ANR-10-LABX-0087), IdEx PSL (ANR-10-IDEX-0001-02), and the CITAC.

References

Französische Normen für die Harvard Group Scale for Hypnotic Suszeptibility, Form A

Hernán Anlló, Jean Becchio, und Jérôme Sackur

Stephanie Riegel, MD

Normes françaises du questionnaire de susceptibilité hypnotique du Groupe de Harvard, formulaire A

Hernán Anlló, Jean Becchio et Jérôme Sackur

échantillons de référence. Fait intéressant, le taux de réussite de quelques items s’affaiblit sensiblement si les réponses « tout à fait volontaires » (telles qu’indiquées sur l’échelle de Kihlstrom) sont notées comme étant un « échec ». Des exemplaires de l’échelle traduite et du livret de réponses sont disponibles en ligne.

JOHANNE REYNALUT
C. Tr. (STIBC)

Normas Francesas para la Escala Grupal Harvard de Susceptibilidad Hipnótica, Forma A

Hernán Anlló, Jean Becchio, y Jérôme Sackur

OMAR SÁNCHEZ-ARMÁSS CAPPELLO
Autonomous University of San Luis Potosi, Mexico