Genetic, neural and cognitive characterisation of developmental language disorders


Funding

Participants

Ville de Paris
Commission Européenne
Agence Nationale de la Recherche
Ecole de Neurosciences de Paris
Agir pour l'audition
Cognitive testing and analysis: Caroline Bogliotti, Stéphanie Iannuzzi, Amanda Saksida, many collaborators in France, and many collaborators in Europe.
Neuroimaging: Irene Altarelli, Katarzyna Jednorog, Jingjing Zhao, Lou Scotto di Covella, Mikel Lizarazu, Ghislaine Dehaene-Lambertz, Lucie Hertz-Pannier, Virginie van Wassenhove, Denis Rivière and other collaborators at the Neurospin centre.
Anne-Lise Giraud and Katia Lehongre
Genetics: The team of Thomas Bourgeron, and collaborators in Bonn and Munich.

Together with geneticist Thomas Bourgeron at Instituassisat Pasteur and many collaborators all over France, I set up the Genedys project, which explores the genetic bases of developmental language disorders (dyslexia and SLI), in relation to both cognitive and neuroanatomical phenotypes. It is based on the participation of dyslexic, SLI and control children, aged 8 to 12, and their family members (in the case of multiplex families). Children undergo a complete behavioural test battery (around 3 hours of tests covering all the main aspects of general cognitive functioning, oral and written language), donate either a blood or a saliva sample for DNA extraction, and a subset of them undergo a neuroanatomical MRI scan, in order to define a neural phenotype for those disorders.

The Genedys project also became part of the European project Neurodys, led by Gerd Schulte-Körne in Munich, and including many other collaborators. Within Neurodys, around 1500 dyslexic and 1500 control children from 9 countries are behaviourally tested on a common test battery (a subset of the Genedys battery) and donate a DNA sample. 

A later collaboration with Anne-Lise Giraud and Katia Lehongre attempts to investigate cortical oscillations supporting auditory sampling of speech in dyslexia.

These efforts were continued in the Dysbrain project, which gathered very high resolution images at the 7 Tesla MRI, and MEG responses to auditory stimuli.

Cognitive aspects of developmental dyslexia

Landerl, K.*, Ramus, F.*, Moll, K., Lyytinen, H., Leppänen, P. H. T., Lohvansuu, K., . . . Schulte-Körne, G. (2013). Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry, 54(6), 686-694. *equal contributors

Moll, K., Ramus, F., Bartling, J., Bruder, J., Kunze, S., Neuhoff, N., . . . Landerl, K. (2014). Cognitive mechanisms underlying reading and spelling development in five European orthographies. Learning and Instruction, 29, 65-77.

Cortical oscillations in developmental dyslexia

Lehongre, K., Ramus, F., Villiermet, N., Schwartz, D., & Giraud, A. L. (2011). Altered low-gamma sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron, 72(6), 1080-1090. preprint

Giraud, A. L., & Ramus, F. (2013). Neurogenetics and auditory processing in developmental dyslexia. Current Opinion in Neurobiology, 23(1), 37-42. 

Lehongre, K., Morillon, B., Giraud, A. L., & Ramus, F. (2013). Impaired auditory sampling in dyslexia: Further evidence from combined fMRI and EEG. Frontiers in Human Neuroscience, 7, 454. doi:10.3389/fnhum.2013.00454

Neuroanatomy of developmental dyslexia

Altarelli, I., Monzalvo, K., Iannuzzi, S., Fluss, J., Billard, C., Ramus, F., & Dehaene-Lambertz, G. (2013). A functionally guided approach to the morphometry of occipito-temporal regions in developmental dyslexia: evidence for differential effects in boys and girls. The Journal of Neuroscience, 33(27), 11296-11301.

Altarelli, I., Leroy, F., Monzalvo, K., Fluss, J., Billard, C., Dehaene-Lambertz, G., . . . Ramus, F. (2014). Planum temporale asymmetry in developmental dyslexia: revisiting an old question. Human Brain Mapping, 35, 5717-5735.

Jednoróg, K., Marchewka, A., Altarelli, I., Monzalvo, K., van Ermingen-Marbach, M., Grande, M., Grabowska, A., Heim, S., & Ramus, F. (2015). How reliable are grey matter disruptions in specific reading disability across multiple countries and languages? Insights from a large-scale voxel-based morphometry study. Human Brain Mapping, 36(5), 1741-1754.

Płoński, P., Gradkowski, W., Altarelli, I., Monzalvo, K., Van Ermingen-Marbach, M., Grande, M., . . . , Ramus, F., & Jednoróg, K. (2017). Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia. Human Brain Mapping, 38(2), 900‑908.

Zhao, J., Thiebaut de Schotten, M., Altarelli, I., Dubois, J., & Ramus, F. (2016). Altered hemispheric lateralization of white matter tracts in developmental dyslexia: Evidence from spherical deconvolution tractography. Cortex, 76, 51-62.

Genetic basis of developmental dyslexia

Galaburda, A. M., LoTurco, J., Ramus, F., Fitch, R. H., & Rosen, G. D. (2006). From genes to behavior in developmental dyslexia. Nature Neuroscience, 9(10), 1213-1217. reprint 

Ramus, F. (2006). Genes, brain, and cognition: A roadmap for the cognitive scientist. Cognition, 101(2), 247-269. reprint (Introduction to a Cognition Special Issue)

Ramus, F., & Fisher, S. E. (2009). Genetics of language. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences IV (pp. 855-871). Cambridge, MA: MIT Press.reprint

Becker, J., Czamara, D., Scerri, T. S., Ramus, F., Csépe, V., Talcott, J. B., . . . Schumacher, J. (2014). Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 22, 675-680.

Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., … Schulte-Körne, G. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(1).